organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

A dibenzo­furan derivative: 2-(pent­yl­oxy)dibenzo[b,d]furan

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry, Xavier University of Louisiana, 1 Drexel Dr., New Orleans, Louisiana 70125, USA, and bDepartment of Chemistry, Tulane University, 6400 Freret Street, New Orleans, Louisiana 70118-5698, USA
*Correspondence e-mail: ngoyal@xula.edu

Edited by I. Brito, University of Antofagasta, Chile (Received 23 August 2018; accepted 14 September 2018; online 28 September 2018)

The title compound, C17H18O2, crystallizes in two-dimensional sheets, in which the 2-(pent­yloxy)dibenzo[b,d]furan mol­ecules are arranged in a head-to-head and tail-to-tail fashion that enables hydro­phobic inter­actions between fully extended 2-pent­oxy chains and ππ stacking between dibenzo­furan rings in adjacent rings. Nearest inter­molecular π-π stacking contacts are 3.3731 (12) Å. The mol­ecule is nearly planar with an r.m.s. deviation of 0.0803 Å from the mean plane defined by the nineteen non-hydrogen atoms.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Natural products and their structurally diverse derivatives play a major role in drug discovery and development (Cragg et al., 1997[Cragg, G. M., Newman, D. J. & Snader, K. M. (1997). J. Nat. Prod. 60, 52-60.]). Derivatives of dibenzo­furan, a three-ring fused system, have shown inter­esting biological activities as therapeutics for diseases such as cancer, thombosis, tuberculosis, etc (Yurtasş et al., 2016[Yurttaş, L., Abu Mohsen, U., Ozkan, Y., Cobanoglu, S., Levent, S. & Kaplancikli, Z. A. (2016). J. Enzyme Inhib. Med. Chem. 31, 1177-1183.]; Kantevari et al., 2011[Kantevari, S., Yempala, T., Yogeeswari, P., Sriram, D. & Sridhar, B. (2011). Bioorg. Med. Chem. Lett. 21, 4316-4319.]; Chiranjeevi et al., 2013[Chiranjeevi, B., Koyyada, T., Prabusreenivasan, S., Kumar, V., Sujitha, P., Kumar, C. G., Sridhar, B., Shaik, S. & Chandrasekharam, M. (2013). RSC Adv. 3, 16475-16485.]). Our lab is studying the design and synthesis of new inhibitors of P450 enzymes, which are a superfamily of heme proteins involved in the metabolism and detoxification of endogenous and exogenous compounds (Sridhar et al., 2017[Sridhar, J., Goyal, N., Liu, J. & Foroozesh, M. (2017). Molecules, 22, 1143/1-1143/19.]). P450s are involved in the bioactivation of certain procarcinogens leading to the production of carcinogenic species. The development of potent and selective P450 enzyme inhibitors has attracted considerable attention over the years and has become an important cancer prevention target (Alexander et al., 1995[Alexander, D. L. & Jefcoate, C. R. (1995). Proc. Amer. Assoc. Cancer Res. 36, 152, abstract 905.]; Foroozesh et al., 1997[Foroozesh, M., Primrose, G., Guo, Z., Bell, L. C., Alworth, W. L. & Guengerich, F. P. (1997). Chem. Res. Toxicol. 10, 91-102.]; Sridhar et al., 2017[Sridhar, J., Goyal, N., Liu, J. & Foroozesh, M. (2017). Molecules, 22, 1143/1-1143/19.]; Foroozesh et al., 2013[Foroozesh, M., Jiang, Q., Sridhar, J., Liu, J., Dotson, B. & McClain, E. (2013). J. Undergrad. Chem. Res. 12, 89-91.]).

Previous studies in our laboratory have shown that P450 1A1 accommodates linear polycyclic aromatic mol­ecules while P450 1A2 prefers triangle-shaped mol­ecules. [The 1A1 nomenclature designates enzymes belonging to family 1, subfamily A, polypeptide 1, as encoded by the CYP1A1 gene; the 1A2 notation is similarly defined.] These substrate preferences have led to the design of several triangle-shaped carbazole derivatives in an attempt to synthesize potentially selective inhibitors for P450 1A2 over P450 1A1. We are also inter­ested in synthesizing mol­ecules that have fused-ring systems such as dibenzo­furan in our pursuit of active P450 inhibitors.

In the crystalline state, the 2-pent­yloxy substituent in the title compound occurs in a fully extended, linear conformation in which it is nearly coplanar with the dibenzo­furan ring system (Fig. 1[link]). The r.m.s. deviation from the mean plane defined by the nineteen non-hydrogen atoms is 0.0803 Å, with the largest departure being seen for O2 at 0.178 (2) Å. The distinctive feature of the mol­ecular packing is an arrangement of the mol­ecules into two-dimensional sheets that are neither parallel nor orthogonal to any cell axis or face (Fig. 2[link]). Within these sheets, adjacent mol­ecules are juxtaposed in a head-to-head and tail-to-tail fashion such that pseudo twofold rotational symmetry relates them (Fig. 3[link]). An apparent consequence of this pattern is the creation of inter­chain hydro­phobic inter­actions between pent­yloxy groups, which likely assist in supporting their fully extended, linear disposition. Mol­ecules of 2-(pent­yloxy)dibenzo[b,d]furan in adjacent sheets enjoy ππ stacking inter­actions that slightly offset the centroid of the furan ring of one mol­ecule above that of a neighboring mol­ecule such that the centroid-to-centroid distance is 4.070 (3) Å (Fig. 4[link], red line). The length of the perpendicular segment between adjacent furan rings, defined with one point as a furan centroid, is 3.3731 (12) Å (Fig. 4[link], blue line). These separations are comparable to the 3.72–3.76 Å distances between mol­ecules in the structure of dibenzo­furan itself (Dideberg et al., 1972[Dideberg, O., Dupont, L. & André, J. M. (1972). Acta Cryst. B28, 1002-1007.]).

[Figure 1]
Figure 1
The title mol­ecule with the atom-labeling scheme and 50% probability ellipsoids.
[Figure 2]
Figure 2
Packing of mol­ecules of 2-(pent­yloxy)dibenzo[b,d]furan within the unit cell. Displacement ellipsoids are shown at the 50% probability level.
[Figure 3]
Figure 3
Mol­ecules of 2-(pent­yloxy)dibenzo[b,d]furan within a sheet, showing the tail-to-tail arrangement of pent­yloxy substituents. Displacement ellipsoids are shown at the 50% probability level.
[Figure 4]
Figure 4
Mol­ecules of 2-(pent­yloxy)dibenzo[b,d]furan in adjacent sheets. The furan ring centroid-to-centroid distance is depicted with the red dashed line, while the separation along a perpendicular from a furan ring centroid is shown in blue. Displacement ellipsoids are shown at the 50% probability level.

Synthesis and crystallization

The starting material, 2-hy­droxy­dibenzo­furan (0.10 g, 0.54 mmol), was dissolved in 10 mL of acetone under an N2 atmosphere. To this solution, solid potassium carbonate was then added (0.3 g, 4 eq.). The reaction mixture was stirred at room temperature for 30 minutes before the dropwise addition of pentyl bromide (0.10 mL, 0.59 mmol). Mild heating to 45°C was applied for 4–5 h, during which time the reaction progress was monitored using thin layer chromatography. The reaction mixture was cooled to room temperature, vacuum filtered, and then taken to dryness under reduced pressure. The crude solid residual was purified by flash chromatography on a silica column eluted with 10:90 EtOAc:hexa­nes to afford the target compound as a white solid. Crystals were obtained by slow cooling of a warm solution in ethyl acetate:hexanes (2:1, v:v). Yield: 0.35 g, 85%. Rf: 0.80 (10:90 EtOAc:hexanes, UV). 1H NMR (300 MHz, (δ, ppm in CDCl3): 7.94 (d, J = 8.2 Hz, 1H), 7.59 (d, J = 8.3 Hz, 1H), 7.52–7.44 (m, 3H), 7.39–7.33 (m, 1H), 7.11–7.06 (m, 1H), 4.09 (t, J = 6.5 Hz, 2H), 1.89 (q, J = 7.2 Hz, 2H), 1.41–1.59 (m, 4H), 1.00 (t, J = 7.1 Hz, 3H). 13C NMR (75 MHz, (δ, ppm in CDCl3): 156.9, 155.4, 150.8 127.0, 124.6, 124.5, 122.4, 120.5, 115.7, 112.0, 104.6, 69.0, 29.1, 28.3, 22.5, 14.1. GC–MS: 254, 183.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 1[link].

Table 1
Experimental details

Crystal data
Chemical formula C17H18O2
Mr 254.31
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 150
a, b, c (Å) 7.841 (4), 8.203 (4), 11.080 (6)
α, β, γ (°) 79.131 (7), 85.616 (6), 74.077 (6)
V3) 672.8 (6)
Z 2
Radiation type Mo Kα
μ (mm−1) 0.08
Crystal size (mm) 0.39 × 0.23 × 0.15
 
Data collection
Diffractometer Bruker SMART APEX CCD
Absorption correction Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.])
Tmin, Tmax 0.790, 0.987
No. of measured, independent and observed [I > 2σ(I)] reflections 4601, 1806, 1345
Rint 0.029
θmax (°) 22.7
(sin θ/λ)max−1) 0.544
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.052, 0.152, 1.11
No. of reflections 1806
No. of parameters 244
H-atom treatment All H-atom parameters refined
Δρmax, Δρmin (e Å−3) 0.23, −0.24
Computer programs: APEX3 and SAINT (Bruker, 2016[Bruker (2016). APEX3, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2018/1 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]) and SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Structural data


Computing details top

Data collection: APEX3 (Bruker, 2016); cell refinement: SAINT (Bruker, 2016); data reduction: SAINT (Bruker, 2016); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018/1 (Sheldrick, 2015b); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

2-(Pentyloxy)dibenzo[b,d]furan top
Crystal data top
C17H18O2Z = 2
Mr = 254.31F(000) = 272
Triclinic, P1Dx = 1.255 Mg m3
a = 7.841 (4) ÅMo Kα radiation, λ = 0.71073 Å
b = 8.203 (4) ÅCell parameters from 2845 reflections
c = 11.080 (6) Åθ = 2.6–22.7°
α = 79.131 (7)°µ = 0.08 mm1
β = 85.616 (6)°T = 150 K
γ = 74.077 (6)°Block, colorless
V = 672.8 (6) Å30.39 × 0.23 × 0.15 mm
Data collection top
Bruker SMART APEX CCD
diffractometer
1806 independent reflections
Radiation source: fine-focus sealed tube1345 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.029
Detector resolution: 8.3333 pixels mm-1θmax = 22.7°, θmin = 1.9°
φ and ω scansh = 88
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
k = 88
Tmin = 0.790, Tmax = 0.987l = 1211
4601 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.052Hydrogen site location: difference Fourier map
wR(F2) = 0.152All H-atom parameters refined
S = 1.11 w = 1/[σ2(Fo2) + (0.0701P)2 + 0.5606P]
where P = (Fo2 + 2Fc2)/3
1806 reflections(Δ/σ)max < 0.001
244 parametersΔρmax = 0.23 e Å3
0 restraintsΔρmin = 0.24 e Å3
Special details top

Experimental. The diffraction data were obtained from 3 sets of 400 frames, each of width 0.5° in ω, collected at φ = 0.00, 90.00 and 180.00° and 2 sets of 800 frames, each of width 0.45° in φ, collected at ω = –30.00 and 210.00°. The scan time was 30 sec/frame.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.0899 (2)0.7991 (2)0.40165 (18)0.0332 (6)
O20.2926 (2)0.3931 (3)0.04899 (18)0.0349 (6)
C10.0704 (4)0.7661 (4)0.4407 (3)0.0306 (7)
C20.1831 (4)0.8459 (4)0.5259 (3)0.0345 (8)
H20.152 (3)0.931 (3)0.559 (2)0.019 (7)*
C30.3401 (4)0.8019 (4)0.5513 (3)0.0369 (8)
H30.433 (5)0.856 (4)0.611 (3)0.056 (10)*
C40.3820 (4)0.6819 (4)0.4941 (3)0.0351 (8)
H40.504 (4)0.650 (4)0.516 (3)0.033 (7)*
C50.2659 (4)0.6033 (4)0.4094 (3)0.0326 (8)
H50.290 (4)0.518 (4)0.369 (3)0.033 (8)*
C60.1074 (4)0.6445 (3)0.3816 (3)0.0285 (7)
C70.0414 (3)0.5998 (3)0.2969 (2)0.0264 (7)
C80.0839 (4)0.4924 (4)0.2096 (3)0.0271 (7)
H80.005 (4)0.427 (4)0.197 (2)0.027 (7)*
C90.2361 (3)0.4897 (3)0.1411 (2)0.0265 (7)
C100.3479 (4)0.5903 (4)0.1570 (3)0.0309 (7)
H100.454 (4)0.588 (4)0.106 (3)0.033 (8)*
C110.3068 (4)0.6953 (4)0.2441 (3)0.0332 (8)
H110.387 (3)0.760 (3)0.255 (2)0.018 (6)*
C120.1539 (4)0.6982 (4)0.3117 (3)0.0297 (7)
C130.2041 (4)0.2662 (4)0.0379 (3)0.0293 (7)
H13A0.208 (3)0.182 (4)0.115 (3)0.029 (7)*
H13B0.072 (4)0.319 (3)0.023 (2)0.025 (7)*
C140.2947 (4)0.1780 (4)0.0661 (3)0.0311 (7)
H14B0.289 (3)0.264 (3)0.139 (3)0.019 (7)*
H14A0.423 (4)0.131 (4)0.048 (2)0.030 (7)*
C150.2184 (4)0.0354 (4)0.0873 (3)0.0321 (7)
H15A0.220 (3)0.045 (4)0.009 (3)0.029 (7)*
H15B0.091 (4)0.087 (4)0.111 (2)0.031 (7)*
C160.3193 (4)0.0593 (4)0.1866 (3)0.0344 (8)
H16B0.327 (4)0.024 (4)0.264 (3)0.032 (8)*
H16A0.447 (4)0.110 (3)0.163 (2)0.030 (7)*
C170.2355 (5)0.1938 (5)0.2144 (4)0.0479 (9)
H17A0.295 (4)0.255 (4)0.279 (3)0.040 (9)*
H17C0.229 (5)0.279 (5)0.140 (4)0.068 (12)*
H17B0.106 (5)0.136 (5)0.242 (3)0.074 (12)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0338 (12)0.0302 (12)0.0416 (13)0.0115 (9)0.0012 (9)0.0171 (10)
O20.0346 (12)0.0360 (12)0.0393 (12)0.0138 (9)0.0081 (9)0.0164 (10)
C10.0280 (16)0.0264 (16)0.0365 (17)0.0044 (13)0.0030 (13)0.0062 (14)
C20.0376 (18)0.0279 (17)0.0403 (19)0.0080 (14)0.0004 (14)0.0131 (15)
C30.0377 (18)0.0330 (18)0.0382 (19)0.0032 (14)0.0024 (14)0.0125 (15)
C40.0325 (17)0.0360 (18)0.0385 (18)0.0098 (14)0.0043 (14)0.0110 (15)
C50.0376 (18)0.0263 (17)0.0352 (18)0.0086 (14)0.0004 (14)0.0091 (14)
C60.0304 (16)0.0252 (16)0.0296 (16)0.0063 (12)0.0038 (13)0.0042 (13)
C70.0270 (15)0.0254 (16)0.0256 (16)0.0056 (12)0.0026 (12)0.0025 (13)
C80.0249 (15)0.0276 (16)0.0306 (17)0.0072 (13)0.0001 (12)0.0093 (13)
C90.0278 (15)0.0236 (16)0.0277 (16)0.0027 (12)0.0044 (12)0.0079 (13)
C100.0284 (16)0.0338 (17)0.0316 (17)0.0101 (13)0.0027 (14)0.0073 (14)
C110.0310 (17)0.0324 (17)0.0398 (19)0.0120 (14)0.0043 (14)0.0085 (15)
C120.0300 (16)0.0265 (16)0.0324 (17)0.0041 (12)0.0063 (13)0.0072 (14)
C130.0312 (17)0.0242 (16)0.0353 (19)0.0094 (13)0.0015 (13)0.0085 (14)
C140.0309 (18)0.0268 (17)0.0354 (19)0.0048 (13)0.0017 (13)0.0087 (15)
C150.0322 (18)0.0289 (17)0.0357 (19)0.0066 (14)0.0017 (14)0.0087 (15)
C160.0365 (19)0.0305 (18)0.038 (2)0.0077 (14)0.0024 (14)0.0128 (16)
C170.057 (2)0.041 (2)0.053 (2)0.0146 (18)0.0008 (19)0.023 (2)
Geometric parameters (Å, º) top
O1—C11.378 (3)C10—C111.375 (4)
O1—C121.392 (3)C10—H100.96 (3)
O2—C91.382 (3)C11—C121.361 (4)
O2—C131.428 (3)C11—H110.96 (3)
C1—C21.375 (4)C13—C141.504 (4)
C1—C61.394 (4)C13—H13A0.99 (3)
C2—C31.370 (4)C13—H13B1.02 (3)
C2—H20.94 (3)C14—C151.514 (4)
C3—C41.387 (4)C14—H14B0.96 (3)
C3—H31.01 (4)C14—H14A1.00 (3)
C4—C51.378 (4)C15—C161.514 (4)
C4—H41.06 (3)C15—H15A0.99 (3)
C5—C61.373 (4)C15—H15B1.00 (3)
C5—H50.96 (3)C16—C171.516 (4)
C6—C71.451 (4)C16—H16B1.00 (3)
C7—C81.390 (4)C16—H16A1.01 (3)
C7—C121.386 (4)C17—H17A0.97 (3)
C8—C91.362 (4)C17—H17C0.99 (4)
C8—H80.96 (3)C17—H17B1.04 (4)
C9—C101.399 (4)
C1—O1—C12105.0 (2)C10—C11—H11119.0 (15)
C9—O2—C13118.3 (2)C11—C12—O1125.3 (2)
C2—C1—O1124.3 (3)C11—C12—C7122.9 (3)
C2—C1—C6123.6 (3)O1—C12—C7111.8 (2)
O1—C1—C6112.1 (2)O2—C13—C14107.2 (2)
C3—C2—C1116.7 (3)O2—C13—H13A111.4 (15)
C3—C2—H2124.2 (15)C14—C13—H13A110.9 (16)
C1—C2—H2119.0 (15)O2—C13—H13B112.0 (14)
C2—C3—C4121.4 (3)C14—C13—H13B111.1 (14)
C2—C3—H3122.5 (19)H13A—C13—H13B104 (2)
C4—C3—H3116.0 (19)C13—C14—C15113.5 (2)
C5—C4—C3120.6 (3)C13—C14—H14B108.3 (15)
C5—C4—H4119.8 (15)C15—C14—H14B111.2 (15)
C3—C4—H4119.6 (15)C13—C14—H14A108.4 (16)
C6—C5—C4119.6 (3)C15—C14—H14A109.8 (16)
C6—C5—H5117.8 (17)H14B—C14—H14A105 (2)
C4—C5—H5122.6 (17)C16—C15—C14112.6 (2)
C5—C6—C1118.1 (3)C16—C15—H15A110.3 (16)
C5—C6—C7136.4 (3)C14—C15—H15A107.9 (15)
C1—C6—C7105.4 (2)C16—C15—H15B109.5 (15)
C8—C7—C12119.6 (2)C14—C15—H15B108.6 (16)
C8—C7—C6134.6 (2)H15A—C15—H15B108 (2)
C12—C7—C6105.8 (2)C15—C16—C17112.8 (3)
C9—C8—C7117.8 (3)C15—C16—H16B109.9 (16)
C9—C8—H8122.2 (16)C17—C16—H16B109.1 (16)
C7—C8—H8120.0 (16)C15—C16—H16A108.9 (15)
C8—C9—O2124.2 (2)C17—C16—H16A112.5 (15)
C8—C9—C10121.8 (3)H16B—C16—H16A103 (2)
O2—C9—C10113.9 (2)C16—C17—H17A115.1 (18)
C11—C10—C9120.3 (3)C16—C17—H17C110 (2)
C11—C10—H10119.5 (17)H17A—C17—H17C108 (3)
C9—C10—H10120.1 (17)C16—C17—H17B110 (2)
C12—C11—C10117.5 (3)H17A—C17—H17B106 (3)
C12—C11—H11123.5 (15)H17C—C17—H17B106 (3)
 

Funding information

Funding for this research was provided by: National Institutes of Health (award No. G12MD007595; award No. TL4GM118968; award No. 5RL5GM118966; award No. R25GM060926); National Science Foundation, Division of Chemistry (grant No. MRI: 1228232; award No. MRI: 0619770); Louisiana Board of Regents (grant No. LEQSF-(2002-03)-ENH-TR-67).

References

First citationAlexander, D. L. & Jefcoate, C. R. (1995). Proc. Amer. Assoc. Cancer Res. 36, 152, abstract 905.  Google Scholar
First citationBruker (2016). APEX3, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChiranjeevi, B., Koyyada, T., Prabusreenivasan, S., Kumar, V., Sujitha, P., Kumar, C. G., Sridhar, B., Shaik, S. & Chandrasekharam, M. (2013). RSC Adv. 3, 16475–16485.  CrossRef Google Scholar
First citationCragg, G. M., Newman, D. J. & Snader, K. M. (1997). J. Nat. Prod. 60, 52–60.  CrossRef PubMed Google Scholar
First citationDideberg, O., Dupont, L. & André, J. M. (1972). Acta Cryst. B28, 1002–1007.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationForoozesh, M., Jiang, Q., Sridhar, J., Liu, J., Dotson, B. & McClain, E. (2013). J. Undergrad. Chem. Res. 12, 89–91.  Google Scholar
First citationForoozesh, M., Primrose, G., Guo, Z., Bell, L. C., Alworth, W. L. & Guengerich, F. P. (1997). Chem. Res. Toxicol. 10, 91–102.  CrossRef CAS PubMed Web of Science Google Scholar
First citationKantevari, S., Yempala, T., Yogeeswari, P., Sriram, D. & Sridhar, B. (2011). Bioorg. Med. Chem. Lett. 21, 4316–4319.  CrossRef PubMed Google Scholar
First citationKrause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSridhar, J., Goyal, N., Liu, J. & Foroozesh, M. (2017). Molecules, 22, 1143/1–1143/19.  Google Scholar
First citationYurttaş, L., Abu Mohsen, U., Ozkan, Y., Cobanoglu, S., Levent, S. & Kaplancikli, Z. A. (2016). J. Enzyme Inhib. Med. Chem. 31, 1177–1183.  PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds