metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis(3-hy­droxy­pyridine-κN)bis­­(3-nitro­benzoato-κO)zinc(II)

aDepartment of Chemistry, Zhejiang University, People's Republic of China
*Correspondence e-mail: xudj@mail.hz.zj.cn

(Received 7 July 2009; accepted 10 July 2009; online 15 July 2009)

The title complex, [Zn(C7H4NO4)2(C5H5NO)2], has site symmetry 2. The ZnII ion is located on a crystallographic twofold rotation axis and assumes a distorted tetra­hedral ZnN2O2 coordination geometry. Mol­ecules are linked by an inter­molecular O—H⋯O hydrogen bond and ππ stacking inter­actions between pyridine rings [centroid–centroid speparation 3.594 (1) Å].

Related literature

For general background, see: Su & Xu (2004[Su, J.-R. & Xu, D.-J. (2004). J. Coord. Chem. 57, 223-229.]); Xu et al. (2007[Xu, D.-J., Zhang, B.-Y., Su, J.-R. & Nie, J.-J. (2007). Acta Cryst. C63, m622-m624.]). For a related structure, see: Yan et al. (2008[Yan, J.-B., Song, W.-D., Wang, H. & Ji, L.-L. (2008). Acta Cryst. E64, m651-m652.]).

[Scheme 1]

Experimental

Crystal data
  • [Zn(C7H4NO4)2(C5H5NO)2]

  • Mr = 587.79

  • Monoclinic, C 2/c

  • a = 22.992 (4) Å

  • b = 7.2412 (12) Å

  • c = 15.797 (3) Å

  • β = 111.584 (5)°

  • V = 2445.6 (8) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.07 mm−1

  • T = 294 K

  • 0.33 × 0.30 × 0.24 mm

Data collection
  • Rigaku R-AXIS RAPID IP diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.655, Tmax = 0.770

  • 10172 measured reflections

  • 2179 independent reflections

  • 2038 reflections with I > 2σ(I)

  • Rint = 0.023

Refinement
  • R[F2 > 2σ(F2)] = 0.028

  • wR(F2) = 0.080

  • S = 1.18

  • 2179 reflections

  • 177 parameters

  • H-atom parameters constrained

  • Δρmax = 0.22 e Å−3

  • Δρmin = −0.37 e Å−3

Table 1
Selected bond lengths (Å)

Zn—N1 2.0486 (16)
Zn—O2 1.9527 (13)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1A⋯O3i 0.91 1.73 2.642 (2) 174
Symmetry code: (i) -x+1, -y+1, -z.

Data collection: PROCESS-AUTO (Rigaku, 1998[Rigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.]); cell refinement: PROCESS-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2002[Rigaku/MSC (2002). CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.]); program(s) used to solve structure: SIR92 (Altomare et al., 1993[Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343-350.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

As part of our ongoing investigation on the nature of ππ stacking (Su & Xu, 2004; Xu et al., 2007), the title complex with pyridine ligand has recently been prepared in the laboratory, and its crystal structure is reported here.

The molecule has site symmetry 2, the ZnII cation located on a twofold axis is coordinated by two hydroxypyridine ligands and two nitrobenzoate anions with a distorted tetrahedral geometry (Fig. 1 and Table 1). The O—Zn—O bond angle of 120.90 (9)° is much larger than the N—Zn—N bond angle of 101.72 (6)°. The partially overlapped arrangement of parallel pyridine rings is observed in the crystal structure (Fig. 2), the face-to-face separation of 3.594 (1) Å between N1-pyridine and N1ii-pyridine rings [symmetry code: (ii) 1 - x, 1 - y, -z] suggests the existence of ππ stacking between the parallel pyridine rings, similar to the situation found in catena-[(µ2-3,5-dinitro-2-oxybenzoato)(µ2-3-hydroxypyridine)- copper(II)] (Yan et al., 2008). Intermolecular O—H···O hydrogen bond between hydroxyl and carboxyl groups is also present in the crystal structure (Table 2).

Related literature top

For general background, see: Su & Xu (2004); Xu et al. (2007). For a related structure, see: Yan et al. (2008).

Experimental top

A water–ethanol solution (20 ml, 1:1) of 3-nitrobenzoic acid (0.17 g, 1 mmol), sodium carbonate (0.075 g, 0.7 mmol), 3-hydroxypyridine (0.19 g, 2 mmol) and zinc chloride (0.067 g, 0.5 mmol) was refluxed for 6 h. After cooling to room temperature the solution was filtered. The single crystals of the title compound were obtained from the filtrate after 4 d.

Refinement top

Hydroxy H atom was located in a difference Fourier map and was refined as riding in as-found relative position, Uiso(H) = 1.5Ueq(O). Aromatic H atoms were placed in calculated positions with C—H = 0.93 Å and were refined in riding mode with Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: PROCESS-AUTO (Rigaku, 1998); cell refinement: PROCESS-AUTO (Rigaku, 1998); data reduction: CrystalStructure (Rigaku/MSC, 2002); program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with 40% probability displacement (arbitrary spheres for H atoms) [symmetry code: (i) 1 - x, y, -z + 1/2].
[Figure 2] Fig. 2. The unit cell packing diagram of the title compound showing ππ stacking between pyridine rings. Dashed and dotted lines indicate hydrogen bonding and ππ stacking, respectively [symmetry code: (ii) 1 - x, 1 - y, -z].
Bis(3-hydroxypyridine-κN)bis(3-nitrobenzoato-κO)zinc(II) top
Crystal data top
[Zn(C7H4NO4)2(C5H5NO)2]F(000) = 1200
Mr = 587.79Dx = 1.596 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 2092 reflections
a = 22.992 (4) Åθ = 2.0–25.0°
b = 7.2412 (12) ŵ = 1.07 mm1
c = 15.797 (3) ÅT = 294 K
β = 111.584 (5)°Block, colourless
V = 2445.6 (8) Å30.33 × 0.30 × 0.24 mm
Z = 4
Data collection top
Rigaku R-AXIS RAPID IP
diffractometer
2179 independent reflections
Radiation source: fine-focus sealed tube2038 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.023
Detector resolution: 10.0 pixels mm-1θmax = 25.2°, θmin = 1.9°
ω scansh = 2727
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
k = 78
Tmin = 0.655, Tmax = 0.770l = 1818
10172 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.028Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.080H-atom parameters constrained
S = 1.18 w = 1/[σ2(Fo2) + (0.0461P)2 + 1.01P]
where P = (Fo2 + 2Fc2)/3
2179 reflections(Δ/σ)max < 0.001
177 parametersΔρmax = 0.22 e Å3
0 restraintsΔρmin = 0.37 e Å3
Crystal data top
[Zn(C7H4NO4)2(C5H5NO)2]V = 2445.6 (8) Å3
Mr = 587.79Z = 4
Monoclinic, C2/cMo Kα radiation
a = 22.992 (4) ŵ = 1.07 mm1
b = 7.2412 (12) ÅT = 294 K
c = 15.797 (3) Å0.33 × 0.30 × 0.24 mm
β = 111.584 (5)°
Data collection top
Rigaku R-AXIS RAPID IP
diffractometer
2179 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
2038 reflections with I > 2σ(I)
Tmin = 0.655, Tmax = 0.770Rint = 0.023
10172 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0280 restraints
wR(F2) = 0.080H-atom parameters constrained
S = 1.18Δρmax = 0.22 e Å3
2179 reflectionsΔρmin = 0.37 e Å3
177 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Zn0.50000.60825 (4)0.25000.03308 (13)
N10.51519 (7)0.4295 (2)0.15973 (11)0.0353 (4)
N20.76573 (8)0.9962 (2)0.57621 (11)0.0428 (4)
O10.41195 (6)0.2005 (2)0.04113 (10)0.0502 (4)
H1A0.41510.17410.09590.075*
O20.57415 (6)0.7413 (2)0.32834 (9)0.0430 (3)
O30.57500 (8)0.8529 (3)0.19867 (10)0.0582 (4)
O40.73267 (8)0.9305 (3)0.61402 (11)0.0597 (4)
O50.81810 (8)1.0587 (3)0.61763 (12)0.0639 (5)
C10.46440 (9)0.3618 (3)0.09435 (13)0.0376 (4)
H10.42560.38300.09830.045*
C20.46675 (9)0.2612 (3)0.02073 (12)0.0360 (4)
C30.52475 (9)0.2297 (3)0.01547 (13)0.0386 (4)
H30.52830.16590.03350.046*
C40.57718 (9)0.2956 (3)0.08477 (14)0.0442 (5)
H40.61660.27290.08340.053*
C50.57162 (9)0.3943 (3)0.15562 (14)0.0402 (5)
H50.60750.43770.20160.048*
C60.59870 (9)0.8367 (3)0.28242 (13)0.0376 (4)
C70.66049 (9)0.9261 (3)0.33534 (13)0.0341 (4)
C80.68297 (9)0.9269 (3)0.43004 (13)0.0341 (4)
H80.65900.87990.46130.041*
C90.74167 (9)0.9988 (3)0.47648 (12)0.0355 (4)
C100.77887 (9)1.0701 (3)0.43250 (15)0.0434 (5)
H100.81851.11680.46540.052*
C110.75552 (11)1.0701 (3)0.33837 (16)0.0491 (5)
H110.77951.11820.30730.059*
C120.69704 (10)0.9994 (3)0.29032 (14)0.0426 (5)
H120.68181.00060.22700.051*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn0.03108 (18)0.0418 (2)0.02401 (18)0.0000.00732 (12)0.000
N10.0354 (8)0.0405 (9)0.0294 (8)0.0019 (7)0.0112 (7)0.0008 (6)
N20.0417 (9)0.0484 (11)0.0331 (9)0.0088 (8)0.0074 (8)0.0057 (7)
O10.0417 (8)0.0636 (10)0.0403 (8)0.0044 (7)0.0091 (6)0.0163 (7)
O20.0361 (7)0.0557 (9)0.0345 (7)0.0105 (6)0.0097 (6)0.0003 (6)
O30.0593 (10)0.0789 (11)0.0279 (8)0.0163 (8)0.0061 (7)0.0030 (7)
O40.0613 (10)0.0864 (13)0.0321 (8)0.0003 (9)0.0181 (8)0.0025 (8)
O50.0444 (9)0.0838 (12)0.0466 (9)0.0016 (8)0.0031 (7)0.0135 (9)
C10.0326 (9)0.0459 (11)0.0346 (10)0.0012 (8)0.0128 (8)0.0037 (8)
C20.0387 (10)0.0363 (10)0.0311 (9)0.0001 (8)0.0107 (8)0.0001 (8)
C30.0471 (11)0.0372 (10)0.0358 (10)0.0031 (8)0.0201 (9)0.0017 (8)
C40.0369 (10)0.0519 (13)0.0477 (12)0.0064 (9)0.0203 (9)0.0001 (10)
C50.0323 (9)0.0470 (12)0.0376 (11)0.0017 (8)0.0086 (8)0.0014 (8)
C60.0374 (10)0.0423 (11)0.0313 (10)0.0018 (8)0.0106 (8)0.0048 (8)
C70.0366 (10)0.0374 (10)0.0292 (9)0.0012 (8)0.0131 (8)0.0014 (7)
C80.0339 (9)0.0399 (10)0.0310 (10)0.0013 (8)0.0148 (8)0.0011 (7)
C90.0359 (9)0.0382 (10)0.0310 (10)0.0033 (8)0.0106 (8)0.0036 (8)
C100.0329 (10)0.0482 (12)0.0478 (12)0.0067 (9)0.0133 (9)0.0054 (9)
C110.0477 (12)0.0589 (14)0.0498 (13)0.0082 (10)0.0287 (10)0.0030 (10)
C120.0491 (11)0.0501 (12)0.0322 (10)0.0043 (9)0.0193 (9)0.0011 (9)
Geometric parameters (Å, º) top
Zn—N12.0486 (16)C3—C41.381 (3)
Zn—N1i2.0486 (16)C3—H30.9300
Zn—O21.9527 (13)C4—C51.373 (3)
Zn—O2i1.9527 (13)C4—H40.9300
N1—C11.335 (2)C5—H50.9300
N1—C51.347 (3)C6—C71.504 (3)
N2—O41.223 (2)C7—C121.390 (3)
N2—O51.226 (2)C7—C81.392 (3)
N2—C91.465 (3)C8—C91.379 (3)
O1—C21.353 (2)C8—H80.9300
O1—H1A0.9147C9—C101.385 (3)
O2—C61.274 (2)C10—C111.383 (3)
O3—C61.237 (2)C10—H100.9300
C1—C21.390 (3)C11—C121.377 (3)
C1—H10.9300C11—H110.9300
C2—C31.385 (3)C12—H120.9300
O2—Zn—O2i120.90 (9)C3—C4—H4119.7
O2—Zn—N1114.84 (6)N1—C5—C4121.20 (18)
O2i—Zn—N1101.72 (6)N1—C5—H5119.4
O2—Zn—N1i101.72 (6)C4—C5—H5119.4
O2i—Zn—N1i114.84 (6)O3—C6—O2123.17 (18)
N1—Zn—N1i101.64 (9)O3—C6—C7120.52 (18)
C1—N1—C5118.48 (16)O2—C6—C7116.28 (16)
C1—N1—Zn116.48 (12)C12—C7—C8119.53 (18)
C5—N1—Zn124.53 (13)C12—C7—C6120.34 (17)
O4—N2—O5123.22 (18)C8—C7—C6120.03 (17)
O4—N2—C9118.26 (17)C9—C8—C7118.50 (17)
O5—N2—C9118.52 (18)C9—C8—H8120.8
C2—O1—H1A112.0C7—C8—H8120.8
C6—O2—Zn111.90 (12)C8—C9—C10122.55 (18)
N1—C1—C2123.20 (17)C8—C9—N2118.40 (17)
N1—C1—H1118.4C10—C9—N2119.04 (17)
C2—C1—H1118.4C11—C10—C9118.19 (19)
O1—C2—C3124.38 (17)C11—C10—H10120.9
O1—C2—C1117.54 (17)C9—C10—H10120.9
C3—C2—C1118.08 (17)C12—C11—C10120.46 (19)
C4—C3—C2118.33 (17)C12—C11—H11119.8
C4—C3—H3120.8C10—C11—H11119.8
C2—C3—H3120.8C11—C12—C7120.76 (19)
C5—C4—C3120.66 (18)C11—C12—H12119.6
C5—C4—H4119.7C7—C12—H12119.6
O2—Zn—N1—C1168.19 (13)Zn—O2—C6—C7172.72 (13)
O2i—Zn—N1—C135.82 (15)O3—C6—C7—C1211.6 (3)
N1i—Zn—N1—C182.92 (14)O2—C6—C7—C12166.42 (19)
O2—Zn—N1—C53.54 (18)O3—C6—C7—C8171.9 (2)
O2i—Zn—N1—C5135.91 (16)O2—C6—C7—C810.1 (3)
N1i—Zn—N1—C5105.36 (17)C12—C7—C8—C90.9 (3)
O2i—Zn—O2—C663.65 (13)C6—C7—C8—C9175.64 (17)
N1—Zn—O2—C658.89 (15)C7—C8—C9—C100.1 (3)
N1i—Zn—O2—C6167.73 (14)C7—C8—C9—N2178.86 (17)
C5—N1—C1—C21.9 (3)O4—N2—C9—C80.0 (3)
Zn—N1—C1—C2170.31 (15)O5—N2—C9—C8179.42 (18)
N1—C1—C2—O1179.81 (18)O4—N2—C9—C10179.00 (19)
N1—C1—C2—C30.2 (3)O5—N2—C9—C100.4 (3)
O1—C2—C3—C4178.31 (19)C8—C9—C10—C110.6 (3)
C1—C2—C3—C41.7 (3)N2—C9—C10—C11179.55 (19)
C2—C3—C4—C51.9 (3)C9—C10—C11—C120.5 (3)
C1—N1—C5—C41.8 (3)C10—C11—C12—C70.3 (3)
Zn—N1—C5—C4169.79 (15)C8—C7—C12—C111.0 (3)
C3—C4—C5—N10.1 (3)C6—C7—C12—C11175.53 (19)
Zn—O2—C6—O35.2 (3)
Symmetry code: (i) x+1, y, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1A···O3ii0.911.732.642 (2)174
Symmetry code: (ii) x+1, y+1, z.

Experimental details

Crystal data
Chemical formula[Zn(C7H4NO4)2(C5H5NO)2]
Mr587.79
Crystal system, space groupMonoclinic, C2/c
Temperature (K)294
a, b, c (Å)22.992 (4), 7.2412 (12), 15.797 (3)
β (°) 111.584 (5)
V3)2445.6 (8)
Z4
Radiation typeMo Kα
µ (mm1)1.07
Crystal size (mm)0.33 × 0.30 × 0.24
Data collection
DiffractometerRigaku R-AXIS RAPID IP
diffractometer
Absorption correctionMulti-scan
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.655, 0.770
No. of measured, independent and
observed [I > 2σ(I)] reflections
10172, 2179, 2038
Rint0.023
(sin θ/λ)max1)0.599
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.028, 0.080, 1.18
No. of reflections2179
No. of parameters177
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.22, 0.37

Computer programs: PROCESS-AUTO (Rigaku, 1998), CrystalStructure (Rigaku/MSC, 2002), SIR92 (Altomare et al., 1993), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).

Selected bond lengths (Å) top
Zn—N12.0486 (16)Zn—O21.9527 (13)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1A···O3i0.911.732.642 (2)174
Symmetry code: (i) x+1, y+1, z.
 

Acknowledgements

The work was supported by the ZIJIN project of Zhejiang University, China.

References

First citationAltomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343–350.  CrossRef Web of Science IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationHigashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku/MSC (2002). CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSu, J.-R. & Xu, D.-J. (2004). J. Coord. Chem. 57, 223–229.  Web of Science CSD CrossRef CAS Google Scholar
First citationXu, D.-J., Zhang, B.-Y., Su, J.-R. & Nie, J.-J. (2007). Acta Cryst. C63, m622–m624.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationYan, J.-B., Song, W.-D., Wang, H. & Ji, L.-L. (2008). Acta Cryst. E64, m651–m652.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds