metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(S)-1,2,4-Tri­methyl­piperazine-1,4-diium tetra­chloridozincate(II)

aDepartment of Chemical and Environmental Engineering, Anyang Institute of Technology, Anyang 455000, People's Republic of China
*Correspondence e-mail: ayrzl@yahoo.com.cn

(Received 3 July 2010; accepted 17 July 2010; online 24 July 2010)

In the title compound, (C7H18N2)[ZnCl4], the Zn atom adopts a slightly distorted tetra­hedral geometry. The diprotonated piperazine ring adopts a chair conformation. In the crystal structure, the cations and anions are linked by inter­molecular N—H⋯Cl hydrogen bonds into a chain along [001].

Related literature

For the ferroelectric behavior of chiral coordination compounds, see: Fu et al. (2007[Fu, D.-W., Song, Y.-M., Wang, G.-X., Ye, Q., Xiong, R.-G., Akutagawa, T., Nakamura, T., Chan, P. W. H. & Huang, S. D. (2007). J. Am. Chem. Soc. 129, 5346-5347.]). For non-linear optical second harmonic generation of chiral coordination compounds, see: Qu et al. (2003[Qu, Z.-R., Zhao, H., Wang, X.-S., Li, Y.-H., Song, Y.-M., Lui, Y.-J., Ye, Q., Xiong, R.-G., Abrahams, B. F., Xue, Z.-L. & You, X.-Z. (2003). Inorg. Chem. 42, 7710-7712.]). For transition-metal complexes of (S)-2-methyl­piperazine, see: Ye et al. (2009[Ye, H.-Y., Fu, D.-W., Zhang, Y., Zhang, W., Xiong, R.-G. & Huang, S. D. (2009). J. Am. Chem. Soc. 131, 42-43.]). For puckering parameters, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]). For hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • (C7H18N2)[ZnCl4]

  • Mr = 337.40

  • Orthorhombic, P 21 21 21

  • a = 8.5197 (17) Å

  • b = 9.7036 (19) Å

  • c = 17.013 (3) Å

  • V = 1406.5 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 2.48 mm−1

  • T = 293 K

  • 0.30 × 0.28 × 0.26 mm

Data collection
  • Rigaku SCXmini diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku/MSC, 2005[Rigaku/MSC (2005). CrystalClear. Rigaku/MSC, The Woodlands, Texas, USA.]) Tmin = 0.80, Tmax = 0.90

  • 14785 measured reflections

  • 3217 independent reflections

  • 2802 reflections with I > 2σ(I)

  • Rint = 0.038

Refinement
  • R[F2 > 2σ(F2)] = 0.032

  • wR(F2) = 0.067

  • S = 1.08

  • 3217 reflections

  • 138 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.36 e Å−3

  • Δρmin = −0.36 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1355 Friedel pairs

  • Flack parameter: 0.046 (14)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯Cl1i 0.93 (3) 2.16 (3) 3.092 (2) 177 (3)
N2—H2C⋯Cl2ii 0.91 (3) 2.24 (3) 3.140 (3) 171 (3)
Symmetry codes: (i) [x-{\script{1\over 2}}, -y+{\script{3\over 2}}, -z]; (ii) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: CrystalClear (Rigaku/MSC, 2005[Rigaku/MSC (2005). CrystalClear. Rigaku/MSC, The Woodlands, Texas, USA.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

The existence of a chiral centre in an organic ligand is very important for the construction noncentrosymmetric or chiral coordination polymers that exhibit desirable physical properties such as ferroelectricity (Fu et al., 2007) and nonlinear optical second harmonic generation (Qu et al., 2003). Chiral (S)-2-methylpiperazine has a chiral centre which have shown tremendous scope in the synthesis of transition-metal complexes (Ye et al., 2009). The construction of new members of this family of ligands is an important direction in the development of modern coordination chemistry. We report here the crystal structure of the title compound

The asymmetric unit of the title compound, (C7H18N2)[ZnCl4] (Fig.1), consists of one 1,2,4-trimethylpiperazinium cation and one ZnCl42- anion. The Zn atom adopts a slightly distorted tetrahedral geometry. The diprotonated piperazine ring adopts a chair conformation with Cremer & Pople (1975) puckering parameters : QT =0.5673 (3)Å, θ = 1.8 (3)° , φ= 67 (10)°. In the crystal structure, cations and anions are linked by intermolecular N—H···Cl hydrogen bonds into a one-dimensional chain viewed along the c-axis with set graph-motif C22 (9) (Bernstein, et al., 1995) (Fig.2).

Related literature top

For the ferroelectric behavior, see: Fu et al. (2007). For non-linear optical second harmonic generation, see: Qu et al. (2003). For transition-metal complexes of (S)-2-methylpiperazine, see: Ye et al. (2009). For puckering parameters, see: Cremer & Pople (1975). For hydrogen-bond motifs, see: Bernstein et al. (1995).

Experimental top

A mixture of (S)-1,2,4-trimethylpiperazine quinine (1 mmol, 0.128 g), ZnCl2(1 mmol, 0.136 g) and 10% aqueous HCl (6 ml) were mixed and dissolved in 20 ml water by heating to 363 K (15 min) forming a clear solution. The reaction mixture was cooled slowly to room temperature, crystals of the title compound were formed after 8 days.

Refinement top

All H atoms were placed in calculated positions, with C—H = 0.93–0.98Å and N—H = 0.90 Å, and refined using a riding model, with Uiso(H)=1.2Ueq(C,N) or 1.5 Ueq(C) for methyl H atoms.

Structure description top

The existence of a chiral centre in an organic ligand is very important for the construction noncentrosymmetric or chiral coordination polymers that exhibit desirable physical properties such as ferroelectricity (Fu et al., 2007) and nonlinear optical second harmonic generation (Qu et al., 2003). Chiral (S)-2-methylpiperazine has a chiral centre which have shown tremendous scope in the synthesis of transition-metal complexes (Ye et al., 2009). The construction of new members of this family of ligands is an important direction in the development of modern coordination chemistry. We report here the crystal structure of the title compound

The asymmetric unit of the title compound, (C7H18N2)[ZnCl4] (Fig.1), consists of one 1,2,4-trimethylpiperazinium cation and one ZnCl42- anion. The Zn atom adopts a slightly distorted tetrahedral geometry. The diprotonated piperazine ring adopts a chair conformation with Cremer & Pople (1975) puckering parameters : QT =0.5673 (3)Å, θ = 1.8 (3)° , φ= 67 (10)°. In the crystal structure, cations and anions are linked by intermolecular N—H···Cl hydrogen bonds into a one-dimensional chain viewed along the c-axis with set graph-motif C22 (9) (Bernstein, et al., 1995) (Fig.2).

For the ferroelectric behavior, see: Fu et al. (2007). For non-linear optical second harmonic generation, see: Qu et al. (2003). For transition-metal complexes of (S)-2-methylpiperazine, see: Ye et al. (2009). For puckering parameters, see: Cremer & Pople (1975). For hydrogen-bond motifs, see: Bernstein et al. (1995).

Computing details top

Data collection: CrystalClear (Rigaku/MSC, 2005); cell refinement: CrystalClear (Rigaku/MSC, 2005); data reduction: CrystalClear (Rigaku/MSC, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of the title compound with atom labels. Displacement ellipsoids were drawn at the 30% probability level
[Figure 2] Fig. 2. The packing viewed along the b-axis. Hydrogen bonds are drawn as dashed lines
(S)-1,2,4-Trimethylpiperazine-1,4-diium tetrachloridozincate(II) top
Crystal data top
(C7H18N2)[ZnCl4]F(000) = 688
Mr = 337.40Dx = 1.593 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 2802 reflections
a = 8.5197 (17) Åθ = 3.2–27.5°
b = 9.7036 (19) ŵ = 2.48 mm1
c = 17.013 (3) ÅT = 293 K
V = 1406.5 (5) Å3Block, colourless
Z = 40.30 × 0.28 × 0.26 mm
Data collection top
Rigaku SCXmini
diffractometer
3217 independent reflections
Radiation source: fine-focus sealed tube2802 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.038
Detector resolution: 13.6612 pixels mm-1θmax = 27.5°, θmin = 3.2°
ω scansh = 1110
Absorption correction: multi-scan
(CrystalClear; Rigaku/MSC, 2005)
k = 1212
Tmin = 0.80, Tmax = 0.90l = 2222
14785 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.032H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.067 w = 1/[σ2(Fo2) + (0.0257P)2 + 0.2767P]
where P = (Fo2 + 2Fc2)/3
S = 1.08(Δ/σ)max = 0.001
3217 reflectionsΔρmax = 0.36 e Å3
138 parametersΔρmin = 0.36 e Å3
0 restraintsAbsolute structure: Flack (1983), 1355 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.046 (14)
Crystal data top
(C7H18N2)[ZnCl4]V = 1406.5 (5) Å3
Mr = 337.40Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 8.5197 (17) ŵ = 2.48 mm1
b = 9.7036 (19) ÅT = 293 K
c = 17.013 (3) Å0.30 × 0.28 × 0.26 mm
Data collection top
Rigaku SCXmini
diffractometer
3217 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku/MSC, 2005)
2802 reflections with I > 2σ(I)
Tmin = 0.80, Tmax = 0.90Rint = 0.038
14785 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.032H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.067Δρmax = 0.36 e Å3
S = 1.08Δρmin = 0.36 e Å3
3217 reflectionsAbsolute structure: Flack (1983), 1355 Friedel pairs
138 parametersAbsolute structure parameter: 0.046 (14)
0 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Zn10.59768 (3)0.49854 (3)0.125016 (17)0.03377 (9)
C10.2131 (4)0.8709 (3)0.14589 (17)0.0359 (7)
H10.25760.85950.19860.043*
C20.3442 (3)0.8994 (3)0.08782 (17)0.0368 (7)
H2A0.41670.82230.08820.044*
H2B0.30000.90600.03540.044*
C30.3220 (4)1.1457 (3)0.10626 (19)0.0481 (9)
H3A0.27991.15990.05390.058*
H3B0.37911.22810.12120.058*
C40.1875 (4)1.1231 (3)0.16346 (19)0.0449 (8)
H4A0.22831.11940.21660.054*
H4B0.11511.20000.16020.054*
C50.0354 (4)0.9767 (4)0.19972 (18)0.0491 (8)
H5A0.00100.96780.25290.074*
H5B0.09350.89580.18530.074*
H5C0.10191.05620.19550.074*
C60.5641 (4)1.0490 (4)0.0483 (2)0.0628 (11)
H6A0.63050.96910.04770.094*
H6B0.62411.12790.06430.094*
H6C0.52241.06430.00340.094*
C70.1282 (4)0.7396 (3)0.1223 (2)0.0580 (9)
H7A0.08400.75080.07080.087*
H7B0.04580.72090.15930.087*
H7C0.20110.66420.12190.087*
Cl10.44725 (9)0.46036 (8)0.01637 (4)0.0479 (2)
Cl20.42671 (10)0.48120 (12)0.22655 (4)0.0642 (3)
Cl30.70714 (11)0.70748 (9)0.11735 (6)0.0600 (2)
Cl40.79167 (12)0.34029 (10)0.13266 (5)0.0606 (2)
N10.1024 (2)0.9929 (3)0.14575 (12)0.0334 (5)
N20.4314 (3)1.0266 (3)0.10512 (14)0.0390 (6)
H1A0.054 (3)1.003 (3)0.0967 (16)0.033 (7)*
H2C0.477 (4)1.023 (3)0.1532 (18)0.046 (9)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.03299 (15)0.04154 (17)0.02676 (15)0.00188 (15)0.00155 (14)0.00045 (16)
C10.0323 (14)0.0395 (17)0.0359 (16)0.0029 (14)0.0043 (14)0.0082 (12)
C20.0345 (16)0.0368 (17)0.0390 (15)0.0024 (13)0.0001 (13)0.0014 (13)
C30.055 (2)0.0371 (18)0.052 (2)0.0065 (15)0.0007 (17)0.0019 (14)
C40.048 (2)0.0392 (19)0.0472 (17)0.0059 (15)0.0009 (17)0.0108 (14)
C50.0387 (16)0.064 (2)0.0445 (17)0.0051 (17)0.0090 (14)0.0016 (15)
C60.045 (2)0.084 (3)0.059 (2)0.0144 (19)0.0148 (18)0.0118 (19)
C70.0445 (18)0.0365 (17)0.093 (3)0.0038 (13)0.009 (2)0.008 (2)
Cl10.0417 (4)0.0762 (6)0.0259 (3)0.0185 (4)0.0051 (3)0.0063 (3)
Cl20.0424 (4)0.1219 (9)0.0283 (4)0.0064 (6)0.0046 (3)0.0013 (4)
Cl30.0541 (4)0.0453 (5)0.0806 (6)0.0143 (4)0.0084 (6)0.0038 (5)
Cl40.0641 (5)0.0642 (6)0.0536 (5)0.0256 (5)0.0113 (5)0.0086 (4)
N10.0325 (11)0.0402 (13)0.0274 (11)0.0026 (14)0.0013 (9)0.0007 (10)
N20.0331 (13)0.0481 (17)0.0357 (13)0.0095 (11)0.0032 (10)0.0030 (10)
Geometric parameters (Å, º) top
Zn1—Cl32.2355 (9)C4—H4A0.9700
Zn1—Cl42.2597 (9)C4—H4B0.9700
Zn1—Cl22.2658 (8)C5—N11.499 (3)
Zn1—Cl12.2795 (8)C5—H5A0.9600
C1—N11.513 (4)C5—H5B0.9600
C1—C21.517 (4)C5—H5C0.9600
C1—C71.519 (4)C6—N21.504 (4)
C1—H10.9800C6—H6A0.9600
C2—N21.470 (4)C6—H6B0.9600
C2—H2A0.9700C6—H6C0.9600
C2—H2B0.9700C7—H7A0.9600
C3—N21.485 (4)C7—H7B0.9600
C3—C41.519 (5)C7—H7C0.9600
C3—H3A0.9700N1—H1A0.93 (3)
C3—H3B0.9700N2—H2C0.91 (3)
C4—N11.487 (4)
Cl3—Zn1—Cl4108.34 (5)N1—C5—H5A109.5
Cl3—Zn1—Cl2112.33 (4)N1—C5—H5B109.5
Cl4—Zn1—Cl2112.08 (4)H5A—C5—H5B109.5
Cl3—Zn1—Cl1109.55 (3)N1—C5—H5C109.5
Cl4—Zn1—Cl1110.33 (4)H5A—C5—H5C109.5
Cl2—Zn1—Cl1104.16 (3)H5B—C5—H5C109.5
N1—C1—C2108.4 (2)N2—C6—H6A109.5
N1—C1—C7111.1 (3)N2—C6—H6B109.5
C2—C1—C7109.3 (3)H6A—C6—H6B109.5
N1—C1—H1109.3N2—C6—H6C109.5
C2—C1—H1109.3H6A—C6—H6C109.5
C7—C1—H1109.3H6B—C6—H6C109.5
N2—C2—C1113.2 (2)C1—C7—H7A109.5
N2—C2—H2A108.9C1—C7—H7B109.5
C1—C2—H2A108.9H7A—C7—H7B109.5
N2—C2—H2B108.9C1—C7—H7C109.5
C1—C2—H2B108.9H7A—C7—H7C109.5
H2A—C2—H2B107.7H7B—C7—H7C109.5
N2—C3—C4111.7 (3)C4—N1—C5110.3 (2)
N2—C3—H3A109.3C4—N1—C1111.1 (2)
C4—C3—H3A109.3C5—N1—C1113.9 (2)
N2—C3—H3B109.3C4—N1—H1A107.7 (19)
C4—C3—H3B109.3C5—N1—H1A102.4 (16)
H3A—C3—H3B107.9C1—N1—H1A111.0 (18)
N1—C4—C3111.1 (2)C2—N2—C3109.8 (2)
N1—C4—H4A109.4C2—N2—C6111.9 (2)
C3—C4—H4A109.4C3—N2—C6111.6 (3)
N1—C4—H4B109.4C2—N2—H2C111 (2)
C3—C4—H4B109.4C3—N2—H2C107 (2)
H4A—C4—H4B108.0C6—N2—H2C105.5 (19)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···Cl1i0.93 (3)2.16 (3)3.092 (2)177 (3)
N2—H2C···Cl2ii0.91 (3)2.24 (3)3.140 (3)171 (3)
Symmetry codes: (i) x1/2, y+3/2, z; (ii) x+1, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formula(C7H18N2)[ZnCl4]
Mr337.40
Crystal system, space groupOrthorhombic, P212121
Temperature (K)293
a, b, c (Å)8.5197 (17), 9.7036 (19), 17.013 (3)
V3)1406.5 (5)
Z4
Radiation typeMo Kα
µ (mm1)2.48
Crystal size (mm)0.30 × 0.28 × 0.26
Data collection
DiffractometerRigaku SCXmini
Absorption correctionMulti-scan
(CrystalClear; Rigaku/MSC, 2005)
Tmin, Tmax0.80, 0.90
No. of measured, independent and
observed [I > 2σ(I)] reflections
14785, 3217, 2802
Rint0.038
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.032, 0.067, 1.08
No. of reflections3217
No. of parameters138
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.36, 0.36
Absolute structureFlack (1983), 1355 Friedel pairs
Absolute structure parameter0.046 (14)

Computer programs: CrystalClear (Rigaku/MSC, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···Cl1i0.93 (3)2.16 (3)3.092 (2)177 (3)
N2—H2C···Cl2ii0.91 (3)2.24 (3)3.140 (3)171 (3)
Symmetry codes: (i) x1/2, y+3/2, z; (ii) x+1, y+1/2, z+1/2.
 

Acknowledgements

This work was supported by a start-up grant from Anyang Institute of Technology.

References

First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFu, D.-W., Song, Y.-M., Wang, G.-X., Ye, Q., Xiong, R.-G., Akutagawa, T., Nakamura, T., Chan, P. W. H. & Huang, S. D. (2007). J. Am. Chem. Soc. 129, 5346–5347.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationQu, Z.-R., Zhao, H., Wang, X.-S., Li, Y.-H., Song, Y.-M., Lui, Y.-J., Ye, Q., Xiong, R.-G., Abrahams, B. F., Xue, Z.-L. & You, X.-Z. (2003). Inorg. Chem. 42, 7710–7712.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationRigaku/MSC (2005). CrystalClear. Rigaku/MSC, The Woodlands, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYe, H.-Y., Fu, D.-W., Zhang, Y., Zhang, W., Xiong, R.-G. & Huang, S. D. (2009). J. Am. Chem. Soc. 131, 42–43.  Web of Science CSD CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds