metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

catena-Poly[[tri­methyl­tin(IV)]-μ-cyclo­hex-3-ene-1-carboxyl­ato]

aCollege of Chemistry and Chemical Engineering, Liaocheng University, Shandong 252059, People's Republic of China, and bDepartment of Chemistry, Liaocheng University, Liaocheng 252059, People's Republic of China
*Correspondence e-mail: macl@lcu.edu.cn

(Received 3 December 2009; accepted 17 December 2009; online 24 December 2009)

The title compound, [Sn(CH3)3(C7H9O2)]n, forms an extended zigzag chain structure propagating parallel to [010]. The Sn atom is in a slightly distorted trigonal-bipyramidal coordination environment with two carboxyl­ate O atoms in the axial and the three methyl groups in equatorial sites. The cyclo­hexene ring has a distorted half-boat conformation. There is an intra­molecular C—H⋯O hydrogen bond.

Related literature

For related structures, see: Murugavel et al. (2001[Murugavel, R., Baheti, K. & Anantharaman, G. (2001). Inorg. Chem. 40, 6870-6878.]); Ma et al. (2006[Ma, C., Li, J., Zhang, R. & Wang, D. (2006). J. Organomet. Chem. 691, 1713-1721.]). For puckering parameters, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]).

[Scheme 1]

Experimental

Crystal data
  • [Sn(CH3)3(C7H9O2)]

  • Mr = 288.93

  • Monoclinic, P 21 /n

  • a = 11.3022 (15) Å

  • b = 9.8469 (14) Å

  • c = 12.1468 (18) Å

  • β = 112.148 (2)°

  • V = 1252.1 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 2.01 mm−1

  • T = 298 K

  • 0.45 × 0.36 × 0.33 mm

Data collection
  • Siemens SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.464, Tmax = 0.556

  • 6095 measured reflections

  • 2193 independent reflections

  • 1669 reflections with I > 2σ(I)

  • Rint = 0.033

Refinement
  • R[F2 > 2σ(F2)] = 0.035

  • wR(F2) = 0.101

  • S = 1.08

  • 2193 reflections

  • 118 parameters

  • H-atom parameters constrained

  • Δρmax = 1.53 e Å−3

  • Δρmin = −0.49 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C3—H3B⋯O2 0.97 2.60 2.926 (10) 100

Data collection: SMART (Siemens, 1996[Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Siemens, 1996[Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Organotin complexes are attracting more and more attention because of their considerable structural diversity and interesting topologies (Murugavel et al. 2001). Herein, we report the crystal structure of the title compound. The title compound, which is shown in Fig.1 forms an infinite zigzag one-dimensional polymeric chain structure.The Sn atom is in a slightly distorted trigonal-bipyramidal coordination environment with two carboxylate O atoms in the axial sites and three methyl groups in equatorial site.The Sn—O, Sn—C bond lenghts and the O—Sn···O bond angles are close to the reported organotin compounds (Ma et al. 2006). The cyclohexene ring is in a distorted half-boat conformation, the ring-puckering parameters (Cremer & Pople, 1975) are q2 = 0.380 (1) Å , q3 = -0.314 (1) Å , Q = 0.492 (9) ° and ϕ2 = 165.1 (2)°. There is an intramolecular C—H···O hydrogen bond (H3B—O2 2.60 , C3—O2 2.926 (10) Å, C3—H3B···O2 100°).

Related literature top

For related structures, see: Murugavel et al. (2001); Ma et al. (2006). For puckering parameters, see: Cremer & Pople (1975).

Experimental top

The reaction was carried out under nitrogen atmosphere. 3-cyclohexene-1-carboxylic acid (1 mmol) and sodium ethoxide (1 mmol) were added to a stirred solution of benzene (30 ml) in a Schlenk flask and stirred for 0.5 h. trimethyltin chloride (1 mmol) was then added to the reactor and the reaction mixture was stirred for 12 h at room temperature. The resulting clear solution was evaporated under vacuum. The product was crystallized from ether to yield colorless blocks of the title compound (yield 86% m.p.448 K). Anal. Calcd (%) for C10H18O2Sn1 (Mr = 288.93): C, 41.57; H, 6.28; Found (%): C, 41.76; H, 6.01.

Refinement top

All H atoms were positioned geometrically and constrained to ride on their parent atoms, with C—H = 0.93–0.98 Å, and with Uiso(H) = 1.5Ueq(C) for methyl H and 1.2Ueq(C), for the others.

Computing details top

Data collection: SMART (Siemens, 1996); cell refinement: SAINT (Siemens, 1996); data reduction: SAINT (Siemens, 1996); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Part of the polymericstructure and the atom-numbering scheme of the title compound. Displacementellipsoids are shown at the 30% probability level and H atoms have been omitted for clarity.
[Figure 2] Fig. 2. Part of the structure of (I) showing the one-dimensional chain along the b axis[symmetry codes: (i) 1/2-x,-1/2+y, 1/2-z; (ii) 1/2-x,1/2+y,1/2-z].
catena-Poly[[trimethyltin(IV)]-µ-cyclohex-3-ene-1-carboxylato] top
Crystal data top
[Sn(CH3)3(C7H9O2)]F(000) = 576
Mr = 288.93Dx = 1.533 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 2901 reflections
a = 11.3022 (15) Åθ = 2.8–25.7°
b = 9.8469 (14) ŵ = 2.01 mm1
c = 12.1468 (18) ÅT = 298 K
β = 112.148 (2)°Block, colourless
V = 1252.1 (3) Å30.45 × 0.36 × 0.33 mm
Z = 4
Data collection top
Siemens SMART CCD area-detector
diffractometer
2193 independent reflections
Radiation source: fine-focus sealed tube1669 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.033
ϕ and ω scansθmax = 25.0°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1313
Tmin = 0.464, Tmax = 0.556k = 1011
6095 measured reflectionsl = 149
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.035Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.101H-atom parameters constrained
S = 1.08 w = 1/[σ2(Fo2) + (0.0436P)2 + 2.3141P]
where P = (Fo2 + 2Fc2)/3
2193 reflections(Δ/σ)max = 0.001
118 parametersΔρmax = 1.53 e Å3
0 restraintsΔρmin = 0.49 e Å3
Crystal data top
[Sn(CH3)3(C7H9O2)]V = 1252.1 (3) Å3
Mr = 288.93Z = 4
Monoclinic, P21/nMo Kα radiation
a = 11.3022 (15) ŵ = 2.01 mm1
b = 9.8469 (14) ÅT = 298 K
c = 12.1468 (18) Å0.45 × 0.36 × 0.33 mm
β = 112.148 (2)°
Data collection top
Siemens SMART CCD area-detector
diffractometer
2193 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1669 reflections with I > 2σ(I)
Tmin = 0.464, Tmax = 0.556Rint = 0.033
6095 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0350 restraints
wR(F2) = 0.101H-atom parameters constrained
S = 1.08Δρmax = 1.53 e Å3
2193 reflectionsΔρmin = 0.49 e Å3
118 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Sn10.17568 (3)0.09824 (4)0.23917 (3)0.04584 (17)
O10.3014 (4)0.2882 (4)0.2205 (5)0.0699 (12)
O20.4496 (4)0.4411 (4)0.2415 (4)0.0652 (12)
C10.4091 (6)0.3183 (6)0.2231 (6)0.0574 (15)
C20.4961 (6)0.2138 (7)0.2052 (7)0.0694 (18)
H20.45290.12550.19150.083*
C30.5310 (8)0.2458 (9)0.1026 (8)0.101 (3)
H3A0.45390.24510.03130.121*
H3B0.56540.33730.11250.121*
C40.6246 (10)0.1532 (11)0.0847 (10)0.118 (3)
H40.62770.14370.00970.142*
C50.7028 (9)0.0848 (9)0.1741 (10)0.098 (3)
H50.76120.02750.16030.118*
C60.7047 (9)0.0922 (9)0.2906 (10)0.104 (3)
H6A0.79200.10770.34490.125*
H6B0.67810.00510.31060.125*
C70.6205 (7)0.2020 (9)0.3105 (8)0.091 (2)
H7A0.60320.18060.38090.109*
H7B0.66500.28830.32360.109*
C80.1852 (7)0.0177 (7)0.0817 (6)0.0684 (18)
H8A0.26690.02440.09940.103*
H8B0.17420.08960.02530.103*
H8C0.11890.04860.04890.103*
C90.0327 (6)0.2468 (6)0.2198 (7)0.072 (2)
H9A0.00320.23840.28400.109*
H9B0.03750.23330.14560.109*
H9C0.06790.33580.22120.109*
C100.3183 (7)0.0735 (7)0.4101 (6)0.075 (2)
H10A0.39650.04550.40310.113*
H10B0.29170.00570.45280.113*
H10C0.33150.15810.45230.113*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Sn10.0474 (3)0.0394 (2)0.0517 (3)0.00229 (17)0.01983 (19)0.00063 (18)
O10.065 (3)0.049 (2)0.105 (4)0.003 (2)0.043 (3)0.001 (3)
O20.063 (3)0.046 (2)0.102 (4)0.0029 (19)0.048 (3)0.007 (2)
C10.063 (4)0.046 (3)0.070 (4)0.004 (3)0.032 (3)0.003 (3)
C20.066 (4)0.053 (4)0.098 (5)0.005 (3)0.041 (4)0.009 (4)
C30.114 (6)0.101 (6)0.110 (7)0.027 (5)0.068 (6)0.007 (5)
C40.129 (8)0.132 (8)0.110 (8)0.048 (7)0.065 (7)0.001 (7)
C50.090 (6)0.092 (6)0.123 (8)0.026 (5)0.054 (6)0.011 (6)
C60.097 (6)0.092 (6)0.121 (8)0.033 (5)0.039 (6)0.008 (6)
C70.085 (5)0.087 (6)0.103 (6)0.021 (5)0.040 (5)0.005 (5)
C80.077 (4)0.073 (4)0.059 (4)0.006 (4)0.030 (4)0.006 (4)
C90.061 (4)0.049 (3)0.111 (6)0.012 (3)0.036 (4)0.016 (4)
C100.079 (5)0.080 (5)0.054 (4)0.002 (4)0.009 (4)0.006 (4)
Geometric parameters (Å, º) top
Sn1—C102.108 (7)C5—C61.408 (14)
Sn1—C82.110 (6)C5—H50.9300
Sn1—C92.126 (6)C6—C71.519 (11)
Sn1—O2i2.169 (4)C6—H6A0.9700
Sn1—O12.411 (4)C6—H6B0.9700
O1—C11.241 (7)C7—H7A0.9700
O2—C11.282 (7)C7—H7B0.9700
O2—Sn1ii2.169 (4)C8—H8A0.9600
C1—C21.495 (8)C8—H8B0.9600
C2—C31.475 (10)C8—H8C0.9600
C2—C71.506 (10)C9—H9A0.9600
C2—H20.9800C9—H9B0.9600
C3—C41.474 (11)C9—H9C0.9600
C3—H3A0.9700C10—H10A0.9600
C3—H3B0.9700C10—H10B0.9600
C4—C51.300 (13)C10—H10C0.9600
C4—H40.9300
C10—Sn1—C8124.6 (3)C6—C5—H5118.0
C10—Sn1—C9117.1 (3)C5—C6—C7115.0 (8)
C8—Sn1—C9117.0 (3)C5—C6—H6A108.5
C10—Sn1—O2i95.7 (2)C7—C6—H6A108.5
C8—Sn1—O2i95.1 (2)C5—C6—H6B108.5
C9—Sn1—O2i90.2 (2)C7—C6—H6B108.5
C10—Sn1—O185.6 (2)H6A—C6—H6B107.5
C8—Sn1—O188.4 (2)C2—C7—C6111.1 (7)
C9—Sn1—O184.6 (2)C2—C7—H7A109.4
O2i—Sn1—O1174.62 (14)C6—C7—H7A109.4
C1—O1—Sn1142.2 (4)C2—C7—H7B109.4
C1—O2—Sn1ii119.1 (4)C6—C7—H7B109.4
O1—C1—O2120.8 (5)H7A—C7—H7B108.0
O1—C1—C2121.6 (6)Sn1—C8—H8A109.5
O2—C1—C2117.6 (5)Sn1—C8—H8B109.5
C3—C2—C1112.1 (6)H8A—C8—H8B109.5
C3—C2—C7105.8 (6)Sn1—C8—H8C109.5
C1—C2—C7112.6 (6)H8A—C8—H8C109.5
C3—C2—H2108.8H8B—C8—H8C109.5
C1—C2—H2108.8Sn1—C9—H9A109.5
C7—C2—H2108.8Sn1—C9—H9B109.5
C4—C3—C2115.3 (8)H9A—C9—H9B109.5
C4—C3—H3A108.4Sn1—C9—H9C109.5
C2—C3—H3A108.4H9A—C9—H9C109.5
C4—C3—H3B108.4H9B—C9—H9C109.5
C2—C3—H3B108.4Sn1—C10—H10A109.5
H3A—C3—H3B107.5Sn1—C10—H10B109.5
C5—C4—C3119.8 (9)H10A—C10—H10B109.5
C5—C4—H4120.1Sn1—C10—H10C109.5
C3—C4—H4120.1H10A—C10—H10C109.5
C4—C5—C6124.1 (8)H10B—C10—H10C109.5
C4—C5—H5118.0
Symmetry codes: (i) x+1/2, y1/2, z+1/2; (ii) x+1/2, y+1/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3B···O20.972.602.926 (10)100

Experimental details

Crystal data
Chemical formula[Sn(CH3)3(C7H9O2)]
Mr288.93
Crystal system, space groupMonoclinic, P21/n
Temperature (K)298
a, b, c (Å)11.3022 (15), 9.8469 (14), 12.1468 (18)
β (°) 112.148 (2)
V3)1252.1 (3)
Z4
Radiation typeMo Kα
µ (mm1)2.01
Crystal size (mm)0.45 × 0.36 × 0.33
Data collection
DiffractometerSiemens SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.464, 0.556
No. of measured, independent and
observed [I > 2σ(I)] reflections
6095, 2193, 1669
Rint0.033
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.035, 0.101, 1.08
No. of reflections2193
No. of parameters118
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.53, 0.49

Computer programs: SMART (Siemens, 1996), SAINT (Siemens, 1996), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3B···O20.972.602.926 (10)100
 

Acknowledgements

The authors thank the National Natural Science Foundation of China (20971096) for financial support.

References

First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationMa, C., Li, J., Zhang, R. & Wang, D. (2006). J. Organomet. Chem. 691, 1713–1721.  Web of Science CSD CrossRef CAS Google Scholar
First citationMurugavel, R., Baheti, K. & Anantharaman, G. (2001). Inorg. Chem. 40, 6870–6878.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSiemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds