organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1-(3-Chloro-4-fluoro­phen­yl)-5-(2-diazo­acet­yl)-4-phenyl­pyrrolidin-2-one

aDepartment of Chemistry, Indian Institute of Technology, Kharagpur 721 302, India, and bDepartamento de Química Física e Enxeñería Química I, Facultade de Ciencias, Universidade da Coruña, Rúa Alejandro de la Sota 1, E-15008 A Coruña, Spain
*Correspondence e-mail: arturo@udc.es

(Received 11 June 2010; accepted 23 June 2010; online 24 July 2010)

In the title compound, C18H13ClFN3O2, the pyrrolidine ring adopts an envelope conformation and the planar part is rotated by 4.3 (6)° from the plane of the benzene ring and is almost perperdicular both to the diazo­acetyl unit [dihedral angle = 78.93 (7)°] and the phenyl ring [dihedral angle = 86.07 (7)°]. In the crystal, mol­ecules are linked into a three-dimensional framework by C—H⋯O inter­actions. The mol­ecular conformation is stabilized by an intra­molecular C—H⋯O hydrogen bond.

Related literature

For synthetic methods, see: (Ray et al. 1994[Ray, J. K., Kar, G. K., Roy, B. C. & Brahma, N. K. (1994). Bioorg. Med. Chem. 2, 1417-1421.], 1998[Ray, J. K., Kar, G. K., Roy, B. C., Adhikari, S. D. & Brahma, N. K. (1998). Bioorg. Med. Chem. 6, 2397-2403.]). For bond-length data, see: Allen (2002[Allen, F. H. (2002). Acta Cryst. B58, 380-388.]). For related compound see: Ray et al. (2004[Ray, J. K., Haldar, P., Canle L., M., Santaballa, J. A. & Mahía, J. (2004). Acta Cryst. C60, o163-o165.]). For puckering parameters, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]). For hydrogen bonding, see: Desiraju (2005[Desiraju, G. M. (2005). Chem. Commun. pp. 2995-3001.]). For a description of the Cambridge Structural Database, see: Allen (2002[Allen, F. H. (2002). Acta Cryst. B58, 380-388.]).

[Scheme 1]

Experimental

Crystal data
  • C18H13ClFN3O2

  • Mr = 357.76

  • Monoclinic, P 21 /n

  • a = 10.3498 (3) Å

  • b = 9.2252 (3) Å

  • c = 17.1639 (5) Å

  • β = 91.088 (2)°

  • V = 1638.50 (9) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.26 mm−1

  • T = 100 K

  • 0.42 × 0.38 × 0.21 mm

Data collection
  • Bruker APEXII area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2003[Bruker (2003). SAINT, SADABS and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.901, Tmax = 0.952

  • 16359 measured reflections

  • 4084 independent reflections

  • 3597 reflections with I > 2σ(I)

  • Rint = 0.021

Refinement
  • R[F2 > 2σ(F2)] = 0.035

  • wR(F2) = 0.123

  • S = 0.90

  • 4084 reflections

  • 278 parameters

  • All H-atom parameters refined

  • Δρmax = 0.42 e Å−3

  • Δρmin = −0.33 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C4—H4⋯O1i 0.946 (18) 2.589 (18) 3.3445 (19) 137.1 (14)
C10—H10⋯O2ii 0.955 (16) 2.340 (16) 3.2393 (15) 156.8 (13)
C12—H12⋯O1 0.922 (17) 2.211 (16) 2.8328 (17) 124.1 (13)
C12—H12⋯O1iii 0.922 (17) 2.505 (16) 3.2586 (17) 139.1 (13)
C16—H16⋯O2ii 0.946 (18) 2.460 (18) 3.3403 (16) 154.9 (15)
C18—H18⋯O2ii 0.944 (18) 2.482 (19) 3.2320 (16) 136.4 (15)
Symmetry codes: (i) x, y-1, z; (ii) [-x+{\script{3\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) -x+2, -y+1, -z.

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2004[Bruker (2004). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT and XPREP (Bruker, 2003[Bruker (2003). SAINT, SADABS and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLUTON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

A view of the molecule with numbering scheme is shown in Figure 1. In the title compounnd (I) , bond distances and angles are within normal ranges (Allen, 2002) .The atoms of the chain contaning the diazo group are planar [max deviation 0.339 (9)Å for N1].The pyrrolidin ring adopts an envelope conformation with puckering parameters q2 = 0.2816 (12) Å and φ2 = 115.6 (2)°(Cremer & Pople, 1975). The 3-chloro-4-fluoro-benzene ring and the best plane of pyrrolidin ring defined by C10\N1\C9\C8 atoms are almost coplanar [4.20 (7)°]. The phenyl ring and the acetyl group O2/C10/C17/C18 fragment (r.m.s. deviation 0.023 Å) are almost perpendicular to plane defined by the N1/C8/C9/C10/C11/C12/C13/C14/C15/C16 atoms (r.m.s. deviation 0.038 Å) [87.07 (5); 88.46 (3)° respectively]. In the crystal molecules are linked by C—H···O interactions [C···O range 3.2320 (16)-3.3445 (19) Å; C—H···O range 136-157°] and these link the molecules into a three-dimensional framework. The molecular conformation is stabilized by one intramolecular C—H···O hydrogen bond (Table 1). As shown in Figure 2, carbonyl oxygen O2 interacts with three H atoms (C10—H10···O2, C16—H18···O2, and C18—H18···O2), which regarding crystal packing could be classified as supportive (Desiraju, 2005).

Related literature top

For synthetic methods, see: (Ray et al. 1994, 1998). For bond-length data, see: Allen (2002). For related compound see: Ray et al. (2004). For puckering parameters, see: Cremer & Pople (1975). For hydrogen bonding, see: Desiraju (2005). For a description of the Cambridge Structural Database, see: Allen (2002).

Experimental top

The title compound was synthesized from the corresponding γ-lactam carboxylic acid which, in turn, was prepared following the general method (Ray et al. 1994, 1998) developed in our laboratory, through the reaction of its acid chloride with diazomethane. Single crystal was grown by dissolving the compound in mixture (n-hexane-ethylacetate) solvent and then by slow evaporation technique at room temperature. It is a yellow colour solid; m.p. 407–409 K (n-hexane-ethylacetate).

Refinement top

Hydrogen atoms were found in subsequent difference Fourier maps and included in observed positions and refined as free isotropic atoms.

Structure description top

A view of the molecule with numbering scheme is shown in Figure 1. In the title compounnd (I) , bond distances and angles are within normal ranges (Allen, 2002) .The atoms of the chain contaning the diazo group are planar [max deviation 0.339 (9)Å for N1].The pyrrolidin ring adopts an envelope conformation with puckering parameters q2 = 0.2816 (12) Å and φ2 = 115.6 (2)°(Cremer & Pople, 1975). The 3-chloro-4-fluoro-benzene ring and the best plane of pyrrolidin ring defined by C10\N1\C9\C8 atoms are almost coplanar [4.20 (7)°]. The phenyl ring and the acetyl group O2/C10/C17/C18 fragment (r.m.s. deviation 0.023 Å) are almost perpendicular to plane defined by the N1/C8/C9/C10/C11/C12/C13/C14/C15/C16 atoms (r.m.s. deviation 0.038 Å) [87.07 (5); 88.46 (3)° respectively]. In the crystal molecules are linked by C—H···O interactions [C···O range 3.2320 (16)-3.3445 (19) Å; C—H···O range 136-157°] and these link the molecules into a three-dimensional framework. The molecular conformation is stabilized by one intramolecular C—H···O hydrogen bond (Table 1). As shown in Figure 2, carbonyl oxygen O2 interacts with three H atoms (C10—H10···O2, C16—H18···O2, and C18—H18···O2), which regarding crystal packing could be classified as supportive (Desiraju, 2005).

For synthetic methods, see: (Ray et al. 1994, 1998). For bond-length data, see: Allen (2002). For related compound see: Ray et al. (2004). For puckering parameters, see: Cremer & Pople (1975). For hydrogen bonding, see: Desiraju (2005). For a description of the Cambridge Structural Database, see: Allen (2002).

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT and XPREP (Bruker, 2003); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLUTON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. View of the title compound showing the atomic numbering and 50% probability displacement ellipsoids. H atoms have been omitted for clarity.
[Figure 2] Fig. 2. Part of the crystal structure showing carbonyl oxygen O2 interacts with three H atoms.
(4R,5S)-1-(3-Chloro-4-fluorophenyl)-5-(2-diazoacetyl)- 4-phenylpyrrolidin-2-one top
Crystal data top
C18H13ClFN3O2F(000) = 736
Mr = 357.76Dx = 1.450 Mg m3
Monoclinic, P21/nMelting point: 408 K
Hall symbol: -P 2ynMo Kα radiation, λ = 0.71073 Å
a = 10.3498 (3) ÅCell parameters from 7474 reflections
b = 9.2252 (3) Åθ = 2.5–28.3°
c = 17.1639 (5) ŵ = 0.26 mm1
β = 91.088 (2)°T = 100 K
V = 1638.50 (9) Å3Block, yellow
Z = 40.42 × 0.38 × 0.21 mm
Data collection top
Bruker APEXII area-detector
diffractometer
4084 independent reflections
Radiation source: fine-focus sealed tube3597 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.021
phi and ω scansθmax = 28.3°, θmin = 2.5°
Absorption correction: multi-scan
(SADABS; Bruker, 2003)
h = 1313
Tmin = 0.901, Tmax = 0.952k = 1212
16359 measured reflectionsl = 2222
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.035Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.123All H-atom parameters refined
S = 0.90 w = 1/[σ2(Fo2) + (0.1P)2 + 0.4639P]
where P = (Fo2 + 2Fc2)/3
4084 reflections(Δ/σ)max = 0.001
278 parametersΔρmax = 0.42 e Å3
0 restraintsΔρmin = 0.33 e Å3
Crystal data top
C18H13ClFN3O2V = 1638.50 (9) Å3
Mr = 357.76Z = 4
Monoclinic, P21/nMo Kα radiation
a = 10.3498 (3) ŵ = 0.26 mm1
b = 9.2252 (3) ÅT = 100 K
c = 17.1639 (5) Å0.42 × 0.38 × 0.21 mm
β = 91.088 (2)°
Data collection top
Bruker APEXII area-detector
diffractometer
4084 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2003)
3597 reflections with I > 2σ(I)
Tmin = 0.901, Tmax = 0.952Rint = 0.021
16359 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0350 restraints
wR(F2) = 0.123All H-atom parameters refined
S = 0.90Δρmax = 0.42 e Å3
4084 reflectionsΔρmin = 0.33 e Å3
278 parameters
Special details top

Experimental. Data was collected using a X8 APEX II BRUKER-Nonius diffractometer equipped with an KYROFLEX low-temperature apparatus operating at 100 K. A suitable crystal was chosen and mounted on Mitegen MicroMount (radiation-hard polymer).

Data were measured using omega scans of 0.5° per frame for 10 s, such that a total of 1280 frames were collected in a optimized strategy and with a final resolution of 0.75 Å. Data integration and reduction was performed using the Apex2 (Bruker Nonius, 2005) suite software.

Absorption corrections were applied using SADABS (2004) of the suite software.

The structures are solved by the direct method using the SHELX97 program and refined by least squares method on F2 SHELXL97, incorporated in the Apex2 suite software.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

All non-hydrogen atoms were refined anisotropically. Hydrogen were found in subsequent difference Fourier maps and included in observed positions and refined as free isotropic atoms.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.42826 (3)0.11958 (5)0.07084 (2)0.03671 (13)
F10.46336 (8)0.32525 (11)0.05664 (5)0.0361 (2)
N10.88460 (9)0.29021 (10)0.14689 (5)0.0156 (2)
N20.67780 (10)0.24925 (13)0.39276 (6)0.0236 (2)
N30.63827 (13)0.30402 (17)0.44487 (7)0.0385 (3)
O11.02767 (10)0.45547 (12)0.09513 (6)0.0329 (2)
O20.80348 (9)0.41556 (9)0.28615 (5)0.0236 (2)
C11.07129 (10)0.04602 (13)0.21682 (6)0.0167 (2)
C21.04967 (11)0.07912 (14)0.26035 (7)0.0200 (2)
H21.0083 (16)0.0735 (18)0.3097 (10)0.025 (4)*
C31.08407 (12)0.21444 (14)0.23217 (8)0.0230 (3)
H31.0708 (17)0.2969 (19)0.2610 (10)0.031 (4)*
C41.14189 (12)0.22676 (15)0.16014 (8)0.0260 (3)
H41.1586 (16)0.320 (2)0.1404 (10)0.031 (4)*
C51.16535 (13)0.10307 (16)0.11693 (8)0.0269 (3)
H51.2026 (18)0.112 (2)0.0673 (11)0.040 (5)*
C61.13024 (12)0.03259 (14)0.14473 (7)0.0221 (3)
H61.1435 (15)0.1177 (18)0.1141 (10)0.023 (4)*
C71.01876 (10)0.18845 (13)0.24651 (6)0.0162 (2)
H71.0221 (15)0.1892 (17)0.3046 (9)0.022 (4)*
C81.08093 (12)0.32552 (14)0.21426 (7)0.0207 (2)
H8A1.1684 (17)0.3136 (19)0.2006 (10)0.028 (4)*
H8B1.0804 (16)0.4057 (18)0.2524 (10)0.025 (4)*
C90.99853 (12)0.36796 (13)0.14439 (7)0.0202 (2)
C100.87542 (10)0.20363 (12)0.21788 (6)0.0138 (2)
H100.8420 (14)0.1091 (15)0.2073 (8)0.010 (3)*
C110.77808 (11)0.30129 (12)0.09402 (6)0.0157 (2)
C120.78022 (12)0.39482 (13)0.02979 (7)0.0199 (2)
H120.8530 (15)0.4502 (17)0.0199 (8)0.016 (3)*
C130.67333 (13)0.40285 (15)0.02029 (7)0.0244 (3)
H130.6734 (18)0.477 (2)0.0662 (11)0.037 (5)*
C140.56682 (12)0.31791 (16)0.00738 (7)0.0248 (3)
C150.56378 (11)0.22465 (15)0.05545 (7)0.0223 (3)
C160.66909 (11)0.21630 (14)0.10649 (7)0.0190 (2)
H160.6620 (16)0.1485 (19)0.1490 (10)0.029 (4)*
C170.79785 (10)0.28288 (12)0.27989 (6)0.0161 (2)
C180.72863 (11)0.18918 (14)0.33019 (6)0.0185 (2)
H180.7186 (17)0.088 (2)0.3236 (10)0.034 (5)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.01855 (18)0.0601 (3)0.0313 (2)0.01115 (14)0.00341 (13)0.00666 (15)
F10.0259 (4)0.0618 (6)0.0201 (4)0.0150 (4)0.0103 (3)0.0053 (4)
N10.0156 (4)0.0170 (5)0.0141 (4)0.0034 (3)0.0011 (3)0.0027 (3)
N20.0196 (5)0.0311 (6)0.0202 (5)0.0038 (4)0.0024 (4)0.0001 (4)
N30.0342 (7)0.0559 (9)0.0257 (6)0.0084 (6)0.0064 (5)0.0094 (5)
O10.0330 (5)0.0366 (6)0.0290 (5)0.0187 (4)0.0038 (4)0.0127 (4)
O20.0291 (5)0.0154 (4)0.0264 (4)0.0025 (3)0.0014 (3)0.0023 (3)
C10.0117 (5)0.0201 (6)0.0183 (5)0.0002 (4)0.0008 (4)0.0009 (4)
C20.0164 (5)0.0229 (6)0.0206 (5)0.0019 (4)0.0003 (4)0.0020 (4)
C30.0193 (5)0.0196 (6)0.0300 (6)0.0008 (4)0.0007 (5)0.0021 (5)
C40.0197 (6)0.0239 (6)0.0345 (7)0.0013 (5)0.0022 (5)0.0081 (5)
C50.0222 (6)0.0320 (7)0.0267 (6)0.0004 (5)0.0082 (5)0.0066 (5)
C60.0188 (5)0.0251 (6)0.0228 (5)0.0019 (4)0.0054 (4)0.0001 (5)
C70.0139 (5)0.0189 (5)0.0156 (5)0.0003 (4)0.0013 (4)0.0002 (4)
C80.0166 (5)0.0213 (6)0.0241 (6)0.0049 (4)0.0038 (4)0.0008 (4)
C90.0198 (5)0.0201 (6)0.0205 (5)0.0065 (4)0.0010 (4)0.0001 (4)
C100.0139 (5)0.0137 (5)0.0139 (5)0.0005 (4)0.0002 (4)0.0015 (4)
C110.0166 (5)0.0165 (5)0.0140 (5)0.0015 (4)0.0010 (4)0.0017 (4)
C120.0243 (6)0.0195 (6)0.0158 (5)0.0031 (4)0.0012 (4)0.0006 (4)
C130.0299 (6)0.0278 (7)0.0153 (5)0.0110 (5)0.0011 (4)0.0009 (4)
C140.0208 (6)0.0377 (7)0.0158 (5)0.0118 (5)0.0048 (4)0.0069 (5)
C150.0157 (5)0.0324 (7)0.0186 (5)0.0004 (5)0.0007 (4)0.0059 (5)
C160.0168 (5)0.0238 (6)0.0162 (5)0.0012 (4)0.0006 (4)0.0014 (4)
C170.0149 (5)0.0171 (5)0.0161 (5)0.0028 (4)0.0024 (4)0.0002 (4)
C180.0186 (5)0.0203 (6)0.0168 (5)0.0027 (4)0.0033 (4)0.0001 (4)
Geometric parameters (Å, º) top
Cl1—C151.7294 (13)C6—H60.956 (16)
F1—C141.3534 (13)C7—C81.5275 (16)
N1—C91.3815 (14)C7—C101.5602 (15)
N1—C111.4182 (13)C7—H70.996 (16)
N1—C101.4616 (13)C8—C91.5098 (16)
N2—N31.1120 (16)C8—H8A0.946 (17)
N2—C181.3262 (15)C8—H8B0.988 (16)
O1—C91.2114 (15)C10—C171.5311 (15)
O2—C171.2300 (14)C10—H100.954 (14)
C1—C21.3954 (16)C11—C161.3937 (16)
C1—C61.3955 (15)C11—C121.4005 (15)
C1—C71.5140 (16)C12—C131.3899 (17)
C2—C31.3877 (17)C12—H120.929 (15)
C2—H20.959 (17)C13—C141.374 (2)
C3—C41.3884 (18)C13—H131.047 (19)
C3—H30.919 (18)C14—C151.3803 (19)
C4—C51.385 (2)C15—C161.3874 (15)
C4—H40.941 (18)C16—H160.964 (17)
C5—C61.3901 (18)C17—C181.4245 (16)
C5—H50.945 (19)C18—H180.944 (19)
C9—N1—C11126.61 (9)O1—C9—N1126.27 (11)
C9—N1—C10112.25 (9)O1—C9—C8125.65 (11)
C11—N1—C10120.71 (9)N1—C9—C8108.08 (10)
N3—N2—C18177.31 (15)N1—C10—C17111.22 (9)
C2—C1—C6118.59 (11)N1—C10—C7103.60 (8)
C2—C1—C7118.39 (10)C17—C10—C7109.39 (8)
C6—C1—C7122.78 (11)N1—C10—H10111.7 (8)
C3—C2—C1120.85 (11)C17—C10—H10112.0 (8)
C3—C2—H2118.6 (10)C7—C10—H10108.5 (8)
C1—C2—H2120.5 (10)C16—C11—C12119.50 (11)
C2—C3—C4120.12 (12)C16—C11—N1118.87 (10)
C2—C3—H3121.0 (11)C12—C11—N1121.63 (10)
C4—C3—H3118.9 (11)C13—C12—C11119.69 (12)
C5—C4—C3119.49 (12)C13—C12—H12119.8 (9)
C5—C4—H4121.6 (11)C11—C12—H12120.5 (9)
C3—C4—H4118.8 (11)C14—C13—C12120.10 (11)
C4—C5—C6120.55 (12)C14—C13—H13120.6 (10)
C4—C5—H5119.6 (12)C12—C13—H13119.3 (10)
C6—C5—H5119.8 (12)F1—C14—C13119.90 (12)
C5—C6—C1120.39 (12)F1—C14—C15119.32 (12)
C5—C6—H6120.6 (10)C13—C14—C15120.78 (11)
C1—C6—H6118.9 (10)C14—C15—C16119.91 (12)
C1—C7—C8116.10 (10)C14—C15—Cl1119.95 (9)
C1—C7—C10108.50 (9)C16—C15—Cl1120.14 (10)
C8—C7—C10102.48 (9)C15—C16—C11120.01 (11)
C1—C7—H7109.7 (9)C15—C16—H16116.3 (10)
C8—C7—H7110.5 (9)C11—C16—H16123.7 (10)
C10—C7—H7109.2 (9)O2—C17—C18125.07 (11)
C9—C8—C7105.49 (9)O2—C17—C10120.74 (10)
C9—C8—H8A111.2 (10)C18—C17—C10114.08 (10)
C7—C8—H8A113.9 (11)N2—C18—C17116.68 (11)
C9—C8—H8B108.8 (10)N2—C18—H18117.7 (11)
C7—C8—H8B111.8 (10)C17—C18—H18125.6 (11)
H8A—C8—H8B105.6 (15)
C6—C1—C2—C31.00 (17)C1—C7—C10—C17145.75 (9)
C7—C1—C2—C3173.48 (10)C8—C7—C10—C1790.94 (10)
C1—C2—C3—C40.59 (18)C9—N1—C11—C16178.55 (11)
C2—C3—C4—C50.27 (19)C10—N1—C11—C166.68 (16)
C3—C4—C5—C60.7 (2)C9—N1—C11—C121.68 (17)
C4—C5—C6—C10.28 (19)C10—N1—C11—C12173.55 (10)
C2—C1—C6—C50.56 (17)C16—C11—C12—C130.61 (17)
C7—C1—C6—C5173.66 (11)N1—C11—C12—C13179.62 (10)
C2—C1—C7—C8160.07 (10)C11—C12—C13—C140.89 (18)
C6—C1—C7—C825.70 (15)C12—C13—C14—F1179.48 (11)
C2—C1—C7—C1085.24 (12)C12—C13—C14—C150.51 (19)
C6—C1—C7—C1088.99 (12)F1—C14—C15—C16179.86 (11)
C1—C7—C8—C992.73 (11)C13—C14—C15—C160.15 (19)
C10—C7—C8—C925.32 (12)F1—C14—C15—Cl10.39 (17)
C11—N1—C9—O12.4 (2)C13—C14—C15—Cl1179.62 (10)
C10—N1—C9—O1174.83 (13)C14—C15—C16—C110.42 (18)
C11—N1—C9—C8177.36 (10)Cl1—C15—C16—C11179.89 (9)
C10—N1—C9—C84.91 (13)C12—C11—C16—C150.04 (18)
C7—C8—C9—O1166.45 (13)N1—C11—C16—C15179.74 (10)
C7—C8—C9—N113.82 (13)N1—C10—C17—O234.57 (13)
C9—N1—C10—C1796.37 (11)C7—C10—C17—O279.26 (12)
C11—N1—C10—C1776.58 (12)N1—C10—C17—C18149.15 (9)
C9—N1—C10—C721.03 (12)C7—C10—C17—C1897.02 (11)
C11—N1—C10—C7166.01 (9)O2—C17—C18—N27.17 (17)
C1—C7—C10—N195.58 (10)C10—C17—C18—N2168.93 (10)
C8—C7—C10—N127.74 (11)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C4—H4···O1i0.946 (18)2.589 (18)3.3445 (19)137.1 (14)
C10—H10···O2ii0.955 (16)2.340 (16)3.2393 (15)156.8 (13)
C12—H12···O10.922 (17)2.211 (16)2.8328 (17)124.1 (13)
C12—H12···O1iii0.922 (17)2.505 (16)3.2586 (17)139.1 (13)
C16—H16···O2ii0.946 (18)2.460 (18)3.3403 (16)154.9 (15)
C18—H18···O2ii0.944 (18)2.482 (19)3.2320 (16)136.4 (15)
Symmetry codes: (i) x, y1, z; (ii) x+3/2, y1/2, z+1/2; (iii) x+2, y+1, z.

Experimental details

Crystal data
Chemical formulaC18H13ClFN3O2
Mr357.76
Crystal system, space groupMonoclinic, P21/n
Temperature (K)100
a, b, c (Å)10.3498 (3), 9.2252 (3), 17.1639 (5)
β (°) 91.088 (2)
V3)1638.50 (9)
Z4
Radiation typeMo Kα
µ (mm1)0.26
Crystal size (mm)0.42 × 0.38 × 0.21
Data collection
DiffractometerBruker APEXII area-detector
Absorption correctionMulti-scan
(SADABS; Bruker, 2003)
Tmin, Tmax0.901, 0.952
No. of measured, independent and
observed [I > 2σ(I)] reflections
16359, 4084, 3597
Rint0.021
(sin θ/λ)max1)0.667
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.035, 0.123, 0.90
No. of reflections4084
No. of parameters278
H-atom treatmentAll H-atom parameters refined
Δρmax, Δρmin (e Å3)0.42, 0.33

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2004), SAINT and XPREP (Bruker, 2003), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLUTON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C4—H4···O1i0.946 (18)2.589 (18)3.3445 (19)137.1 (14)
C10—H10···O2ii0.955 (16)2.340 (16)3.2393 (15)156.8 (13)
C12—H12···O10.922 (17)2.211 (16)2.8328 (17)124.1 (13)
C12—H12···O1iii0.922 (17)2.505 (16)3.2586 (17)139.1 (13)
C16—H16···O2ii0.946 (18)2.460 (18)3.3403 (16)154.9 (15)
C18—H18···O2ii0.944 (18)2.482 (19)3.2320 (16)136.4 (15)
Symmetry codes: (i) x, y1, z; (ii) x+3/2, y1/2, z+1/2; (iii) x+2, y+1, z.
 

Acknowledgements

JKR thanks the Ministerio de Educación y Ciencia for funding a short sabbatical visit (SAB2006–0199) at the Universidade da Coruña. The authors wish to thank Dr Ana Isabel Balana Gracia (SAI-UDC technician) for her helpful comments and are indebted to the CESGA (Xunta de Galicia - Spain) for the use of the Cambridge Structural Database (CSD). Funds were provided by the Xunta de Galicia through project PGIDIT05TAM10301PR.

References

First citationAllen, F. H. (2002). Acta Cryst. B58, 380–388.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationBruker (2003). SAINT, SADABS and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2004). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2005). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationDesiraju, G. M. (2005). Chem. Commun. pp. 2995–3001.  Web of Science CrossRef Google Scholar
First citationRay, J. K., Haldar, P., Canle L., M., Santaballa, J. A. & Mahía, J. (2004). Acta Cryst. C60, o163–o165.  Google Scholar
First citationRay, J. K., Kar, G. K., Roy, B. C., Adhikari, S. D. & Brahma, N. K. (1998). Bioorg. Med. Chem. 6, 2397–2403.  Web of Science PubMed Google Scholar
First citationRay, J. K., Kar, G. K., Roy, B. C. & Brahma, N. K. (1994). Bioorg. Med. Chem. 2, 1417–1421.  CrossRef CAS PubMed Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds