organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Methyl (3R*,3′S*)-1′,1′′-di­methyl-2,2′′-dioxodi­spiro­[indoline-3,2′-pyrrolidine-3′,3′′-indoline]-4′-carboxyl­ate

aDepartment of Physics, S.M.K. Fomra Institute of Technology, Thaiyur, Chennai 603 103, India, bIndustrial Chemistry Laboratory, Central Leather Research Institute, Adyar, Chennai 600 020, India, and cDepartment of Physics, Presidency College (Autonomous), Chennai 600 005, India
*Correspondence e-mail: a_sp59@yahoo.in

(Received 4 August 2012; accepted 30 August 2012; online 8 September 2012)

In the title compound, C22H21N3O4, the central pyrrolidine ring adopts an envelope conformation with the N atom in the flap position. The indoline ring systems are almost perpendic­ular to the mean plane of the pyrrolidine ring, making dihedral angles of 86.4 (8) and 83.1 (8)°. The acetate group attached to the pyrrolidine ring assumes an extended conformation. In thecrystal, N—H⋯O hydrogen bonds result in the formation of a C(7) chain running along [100]. The crystal packing also features ππ inter­actions [centroid–centroid distance = 3.2032 (11) Å].

Related literature

For the biological activity of spiro-pyrrolidine derivatives, see: Obniska et al. (2003[Obniska, J., Pawlowski, M., Kolaczkowski, M., Czopek, A., Duszyńska, B., Klodzińska, A., Tatarczyńska, E. & Chojnacka-Wójcik, E. (2003). Pol. J. Pharmacol. 55, 553-557.]); Peddi et al. (2004[Peddi, S., Roth, B. L., Glennon, R. A. & Westkaemper, R. B. (2004). Bioorg. Med. Chem. Lett. 14, 2279-2283.]); Kaminski & Obniska (2008[Kaminski, K. & Obniska, J. (2008). Acta Pol. Pharm. 65, 457-465.]); Stylianakis et al. (2003[Stylianakis, I., Kolocouris, A., Kolocouris, N., Fytas, G., Foscolos, G. B., Padalko, E., Neyts, J. & De Clercq, E. (2003). Bioorg. Med. Chem. Lett. 13, 1699-1703.]); Waldmann (1995[Waldmann, H. (1995). Synlett, pp. 133-141.]); Suzuki et al. (1994[Suzuki, H., Aoyagi, S. & Kibayashi, C. (1994). Tetrahedron Lett. 35, 6119-6122.]); Huryn et al. (1991[Huryn, D. M., Trost, B. M. & Fleming, I. (1991). Comp. Org. Synth. 1, 64-74.]). For a related structure, see: Wei et al. (2011[Wei, A. C., Ali, M. A., Choon, T. S., Hemamalini, M. & Fun, H.-K. (2011). Acta Cryst. E67, o3125.]). For puckering parameters, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]). For asymmetry parameters, see: Nardelli (1983[Nardelli, M. (1983). Acta Cryst. C39, 1141-1142.]).

[Scheme 1]

Experimental

Crystal data
  • C22H21N3O4

  • Mr = 391.42

  • Monoclinic, P 21 /n

  • a = 9.8244 (4) Å

  • b = 12.7193 (5) Å

  • c = 15.7630 (6) Å

  • β = 95.474 (2)°

  • V = 1960.75 (13) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 293 K

  • 0.25 × 0.22 × 0.19 mm

Data collection
  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.978, Tmax = 0.983

  • 17984 measured reflections

  • 3691 independent reflections

  • 2716 reflections with I > 2σ(I)

  • Rint = 0.034

Refinement
  • R[F2 > 2σ(F2)] = 0.043

  • wR(F2) = 0.110

  • S = 1.01

  • 3691 reflections

  • 265 parameters

  • H-atom parameters constrained

  • Δρmax = 0.21 e Å−3

  • Δρmin = −0.18 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2A⋯O4i 0.86 2.08 2.8935 (19) 157
Symmetry code: (i) [-x-{\script{1\over 2}}, y-{\script{1\over 2}}, -z+{\script{3\over 2}}].

Data collection: APEX2 (Bruker, 2008[Bruker. (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2008[Bruker. (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Spiro-pyrrolidine derivatives are unique tetracyclic 5-HT(2 A) receptor antagonist (Obniska et al., 2003; Peddi et al., 2004). These derivatives possess anticonvulsant (Kaminski & Obniska, 2008) and anti-influenza virus (Stylianakis et al., 2003) activities. Highly functionalized pyrrolidines have gained much interest in the past few years as they constitute the main structural element of many natural and synthetic pharmacologically active compounds (Waldmann, 1995). Optically active pyrrolidines have been used as intermediates, chiral ligands or auxiliaries in controlled asymmetric synthesis (Suzuki et al., 1994; Huryn et al., 1991). In view of these importance and continuation of our work on the crystal structure analyis of spiro-pyrrolidine derivatives, the crystal structure of the title compound has been carried out and the results are presented here.

X-Ray analysis confirms the molecular structure and atom connectivity as illustrated in Fig. 1. The geometry of pyrrolidine and indoline group systems are comparable with the related structure (Wei et al., 2011). The sum of the angles at N1 [336.2 (1)°] and N3 [358.8 (1)°] of the pyrrolidine rings are in accordance with sp3 and sp2 hybridizations. The indoline ring systems [N2/C4/C8—C14 and N3/C3/C15—C21] makes the dihedral angles of 86.4 (8) ° and 83.1 (8)° with respect to the mean plane of the pyrrolidine ring system, it clearly shows the indoline rings attached to the pyrrolidine ring system are almost perpendicular to each other. The acetate group assumes an extended conformation as can be seen from torsion angle C2—C6—O2—C7 = 175.1 (2) °.

The pyrrolidine rings [N1/C1—C4] adopts envelope conformation, with the puckering parameters q2 and φ (Cremer & Pople, 1975) and the smallest displacement asymmetric parameters, Δ, (Nardelli et al., 1983) as follows: q2 = 0.4044 (2) Å, φ = 354.1 (3)° and Δs(N1) = 4.22 (2)°. In the crystal the molecules are linked by intermolecular N2—H2A···O4 (-1/2 - x,-1/2 + y,3/2 - z) hydrogen bonds result in the formation of infinite C(7) chain running along a axis. The crystal packing is further stabilized by ππ stacking interaction between Cg2 and Cg3 rings at x,y,z. The centroid–centroid distance between these two rings is 3.2032 (11) Å]. Cg2 and Cg3 are the centroid of the N2/C4/C12/C13/C14 and N3/C3/C19/C20/C21 rings.

Related literature top

For the biological activity of spiro-pyrrolidine derivatives, see: Obniska et al. (2003); Peddi et al. (2004); Kaminski & Obniska (2008); Stylianakis et al. (2003); Waldmann (1995); Suzuki et al. (1994); Huryn et al. (1991). For a related structure, see: Wei et al. (2011). For puckering parameters, see: Cremer & Pople (1975). For asymmetry parameters, see: Nardelli (1983).

Experimental top

To a mixture of 1eq of (E)-methyl 2-(1-methyl-2-oxoindolin-3-ylidene) acetate, 1eq of isatin and 1.5eq of sarcosine were dissolved in acetonitrile. This rection mixture refluxed at 80°C for 8 h. Completion of reaction monitor by thin layer chromatography. The reaction mixture was extracted with ethyl acetate and water. The product was dried and purified by column chromatography using ethyl acetate and hexane (1:9) as an elutent to afford pure Dispiro oxindole. (Yield:90%). Single crystals suitable for X-ray diffraction were obtained by slow evaporation of a solution of the title compound in ethyl acetate at room temperature.

Refinement top

All H atoms were fixed geometrically and allowed to ride on their parent C atoms, with C—H distances fixed in the range 0.93–0.97 Å with Uiso(H) = 1.5Ueq(C) for methyl H 1.2Ueq(C) for other H atoms.

Structure description top

Spiro-pyrrolidine derivatives are unique tetracyclic 5-HT(2 A) receptor antagonist (Obniska et al., 2003; Peddi et al., 2004). These derivatives possess anticonvulsant (Kaminski & Obniska, 2008) and anti-influenza virus (Stylianakis et al., 2003) activities. Highly functionalized pyrrolidines have gained much interest in the past few years as they constitute the main structural element of many natural and synthetic pharmacologically active compounds (Waldmann, 1995). Optically active pyrrolidines have been used as intermediates, chiral ligands or auxiliaries in controlled asymmetric synthesis (Suzuki et al., 1994; Huryn et al., 1991). In view of these importance and continuation of our work on the crystal structure analyis of spiro-pyrrolidine derivatives, the crystal structure of the title compound has been carried out and the results are presented here.

X-Ray analysis confirms the molecular structure and atom connectivity as illustrated in Fig. 1. The geometry of pyrrolidine and indoline group systems are comparable with the related structure (Wei et al., 2011). The sum of the angles at N1 [336.2 (1)°] and N3 [358.8 (1)°] of the pyrrolidine rings are in accordance with sp3 and sp2 hybridizations. The indoline ring systems [N2/C4/C8—C14 and N3/C3/C15—C21] makes the dihedral angles of 86.4 (8) ° and 83.1 (8)° with respect to the mean plane of the pyrrolidine ring system, it clearly shows the indoline rings attached to the pyrrolidine ring system are almost perpendicular to each other. The acetate group assumes an extended conformation as can be seen from torsion angle C2—C6—O2—C7 = 175.1 (2) °.

The pyrrolidine rings [N1/C1—C4] adopts envelope conformation, with the puckering parameters q2 and φ (Cremer & Pople, 1975) and the smallest displacement asymmetric parameters, Δ, (Nardelli et al., 1983) as follows: q2 = 0.4044 (2) Å, φ = 354.1 (3)° and Δs(N1) = 4.22 (2)°. In the crystal the molecules are linked by intermolecular N2—H2A···O4 (-1/2 - x,-1/2 + y,3/2 - z) hydrogen bonds result in the formation of infinite C(7) chain running along a axis. The crystal packing is further stabilized by ππ stacking interaction between Cg2 and Cg3 rings at x,y,z. The centroid–centroid distance between these two rings is 3.2032 (11) Å]. Cg2 and Cg3 are the centroid of the N2/C4/C12/C13/C14 and N3/C3/C19/C20/C21 rings.

For the biological activity of spiro-pyrrolidine derivatives, see: Obniska et al. (2003); Peddi et al. (2004); Kaminski & Obniska (2008); Stylianakis et al. (2003); Waldmann (1995); Suzuki et al. (1994); Huryn et al. (1991). For a related structure, see: Wei et al. (2011). For puckering parameters, see: Cremer & Pople (1975). For asymmetry parameters, see: Nardelli (1983).

Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The structure of showing the atom-numbering scheme. The displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. The molecular packing viewed down the c axis. Dashed lines shows the intermolecular N—H···O hydrogen bonds.
Methyl (3R*,3'S*)-1',1''-dimethyl-2,2''-dioxodispiro[indoline- 3,2'-pyrrolidine-3',3''-indoline]-4'-carboxylate top
Crystal data top
C22H21N3O4F(000) = 824
Mr = 391.42Dx = 1.326 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 3691 reflections
a = 9.8244 (4) Åθ = 2.1–25.7°
b = 12.7193 (5) ŵ = 0.09 mm1
c = 15.7630 (6) ÅT = 293 K
β = 95.474 (2)°Block, colourless
V = 1960.75 (13) Å30.25 × 0.22 × 0.19 mm
Z = 4
Data collection top
Bruker APEXII CCD area-detector
diffractometer
3691 independent reflections
Radiation source: fine-focus sealed tube2716 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.034
ω and φ scansθmax = 25.7°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1111
Tmin = 0.978, Tmax = 0.983k = 1515
17984 measured reflectionsl = 1915
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.043Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.110H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.0457P)2 + 0.6361P]
where P = (Fo2 + 2Fc2)/3
3691 reflections(Δ/σ)max < 0.001
265 parametersΔρmax = 0.21 e Å3
0 restraintsΔρmin = 0.18 e Å3
Crystal data top
C22H21N3O4V = 1960.75 (13) Å3
Mr = 391.42Z = 4
Monoclinic, P21/nMo Kα radiation
a = 9.8244 (4) ŵ = 0.09 mm1
b = 12.7193 (5) ÅT = 293 K
c = 15.7630 (6) Å0.25 × 0.22 × 0.19 mm
β = 95.474 (2)°
Data collection top
Bruker APEXII CCD area-detector
diffractometer
3691 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2716 reflections with I > 2σ(I)
Tmin = 0.978, Tmax = 0.983Rint = 0.034
17984 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0430 restraints
wR(F2) = 0.110H-atom parameters constrained
S = 1.01Δρmax = 0.21 e Å3
3691 reflectionsΔρmin = 0.18 e Å3
265 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.1007 (2)0.03758 (15)0.60269 (11)0.0486 (5)
H1A0.08710.02990.57610.058*
H1B0.12290.08960.55860.058*
C20.02541 (18)0.06977 (13)0.65991 (11)0.0382 (4)
H20.07380.00540.67910.046*
C30.03026 (17)0.12230 (12)0.74001 (10)0.0320 (4)
C40.18972 (17)0.12132 (12)0.71699 (10)0.0335 (4)
C50.3439 (2)0.01745 (19)0.61685 (14)0.0640 (6)
H5A0.36500.07550.57890.096*
H5B0.34720.04680.58480.096*
H5C0.40960.01460.65820.096*
C60.1228 (2)0.13630 (15)0.61579 (13)0.0488 (5)
C70.3381 (3)0.2173 (2)0.6299 (2)0.1044 (10)
H7A0.30310.28780.62880.157*
H7B0.42300.21460.66540.157*
H7C0.35310.19610.57300.157*
C80.30396 (19)0.03885 (14)0.84650 (11)0.0446 (5)
H80.25950.02550.84460.053*
C90.3969 (2)0.05603 (16)0.90536 (12)0.0519 (5)
H90.41520.00260.94290.062*
C100.4627 (2)0.15059 (17)0.90921 (13)0.0588 (6)
H100.52290.16140.95040.071*
C110.4404 (2)0.23012 (16)0.85248 (14)0.0596 (6)
H110.48590.29410.85400.071*
C120.34875 (19)0.21128 (13)0.79372 (12)0.0425 (4)
C130.27769 (17)0.11765 (12)0.79085 (10)0.0348 (4)
C140.23636 (18)0.22843 (13)0.67501 (11)0.0388 (4)
C150.04532 (19)0.32158 (13)0.73222 (12)0.0412 (4)
H150.00740.33270.67660.049*
C160.1163 (2)0.40147 (14)0.77744 (13)0.0497 (5)
H160.12630.46640.75160.060*
C170.1718 (2)0.38606 (15)0.85940 (13)0.0531 (5)
H170.21760.44110.88870.064*
C180.1611 (2)0.29021 (15)0.89939 (13)0.0509 (5)
H180.19920.27930.95500.061*
C190.09178 (18)0.21159 (13)0.85362 (11)0.0381 (4)
C200.03200 (17)0.22564 (12)0.77117 (10)0.0330 (4)
C210.00958 (17)0.04954 (13)0.81677 (11)0.0353 (4)
C220.1426 (3)0.06320 (19)0.95731 (14)0.0729 (7)
H22A0.12810.01140.95760.109*
H22B0.23890.07750.96010.109*
H22C0.10560.09411.00570.109*
N10.20775 (16)0.03125 (11)0.66017 (9)0.0420 (4)
N20.31930 (16)0.27579 (12)0.72636 (10)0.0502 (4)
H2A0.35050.33860.71850.060*
N30.07510 (16)0.10775 (11)0.87955 (9)0.0424 (4)
O10.1005 (2)0.17271 (15)0.54647 (10)0.0875 (6)
O20.24061 (15)0.14729 (11)0.66334 (10)0.0639 (4)
O30.20458 (14)0.26255 (10)0.60748 (8)0.0524 (4)
O40.00852 (13)0.04480 (9)0.82033 (8)0.0467 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0598 (13)0.0488 (11)0.0373 (10)0.0048 (9)0.0044 (9)0.0115 (8)
C20.0463 (11)0.0311 (9)0.0376 (10)0.0019 (7)0.0053 (8)0.0030 (7)
C30.0364 (9)0.0272 (8)0.0316 (9)0.0002 (7)0.0011 (7)0.0005 (7)
C40.0381 (10)0.0287 (8)0.0322 (9)0.0003 (7)0.0030 (7)0.0000 (7)
C50.0575 (14)0.0739 (15)0.0581 (13)0.0212 (11)0.0077 (11)0.0133 (11)
C60.0589 (14)0.0418 (10)0.0472 (12)0.0001 (9)0.0133 (10)0.0041 (9)
C70.0647 (17)0.100 (2)0.153 (3)0.0295 (16)0.0350 (19)0.003 (2)
C80.0471 (11)0.0401 (10)0.0467 (11)0.0054 (8)0.0052 (9)0.0079 (8)
C90.0553 (13)0.0555 (12)0.0463 (11)0.0004 (10)0.0114 (10)0.0108 (9)
C100.0611 (14)0.0611 (13)0.0573 (13)0.0019 (11)0.0223 (11)0.0040 (10)
C110.0616 (14)0.0442 (11)0.0761 (15)0.0083 (10)0.0230 (12)0.0033 (10)
C120.0453 (11)0.0330 (9)0.0490 (11)0.0002 (8)0.0039 (9)0.0017 (8)
C130.0363 (9)0.0324 (8)0.0347 (9)0.0006 (7)0.0022 (7)0.0002 (7)
C140.0396 (10)0.0368 (9)0.0377 (10)0.0023 (8)0.0083 (8)0.0044 (8)
C150.0454 (11)0.0338 (9)0.0438 (10)0.0007 (8)0.0014 (8)0.0018 (8)
C160.0527 (12)0.0321 (9)0.0648 (13)0.0088 (8)0.0088 (10)0.0004 (9)
C170.0518 (12)0.0457 (11)0.0610 (13)0.0157 (9)0.0019 (10)0.0157 (10)
C180.0537 (12)0.0548 (12)0.0426 (11)0.0146 (10)0.0042 (9)0.0074 (9)
C190.0402 (10)0.0384 (9)0.0354 (10)0.0053 (8)0.0016 (8)0.0014 (7)
C200.0335 (9)0.0306 (8)0.0345 (9)0.0005 (7)0.0019 (7)0.0016 (7)
C210.0337 (9)0.0328 (9)0.0387 (10)0.0011 (7)0.0009 (8)0.0043 (7)
C220.0833 (17)0.0762 (15)0.0525 (13)0.0234 (13)0.0287 (12)0.0264 (11)
N10.0463 (9)0.0408 (8)0.0379 (8)0.0079 (7)0.0011 (7)0.0096 (6)
N20.0509 (10)0.0338 (8)0.0666 (11)0.0094 (7)0.0093 (8)0.0138 (7)
N30.0491 (9)0.0421 (8)0.0334 (8)0.0079 (7)0.0091 (7)0.0070 (6)
O10.1076 (15)0.1034 (14)0.0525 (10)0.0297 (11)0.0128 (9)0.0193 (9)
O20.0449 (9)0.0626 (9)0.0854 (11)0.0047 (7)0.0118 (8)0.0021 (8)
O30.0633 (9)0.0526 (8)0.0396 (7)0.0027 (7)0.0040 (6)0.0150 (6)
O40.0511 (8)0.0309 (7)0.0558 (8)0.0023 (5)0.0061 (6)0.0089 (6)
Geometric parameters (Å, º) top
C1—N11.455 (2)C9—H90.9300
C1—C21.517 (3)C10—C111.381 (3)
C1—H1A0.9700C10—H100.9300
C1—H1B0.9700C11—C121.373 (3)
C2—C61.498 (3)C11—H110.9300
C2—C31.572 (2)C12—C131.383 (2)
C2—H20.9800C12—N21.394 (2)
C3—C201.512 (2)C14—O31.217 (2)
C3—C211.544 (2)C14—N21.345 (2)
C3—C41.574 (2)C15—C201.378 (2)
C4—N11.454 (2)C15—C161.390 (2)
C4—C131.516 (2)C15—H150.9300
C4—C141.564 (2)C16—C171.368 (3)
C5—N11.454 (2)C16—H160.9300
C5—H5A0.9600C17—C181.381 (3)
C5—H5B0.9600C17—H170.9300
C5—H5C0.9600C18—C191.375 (2)
C6—O11.188 (2)C18—H180.9300
C6—O21.325 (2)C19—C201.386 (2)
C7—O21.444 (3)C19—N31.397 (2)
C7—H7A0.9600C21—O41.2151 (19)
C7—H7B0.9600C21—N31.349 (2)
C7—H7C0.9600C22—N31.452 (2)
C8—C131.372 (2)C22—H22A0.9600
C8—C91.380 (3)C22—H22B0.9600
C8—H80.9300C22—H22C0.9600
C9—C101.369 (3)N2—H2A0.8600
N1—C1—C2104.04 (13)C12—C11—H11121.2
N1—C1—H1A110.9C10—C11—H11121.2
C2—C1—H1A110.9C11—C12—C13122.53 (17)
N1—C1—H1B110.9C11—C12—N2127.46 (17)
C2—C1—H1B110.9C13—C12—N2109.86 (16)
H1A—C1—H1B109.0C8—C13—C12118.78 (16)
C6—C2—C1113.46 (15)C8—C13—C4132.01 (15)
C6—C2—C3114.81 (14)C12—C13—C4108.98 (14)
C1—C2—C3105.38 (14)O3—C14—N2125.97 (16)
C6—C2—H2107.6O3—C14—C4126.24 (16)
C1—C2—H2107.6N2—C14—C4107.79 (14)
C3—C2—H2107.6C20—C15—C16118.90 (17)
C20—C3—C21101.66 (13)C20—C15—H15120.6
C20—C3—C2118.00 (14)C16—C15—H15120.6
C21—C3—C2107.05 (13)C17—C16—C15121.00 (17)
C20—C3—C4116.40 (13)C17—C16—H16119.5
C21—C3—C4110.38 (13)C15—C16—H16119.5
C2—C3—C4103.08 (13)C16—C17—C18121.11 (17)
N1—C4—C13113.82 (13)C16—C17—H17119.4
N1—C4—C14114.33 (13)C18—C17—H17119.4
C13—C4—C14100.74 (13)C19—C18—C17117.26 (18)
N1—C4—C3102.03 (13)C19—C18—H18121.4
C13—C4—C3116.81 (13)C17—C18—H18121.4
C14—C4—C3109.61 (13)C18—C19—C20122.87 (16)
N1—C5—H5A109.5C18—C19—N3126.89 (17)
N1—C5—H5B109.5C20—C19—N3110.20 (14)
H5A—C5—H5B109.5C15—C20—C19118.84 (15)
N1—C5—H5C109.5C15—C20—C3132.68 (16)
H5A—C5—H5C109.5C19—C20—C3108.35 (14)
H5B—C5—H5C109.5O4—C21—N3124.74 (15)
O1—C6—O2123.6 (2)O4—C21—C3126.93 (15)
O1—C6—C2125.3 (2)N3—C21—C3108.27 (13)
O2—C6—C2111.05 (17)N3—C22—H22A109.5
O2—C7—H7A109.5N3—C22—H22B109.5
O2—C7—H7B109.5H22A—C22—H22B109.5
H7A—C7—H7B109.5N3—C22—H22C109.5
O2—C7—H7C109.5H22A—C22—H22C109.5
H7A—C7—H7C109.5H22B—C22—H22C109.5
H7B—C7—H7C109.5C5—N1—C4115.91 (15)
C13—C8—C9119.40 (17)C5—N1—C1113.71 (15)
C13—C8—H8120.3C4—N1—C1106.69 (13)
C9—C8—H8120.3C14—N2—C12112.12 (15)
C10—C9—C8120.93 (18)C14—N2—H2A123.9
C10—C9—H9119.5C12—N2—H2A123.9
C8—C9—H9119.5C21—N3—C19111.43 (14)
C9—C10—C11120.68 (19)C21—N3—C22123.54 (16)
C9—C10—H10119.7C19—N3—C22123.99 (15)
C11—C10—H10119.7C6—O2—C7115.6 (2)
C12—C11—C10117.60 (18)
N1—C1—C2—C6148.17 (15)C15—C16—C17—C181.1 (3)
N1—C1—C2—C321.75 (17)C16—C17—C18—C190.4 (3)
C6—C2—C3—C207.8 (2)C17—C18—C19—C201.0 (3)
C1—C2—C3—C20133.43 (15)C17—C18—C19—N3176.25 (18)
C6—C2—C3—C21121.57 (16)C16—C15—C20—C191.0 (3)
C1—C2—C3—C21112.84 (15)C16—C15—C20—C3176.17 (17)
C6—C2—C3—C4122.00 (16)C18—C19—C20—C151.7 (3)
C1—C2—C3—C43.59 (16)N3—C19—C20—C15175.92 (15)
C20—C3—C4—N1158.29 (13)C18—C19—C20—C3177.98 (17)
C21—C3—C4—N186.55 (14)N3—C19—C20—C30.31 (19)
C2—C3—C4—N127.49 (15)C21—C3—C20—C15173.52 (18)
C20—C3—C4—C1376.93 (18)C2—C3—C20—C1556.9 (3)
C21—C3—C4—C1338.23 (18)C4—C3—C20—C1566.5 (2)
C2—C3—C4—C13152.27 (13)C21—C3—C20—C192.00 (17)
C20—C3—C4—C1436.75 (19)C2—C3—C20—C19118.66 (16)
C21—C3—C4—C14151.91 (13)C4—C3—C20—C19117.97 (15)
C2—C3—C4—C1494.05 (14)C20—C3—C21—O4174.00 (17)
C1—C2—C6—O18.8 (3)C2—C3—C21—O449.6 (2)
C3—C2—C6—O1112.5 (2)C4—C3—C21—O461.9 (2)
C1—C2—C6—O2169.32 (15)C20—C3—C21—N33.08 (17)
C3—C2—C6—O269.4 (2)C2—C3—C21—N3127.46 (15)
C13—C8—C9—C100.3 (3)C4—C3—C21—N3121.04 (15)
C8—C9—C10—C112.0 (3)C13—C4—N1—C562.0 (2)
C9—C10—C11—C121.2 (3)C14—C4—N1—C553.0 (2)
C10—C11—C12—C131.2 (3)C3—C4—N1—C5171.25 (15)
C10—C11—C12—N2174.0 (2)C13—C4—N1—C1170.24 (14)
C9—C8—C13—C122.0 (3)C14—C4—N1—C174.73 (18)
C9—C8—C13—C4175.81 (18)C3—C4—N1—C143.49 (16)
C11—C12—C13—C82.8 (3)C2—C1—N1—C5170.83 (16)
N2—C12—C13—C8173.15 (16)C2—C1—N1—C441.80 (18)
C11—C12—C13—C4177.96 (18)O3—C14—N2—C12172.78 (17)
N2—C12—C13—C42.0 (2)C4—C14—N2—C126.5 (2)
N1—C4—C13—C846.1 (3)C11—C12—N2—C14172.67 (19)
C14—C4—C13—C8168.94 (19)C13—C12—N2—C143.0 (2)
C3—C4—C13—C872.5 (2)O4—C21—N3—C19174.02 (17)
N1—C4—C13—C12128.17 (16)C3—C21—N3—C193.14 (19)
C14—C4—C13—C125.34 (17)O4—C21—N3—C225.3 (3)
C3—C4—C13—C12113.25 (16)C3—C21—N3—C22171.91 (18)
N1—C4—C14—O349.8 (2)C18—C19—N3—C21175.70 (18)
C13—C4—C14—O3172.23 (17)C20—C19—N3—C211.8 (2)
C3—C4—C14—O364.1 (2)C18—C19—N3—C227.0 (3)
N1—C4—C14—N2129.55 (15)C20—C19—N3—C22170.56 (19)
C13—C4—C14—N27.07 (17)O1—C6—O2—C76.8 (3)
C3—C4—C14—N2116.63 (15)C2—C6—O2—C7175.05 (19)
C20—C15—C16—C170.3 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···O4i0.862.082.8935 (19)157
Symmetry code: (i) x1/2, y1/2, z+3/2.

Experimental details

Crystal data
Chemical formulaC22H21N3O4
Mr391.42
Crystal system, space groupMonoclinic, P21/n
Temperature (K)293
a, b, c (Å)9.8244 (4), 12.7193 (5), 15.7630 (6)
β (°) 95.474 (2)
V3)1960.75 (13)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.25 × 0.22 × 0.19
Data collection
DiffractometerBruker APEXII CCD area-detector
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.978, 0.983
No. of measured, independent and
observed [I > 2σ(I)] reflections
17984, 3691, 2716
Rint0.034
(sin θ/λ)max1)0.609
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.043, 0.110, 1.01
No. of reflections3691
No. of parameters265
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.21, 0.18

Computer programs: APEX2 (Bruker, 2008), SAINT (Bruker, 2008), SHELXS97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···O4i0.862.082.8935 (19)157.3
Symmetry code: (i) x1/2, y1/2, z+3/2.
 

Acknowledgements

The authors thank Dr Babu Varghese, SAIF, IIT, Chennai, India, for the data collection. ASP thanks the University Grants Commission, India, for a Minor research Project.

References

First citationBruker. (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationHuryn, D. M., Trost, B. M. & Fleming, I. (1991). Comp. Org. Synth. 1, 64–74.  Google Scholar
First citationKaminski, K. & Obniska, J. (2008). Acta Pol. Pharm. 65, 457–465.  Web of Science PubMed CAS Google Scholar
First citationNardelli, M. (1983). Acta Cryst. C39, 1141–1142.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationObniska, J., Pawlowski, M., Kolaczkowski, M., Czopek, A., Duszyńska, B., Klodzińska, A., Tatarczyńska, E. & Chojnacka-Wójcik, E. (2003). Pol. J. Pharmacol. 55, 553–557.  Web of Science PubMed CAS Google Scholar
First citationPeddi, S., Roth, B. L., Glennon, R. A. & Westkaemper, R. B. (2004). Bioorg. Med. Chem. Lett. 14, 2279–2283.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStylianakis, I., Kolocouris, A., Kolocouris, N., Fytas, G., Foscolos, G. B., Padalko, E., Neyts, J. & De Clercq, E. (2003). Bioorg. Med. Chem. Lett. 13, 1699–1703.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSuzuki, H., Aoyagi, S. & Kibayashi, C. (1994). Tetrahedron Lett. 35, 6119–6122.  CrossRef CAS Web of Science Google Scholar
First citationWaldmann, H. (1995). Synlett, pp. 133–141.  CrossRef Google Scholar
First citationWei, A. C., Ali, M. A., Choon, T. S., Hemamalini, M. & Fun, H.-K. (2011). Acta Cryst. E67, o3125.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds