organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

N-Methyl­serotonin hydrogen oxalate

crossmark logo

aUniversity of Massachusetts Dartmouth, 285 Old Westport Road, North Dartmouth, MA 02747, USA, and bCaaMTech, Inc., 58 East Sunset Way, Suite 209, Issaquah, WA 98027, USA
*Correspondence e-mail: dmanke@umassd.edu

Edited by I. Brito, University of Antofagasta, Chile (Received 21 April 2023; accepted 26 April 2023; online 5 May 2023)

The solid-state structure of N-methyl­serotonin {systematic name: [2-(5-hy­droxy-1H-indol-3-yl)eth­yl](meth­yl)aza­nium hydrogen oxalate}, C11H15N2O+·C2HO4, is reported. The structure possesses a singly protonated N-methylserotonin cation and one hydrogen oxalate anion in the asymmetric unit. In the crystal, the mol­ecules are linked by N—H⋯O and O—H⋯O hydrogen bonds into a three-dimensional network.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Serotonin (5-hy­droxy­tryptamine) is a ubiquitous neurotransmitter that is integral in regulating mood, anxiety and happiness in humans (Young & Leyton, 2002[Young, S. N. & Leyton, M. (2002). Pharmacol. Biochem. Behav. 71, 857-865.]). Methyl­ating the ethyl­amine nitro­gen atom of serotonin provides three serotonin analogues: (i) N-methyl­serotonin, (ii) 5-hy­droxy-N,N-di­methyl­tryptamine (bufotenine) and (iii) 5-hy­droxy-N,N,N-tri­methyl­tryptammonium (bufotenidine). Of these, bufotenine is probably most widely known as a natural product found in the secretions of Bufo alvarius toads. Bufotenine is a potent agonist of serotonin receptors and is one of several compounds to which the psychedelic effects of toad secretions are attributed (Egan et al., 2000[Egan, C., Grinde, E., Dupre, A., Roth, B. L., Hake, M., Teitler, M. & Herrick-Davis, K. (2000). Synapse, 35, 144-150.]).

Replacing three hydrogen atoms with methyl groups in the ethyl­amine group of serotonin provides 5-hy­droxy-N,N,N-tri­methyl­tryptammonium, or bufotenidine, which is also a natural product found in toad secretions. Bufotenidine differs from the other analogues by virtue of its quaternary ammonium cation and selective affinity for the serotonin 3 receptor. Due to its charge, bufotenidine is unable to cross the blood–brain barrier, restricting its activity to the periphery, where it has been shown to have paralytic properties (Bhattacharya & Sanyal, 1972[Bhattacharya, S. K. & Sanyal, A. K. (1972). Naturwissenshcaften, 59, 650-651.]).

The title compound is the mono-methyl­ated variant 5-hy­droxy-N-methyl­tryptamine, which is a naturally occurring derivative of serotonin that has garnered attention due to its potential applications in biological and medical contexts. Endogenous N-methyl­serotonin has been observed both in plants and mammals, including in rodents colonized with human gut bacterial strains (Han et al., 2022[Han, N. D., Cheng, J., Delannoy-Bruno, O., Webber, D., Terrapon, N., Henrissat, B., Rodionov, D. A., Arzamasov, A. A., Osterman, A. L., Hayashi, D. K., Meynier, A., Vinoy, S., Desai, C., Marion, S., Barratt, M. J., Heath, A. C. & Gordon, J. I. (2022). Cell, 185, 2495-2509.e11.]). The biosynthesis of N-methyl­serotonin most likely occurs via N-methyl­ation of serotonin by the enzyme indole­thyl­amine-N-methyl­transferase (Thompson et al., 2001[Thompson, M. A., Weinshilboum, R. M., El Yazal, J., Wood, T. C. & Pang, Y.-P. (2001). J. Mol. Model. 7, 324-333.]). This enzyme, originally discovered as the enzyme responsible for the synthesis of the endogenous hallucinogen di­methyl­tryptamine (Barker et al., 2012[Barker, S. A., McIlhenny, E. H. & Strassman, R. (2012). Drug Test. Anal. 4, 617-635.]), has recently been shown to have a broader substrate scope, including serotonin, which likely leads to the formation of N-methyl­serotonin (Chu et al., 2014[Chu, U. B., Vorperian, S. K., Satyshur, K., Eickstaedt, K., Cozzi, N. V., Mavlyutov, T., Hajipour, A. R. & Ruoho, A. E. (2014). Biochemistry, 53, 2956-2965.]).

The pharmacological properties of N-methyl­serotonin have been a subject of increasing inter­est. It is reported to have significant binding affinity for the serotonin 1 A and 7 receptors, in addition to being a potent serotonin reuptake inhibitor (Powell et al., 2008[Powell, S. L., Gödecke, T., Nikolic, D., Chen, S.-N., Ahn, S., Dietz, B., Farnsworth, N. R., van Breemen, R. B., Lankin, D. C., Pauli, G. F. & Bolton, J. L. (2008). J. Agric. Food Chem. 56, 11718-11726.]). These activities suggest that N-methyl­serotonin may have a unique pharmacological profile different from parent serotonin and may provide novel therapeutic opportunities for various psychiatric and neurological disorders. The title compound was first synthesized by Hofmann in 1955 and characterized by IR and elemental analysis (Stoll et al., 1955[Stoll, A., Troxler, F., Peyer, J. & Hofmann, A. (1955). Helv. Chim. Acta, 38, 1452-1472.]). Herein, the crystal structure of 5-hy­droxy-N-methyl­tryptamine is presented as its hydrogen oxalate salt.

The asymmetric unit of 5-hy­droxy-N-methyl­trypt­ammonium hydrogen oxalate contains one tryptammonium cation and one hydrogen oxalate anion (Fig. 1[link]). The trypt­ammonium cation has a near planar indole unit with an r.m.s. deviation from planarity of 0.014 Å. The ethyl­amino arm is turned away from the indole plane with a C7—C8—C9—C10 torsion angle of −83.1 (3)°. The N-methyl group of this arm possesses a gauche configuration , with a C9—C10—N2—C11 torsion angle of 57.2 (3)°. The hydrogen oxalate anion varies significantly from planarity, with a CO2-to-CO2 plane-to-plane twist angle of 24.2 (1)°. The ions are linked together through a series of N—H⋯O and O—H⋯O hydrogen bonds into a three-dimensional framework (Fig. 2[link], Table 1[link]). The hydrogen oxalate ions are linked together through O—H⋯O hydrogen bonds into chains along (100).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯O4 0.87 (1) 2.08 (2) 2.928 (3) 164 (3)
N2—H2A⋯O1i 0.91 (1) 2.30 (3) 2.862 (3) 120 (2)
N2—H2A⋯O2ii 0.91 (1) 2.35 (2) 3.150 (3) 147 (3)
N2—H2B⋯O3iii 0.90 (1) 2.15 (2) 2.906 (3) 141 (3)
N2—H2B⋯O5iii 0.90 (1) 2.34 (2) 3.117 (3) 145 (3)
O1—H1⋯O3iv 0.77 (4) 2.00 (4) 2.768 (2) 172 (4)
O5—H5⋯O2v 0.84 (4) 1.76 (4) 2.595 (2) 177 (4)
Symmetry codes: (i) [x-{\script{1\over 2}}, -y, z-{\script{1\over 2}}]; (ii) [x-{\script{1\over 2}}, -y+1, z-{\script{1\over 2}}]; (iii) [x-1, y-1, z]; (iv) [x+{\script{1\over 2}}, -y+1, z+{\script{1\over 2}}]; (v) x+1, y, z.
[Figure 1]
Figure 1
The mol­ecular structure of 5-hy­droxy-N-methyl­tryptammonium hydrogen oxalate showing the atomic labeling. Displacement ellipsoids are drawn at the 50% probability level. Hydrogen bonds are shown as dashed lines.
[Figure 2]
Figure 2
The crystal packing of 5-hy­droxy-N-methyl­tryptammonium hydrogen oxalate shown along the a-axis. Hydrogen bonds are shown as dashed lines. H atoms not involved in hydrogen bonding are omitted for clarity.

The most closely related mono­alkyl­tryptamine structure to the title compound is 5-meth­oxy-N-methyl­tryptamine [Cambridge Structural Database (Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) refcode QQQAHA; Bergin et al., 1968[Bergin, R., Carlström, D., Falkenberg, G. & Ringertz, H. (1968). Acta Cryst. B24, 882.]]. There are six other mono­alkyl­tryptamine structures reported in the literature. These are the natural product norpsilocin, 4-hy­droxy-N-methyl­tryptamine, which has been reported as its free base and its fumarate salt (MULXAV and MULXEZ; Chadeayne et al., 2020[Chadeayne, A. R., Pham, D. N. K., Golen, J. A. & Manke, D. R. (2020). Acta Cryst. E76, 514-517.]), the natural product baeocystin (FEJBAB; Naeem et al., 2022b[Naeem, M., Sherwood, A. M., Chadeayne, A. R., Golen, J. A. & Manke, D. R. (2022b). Acta Cryst. E78, 550-553.]), 4-acet­oxy-N-methyl­tryptamine (Glatfelter et al., 2022[Glatfelter, G. C., Pottie, E., Partilla, J. S., Sherwood, A. M., Kaylo, K., Pham, D. N. K., Naeem, M., Sammeta, V. R., DeBoer, S., Golen, J. A., Hulley, E. B., Stove, C. P., Chadeayne, A. R., Manke, D. R. & Baumann, M. H. (2022). ACS Pharmacol. Transl. Sci. 5, 1181-1196.]), 4-benz­yloxy-N-iso­propyl­tryptammonium chloride and 4-hy­droxy-N-iso­propyl­tryptamine (CCDC 2246619 and 2246620; Laban et al., 2023[Laban, U., Naeem, M., Chadeayne, A. R., Golen, J. A. & Manke, D. R. (2023). Acta Cryst. E79, 280-286.]). The 5-hy­droxy­tryptamine structures that are known include the natural products serotonin (JECDII; Naeem et al., 2022a[Naeem, M., Chadeayne, A. R., Golen, J. A. & Manke, D. R. (2022a). Acta Cryst. E78, 365-368.]), bufotenine (BUFTEN; Falkenberg, 1972[Falkenberg, G. (1972). Acta Cryst. B28, 3219-3228.]) and bufotenidine (ILUVET; Pham et al., 2021[Pham, D. N. K., Chadeayne, A. R., Golen, J. A. & Manke, D. R. (2021). IUCrData, 6, x210123.]). The structure of serotonin has also been determined as its hydrogen oxalate salt (SERHOX: Amit et al., 1978[Amit, A., Mester, L., Klewe, B. & Furberg, S. (1978). Acta Chem. Scand. 32a, 267-270.]).

Synthesis and crystallization

Single crystals suitable for X-ray diffraction studies were grown from an aqueous solution of a commercial sample (Sigma-Aldrich).

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula C11H15N2O+·C2HO4
Mr 280.28
Crystal system, space group Monoclinic, Pn
Temperature (K) 300
a, b, c (Å) 5.7044 (4), 9.9485 (7), 11.7687 (7)
β (°) 90.321 (2)
V3) 667.87 (8)
Z 2
Radiation type Mo Kα
μ (mm−1) 0.11
Crystal size (mm) 0.30 × 0.22 × 0.06
 
Data collection
Diffractometer Bruker D8 Venture CMOS
Absorption correction Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.])
Tmin, Tmax 0.715, 0.745
No. of measured, independent and observed [I > 2σ(I)] reflections 29160, 2730, 2670
Rint 0.032
(sin θ/λ)max−1) 0.626
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.030, 0.077, 1.10
No. of reflections 2730
No. of parameters 202
No. of restraints 5
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.12, −0.21
Absolute structure Flack x determined using 1280 quotients [(I+)−(I)]/[(I+)+(I)] (Parsons et al., 2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.])
Absolute structure parameter −0.2 (2)
Computer programs: APEX4 and SAINT (Bruker, 2021[Bruker (2021). APEX4 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT2014 (Sheldrick 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2018 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Structural data


Computing details top

Data collection: APEX4 (Bruker, 2021); cell refinement: SAINT (Bruker, 2021); data reduction: SAINT (Bruker, 2021); program(s) used to solve structure: SHELXT2014 (Sheldrick 2015a); program(s) used to refine structure: SHELXL2018 (Sheldrick, 2015b); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: publCIF (Westrip, 2010).

[2-(5-Hydroxy-1H-indol-3-yl)ethyl](methyl)azanium hydrogen oxalate top
Crystal data top
C11H15N2O+·C2HO4F(000) = 296
Mr = 280.28Dx = 1.394 Mg m3
Monoclinic, PnMo Kα radiation, λ = 0.71073 Å
a = 5.7044 (4) ÅCell parameters from 9870 reflections
b = 9.9485 (7) Åθ = 2.7–26.4°
c = 11.7687 (7) ŵ = 0.11 mm1
β = 90.321 (2)°T = 300 K
V = 667.87 (8) Å3Block, brown
Z = 20.30 × 0.22 × 0.06 mm
Data collection top
Bruker D8 Venture CMOS
diffractometer
2670 reflections with I > 2σ(I)
φ and ω scansRint = 0.032
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
θmax = 26.4°, θmin = 3.5°
Tmin = 0.715, Tmax = 0.745h = 77
29160 measured reflectionsk = 1212
2730 independent reflectionsl = 1414
Refinement top
Refinement on F2Hydrogen site location: mixed
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.030 w = 1/[σ2(Fo2) + (0.0456P)2 + 0.0849P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.077(Δ/σ)max < 0.001
S = 1.10Δρmax = 0.12 e Å3
2730 reflectionsΔρmin = 0.21 e Å3
202 parametersAbsolute structure: Flack x determined using 1280 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
5 restraintsAbsolute structure parameter: 0.2 (2)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Hydrogen atoms H1, H1A, H2A, H2B and H5 were found in a difference-Fourier map. These H atoms were refined isotropically, using DFIX restraints with NH(indole) distances of 0.87 (1) Å and NH(ammonium) distances of 0.90 (1) Å. Isotropic displacement parameters were set to 1.2Ueq of the parent nitrogen atoms and 1.5Ueq of the parent oxygen atoms. All other H atoms were placed in calculated positions [C—H = 0.93 Å (sp2), 0.97 Å (CH2), 0.96 Å (CH3)].

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.6078 (3)0.04614 (17)0.56240 (16)0.0420 (4)
N10.4085 (4)0.5480 (2)0.39536 (18)0.0393 (5)
N20.1882 (3)0.1720 (2)0.12931 (17)0.0349 (4)
C10.2113 (5)0.5182 (2)0.3334 (2)0.0380 (5)
H1B0.1274170.5798090.2898590.046*
C20.4845 (4)0.4328 (2)0.44898 (18)0.0300 (4)
C30.6748 (4)0.4108 (2)0.5213 (2)0.0354 (5)
H30.7729690.4809920.5430430.043*
C40.7131 (4)0.2820 (2)0.55953 (19)0.0349 (5)
H40.8409190.2645780.6066810.042*
C50.5629 (4)0.1764 (2)0.52871 (19)0.0324 (5)
C60.3690 (4)0.1982 (2)0.46036 (19)0.0312 (4)
H60.2672390.1281910.4425510.037*
C70.3287 (4)0.3280 (2)0.41840 (18)0.0286 (4)
C80.1551 (4)0.3856 (2)0.34432 (18)0.0322 (5)
C90.0508 (4)0.3163 (3)0.29002 (19)0.0357 (5)
H9A0.1708180.3824000.2726390.043*
H9B0.1162150.2524280.3433990.043*
C100.0157 (4)0.2435 (2)0.18230 (19)0.0307 (4)
H10A0.0780920.3077440.1283620.037*
H10B0.1380680.1787900.1994220.037*
C110.3888 (4)0.2595 (3)0.1022 (2)0.0506 (7)
H11A0.4954090.2127130.0527150.076*
H11B0.3339590.3394440.0651250.076*
H11C0.4680210.2835800.1710230.076*
C120.4759 (3)0.9157 (2)0.30591 (18)0.0279 (4)
C130.7233 (4)0.8699 (2)0.34523 (19)0.0291 (4)
O20.3103 (3)0.86964 (18)0.36400 (16)0.0392 (4)
O30.4636 (3)0.98887 (17)0.22060 (15)0.0390 (4)
O40.7505 (3)0.76747 (19)0.39757 (19)0.0493 (5)
O50.8902 (3)0.95034 (18)0.31279 (16)0.0389 (4)
H1A0.487 (5)0.623 (2)0.399 (3)0.054 (9)*
H2A0.142 (5)0.135 (3)0.0625 (17)0.046 (8)*
H2B0.234 (6)0.107 (2)0.177 (2)0.048 (8)*
H10.715 (7)0.040 (3)0.602 (3)0.054 (10)*
H51.024 (7)0.922 (4)0.330 (3)0.067 (11)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0454 (10)0.0325 (9)0.0478 (10)0.0060 (8)0.0167 (8)0.0050 (7)
N10.0501 (12)0.0251 (9)0.0427 (11)0.0081 (9)0.0002 (9)0.0014 (8)
N20.0249 (9)0.0442 (11)0.0355 (10)0.0037 (8)0.0011 (7)0.0082 (9)
C10.0485 (13)0.0315 (11)0.0341 (11)0.0033 (10)0.0005 (9)0.0013 (9)
C20.0357 (11)0.0251 (9)0.0292 (10)0.0062 (9)0.0059 (8)0.0047 (8)
C30.0379 (12)0.0342 (11)0.0342 (11)0.0142 (9)0.0012 (9)0.0113 (9)
C40.0338 (11)0.0405 (12)0.0304 (10)0.0041 (9)0.0042 (8)0.0043 (9)
C50.0354 (11)0.0303 (11)0.0314 (10)0.0034 (9)0.0001 (8)0.0009 (8)
C60.0325 (11)0.0268 (10)0.0344 (11)0.0084 (9)0.0008 (8)0.0027 (8)
C70.0298 (10)0.0276 (10)0.0282 (9)0.0035 (8)0.0028 (8)0.0054 (8)
C80.0347 (11)0.0329 (11)0.0292 (10)0.0007 (9)0.0010 (8)0.0043 (9)
C90.0301 (11)0.0427 (12)0.0344 (11)0.0006 (9)0.0001 (9)0.0059 (9)
C100.0223 (9)0.0335 (10)0.0364 (11)0.0011 (8)0.0000 (8)0.0040 (8)
C110.0285 (12)0.074 (2)0.0487 (15)0.0014 (12)0.0078 (10)0.0122 (13)
C120.0192 (9)0.0255 (9)0.0389 (11)0.0006 (7)0.0053 (8)0.0010 (9)
C130.0215 (9)0.0296 (10)0.0361 (10)0.0024 (8)0.0052 (7)0.0010 (9)
O20.0187 (7)0.0423 (9)0.0567 (10)0.0034 (6)0.0011 (7)0.0103 (8)
O30.0264 (7)0.0443 (9)0.0463 (9)0.0007 (7)0.0098 (6)0.0118 (8)
O40.0290 (8)0.0397 (10)0.0790 (13)0.0060 (7)0.0172 (8)0.0244 (9)
O50.0170 (7)0.0445 (10)0.0554 (10)0.0019 (6)0.0011 (7)0.0172 (8)
Geometric parameters (Å, º) top
O1—C51.378 (3)C6—H60.9300
O1—H10.77 (4)C6—C71.401 (3)
N1—C11.370 (3)C7—C81.435 (3)
N1—C21.377 (3)C8—C91.501 (3)
N1—H1A0.873 (14)C9—H9A0.9700
N2—C101.496 (3)C9—H9B0.9700
N2—C111.472 (3)C9—C101.510 (3)
N2—H2A0.910 (14)C10—H10A0.9700
N2—H2B0.898 (14)C10—H10B0.9700
C1—H1B0.9300C11—H11A0.9600
C1—C81.363 (3)C11—H11B0.9600
C2—C31.393 (3)C11—H11C0.9600
C2—C71.415 (3)C12—C131.551 (3)
C3—H30.9300C12—O21.256 (3)
C3—C41.375 (4)C12—O31.242 (3)
C4—H40.9300C13—O41.200 (3)
C4—C51.402 (3)C13—O51.303 (3)
C5—C61.381 (3)O5—H50.84 (4)
C5—O1—H1113 (3)C6—C7—C8133.9 (2)
C1—N1—C2108.64 (19)C1—C8—C7106.3 (2)
C1—N1—H1A129 (2)C1—C8—C9126.0 (2)
C2—N1—H1A122 (2)C7—C8—C9127.6 (2)
C10—N2—H2A109 (2)C8—C9—H9A109.2
C10—N2—H2B108 (2)C8—C9—H9B109.2
C11—N2—C10114.2 (2)C8—C9—C10112.22 (18)
C11—N2—H2A106.4 (19)H9A—C9—H9B107.9
C11—N2—H2B109 (2)C10—C9—H9A109.2
H2A—N2—H2B110 (3)C10—C9—H9B109.2
N1—C1—H1B124.7N2—C10—C9112.32 (17)
C8—C1—N1110.6 (2)N2—C10—H10A109.1
C8—C1—H1B124.7N2—C10—H10B109.1
N1—C2—C3130.8 (2)C9—C10—H10A109.1
N1—C2—C7107.5 (2)C9—C10—H10B109.1
C3—C2—C7121.7 (2)H10A—C10—H10B107.9
C2—C3—H3121.0N2—C11—H11A109.5
C4—C3—C2117.9 (2)N2—C11—H11B109.5
C4—C3—H3121.0N2—C11—H11C109.5
C3—C4—H4119.4H11A—C11—H11B109.5
C3—C4—C5121.2 (2)H11A—C11—H11C109.5
C5—C4—H4119.4H11B—C11—H11C109.5
O1—C5—C4121.2 (2)O2—C12—C13114.59 (18)
O1—C5—C6117.5 (2)O3—C12—C13117.46 (18)
C6—C5—C4121.3 (2)O3—C12—O2127.91 (19)
C5—C6—H6120.7O4—C13—C12121.18 (19)
C5—C6—C7118.7 (2)O4—C13—O5125.39 (19)
C7—C6—H6120.7O5—C13—C12113.40 (18)
C2—C7—C8106.89 (19)C13—O5—H5113 (3)
C6—C7—C2119.2 (2)
O1—C5—C6—C7175.6 (2)C3—C4—C5—O1176.8 (2)
N1—C1—C8—C70.1 (3)C3—C4—C5—C61.1 (3)
N1—C1—C8—C9179.3 (2)C4—C5—C6—C72.3 (3)
N1—C2—C3—C4177.7 (2)C5—C6—C7—C21.2 (3)
N1—C2—C7—C6178.9 (2)C5—C6—C7—C8177.6 (2)
N1—C2—C7—C80.2 (2)C6—C7—C8—C1178.9 (3)
C1—N1—C2—C3179.7 (2)C6—C7—C8—C91.9 (4)
C1—N1—C2—C70.3 (3)C7—C2—C3—C42.3 (3)
C1—C8—C9—C1097.9 (3)C7—C8—C9—C1083.1 (3)
C2—N1—C1—C80.2 (3)C8—C9—C10—N2178.81 (19)
C2—C3—C4—C51.3 (3)C11—N2—C10—C957.2 (3)
C2—C7—C8—C10.1 (2)O2—C12—C13—O424.3 (3)
C2—C7—C8—C9179.1 (2)O2—C12—C13—O5157.6 (2)
C3—C2—C7—C61.1 (3)O3—C12—C13—O4153.7 (2)
C3—C2—C7—C8179.8 (2)O3—C12—C13—O524.4 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O40.87 (1)2.08 (2)2.928 (3)164 (3)
N2—H2A···O1i0.91 (1)2.30 (3)2.862 (3)120 (2)
N2—H2A···O2ii0.91 (1)2.35 (2)3.150 (3)147 (3)
N2—H2B···O3iii0.90 (1)2.15 (2)2.906 (3)141 (3)
N2—H2B···O5iii0.90 (1)2.34 (2)3.117 (3)145 (3)
O1—H1···O3iv0.77 (4)2.00 (4)2.768 (2)172 (4)
O5—H5···O2v0.84 (4)1.76 (4)2.595 (2)177 (4)
Symmetry codes: (i) x1/2, y, z1/2; (ii) x1/2, y+1, z1/2; (iii) x1, y1, z; (iv) x+1/2, y+1, z+1/2; (v) x+1, y, z.
 

Acknowledgements

Financial statements and conflict of inter­est: This study was funded by CaaMTech, Inc. ARC reports an ownership inter­est in CaaMTech, Inc., which owns US and worldwide patent applications, covering new tryptamine compounds, compositions, formulations, novel crystalline forms, and methods of making and using the same.

Funding information

Funding for this research was provided by: National Science Foundation (grant No. CHE-1429086).

References

First citationAmit, A., Mester, L., Klewe, B. & Furberg, S. (1978). Acta Chem. Scand. 32a, 267–270.  CSD CrossRef Web of Science Google Scholar
First citationBarker, S. A., McIlhenny, E. H. & Strassman, R. (2012). Drug Test. Anal. 4, 617–635.  Web of Science CrossRef CAS PubMed Google Scholar
First citationBergin, R., Carlström, D., Falkenberg, G. & Ringertz, H. (1968). Acta Cryst. B24, 882.  CSD CrossRef IUCr Journals Web of Science Google Scholar
First citationBhattacharya, S. K. & Sanyal, A. K. (1972). Naturwissenshcaften, 59, 650-651.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2021). APEX4 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChadeayne, A. R., Pham, D. N. K., Golen, J. A. & Manke, D. R. (2020). Acta Cryst. E76, 514–517.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationChu, U. B., Vorperian, S. K., Satyshur, K., Eickstaedt, K., Cozzi, N. V., Mavlyutov, T., Hajipour, A. R. & Ruoho, A. E. (2014). Biochemistry, 53, 2956–2965.  Web of Science CrossRef CAS PubMed Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationEgan, C., Grinde, E., Dupre, A., Roth, B. L., Hake, M., Teitler, M. & Herrick-Davis, K. (2000). Synapse, 35, 144–150.  CrossRef PubMed CAS Google Scholar
First citationFalkenberg, G. (1972). Acta Cryst. B28, 3219–3228.  CSD CrossRef IUCr Journals Web of Science Google Scholar
First citationGlatfelter, G. C., Pottie, E., Partilla, J. S., Sherwood, A. M., Kaylo, K., Pham, D. N. K., Naeem, M., Sammeta, V. R., DeBoer, S., Golen, J. A., Hulley, E. B., Stove, C. P., Chadeayne, A. R., Manke, D. R. & Baumann, M. H. (2022). ACS Pharmacol. Transl. Sci. 5, 1181–1196.  Web of Science CrossRef CAS PubMed Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationHan, N. D., Cheng, J., Delannoy-Bruno, O., Webber, D., Terrapon, N., Henrissat, B., Rodionov, D. A., Arzamasov, A. A., Osterman, A. L., Hayashi, D. K., Meynier, A., Vinoy, S., Desai, C., Marion, S., Barratt, M. J., Heath, A. C. & Gordon, J. I. (2022). Cell, 185, 2495–2509.e11.  CrossRef CAS PubMed Google Scholar
First citationKrause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.  Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
First citationLaban, U., Naeem, M., Chadeayne, A. R., Golen, J. A. & Manke, D. R. (2023). Acta Cryst. E79, 280–286.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationNaeem, M., Chadeayne, A. R., Golen, J. A. & Manke, D. R. (2022a). Acta Cryst. E78, 365–368.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationNaeem, M., Sherwood, A. M., Chadeayne, A. R., Golen, J. A. & Manke, D. R. (2022b). Acta Cryst. E78, 550–553.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationParsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationPham, D. N. K., Chadeayne, A. R., Golen, J. A. & Manke, D. R. (2021). IUCrData, 6, x210123.  Google Scholar
First citationPowell, S. L., Gödecke, T., Nikolic, D., Chen, S.-N., Ahn, S., Dietz, B., Farnsworth, N. R., van Breemen, R. B., Lankin, D. C., Pauli, G. F. & Bolton, J. L. (2008). J. Agric. Food Chem. 56, 11718–11726.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationStoll, A., Troxler, F., Peyer, J. & Hofmann, A. (1955). Helv. Chim. Acta, 38, 1452–1472.  CrossRef CAS Web of Science Google Scholar
First citationThompson, M. A., Weinshilboum, R. M., El Yazal, J., Wood, T. C. & Pang, Y.-P. (2001). J. Mol. Model. 7, 324–333.  Web of Science CrossRef CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYoung, S. N. & Leyton, M. (2002). Pharmacol. Biochem. Behav. 71, 857–865.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146