Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
In the centrosymmetric dinuclear cation of the title complex, [Cu2(C10H8N2)2(C12H10N2)(C18H15P)2](BF4)2, each Cu atom is coordinated by two N atoms from a 2,2-bipyridine ligand and a P atom from a triphenyl­phosphine ligand, and the two N2PCu+ fragments are bridged by a trans-1,2-di-4-pyridylethyl­ene ligand, resulting in a distorted tetra­hedral coordination geometry. Two F atoms are disordered over two sites each, with almost equal occupancies.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536807021046/bx2080sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536807021046/bx2080Isup2.hkl
Contains datablock I

CCDC reference: 650686

Key indicators

  • Single-crystal X-ray study
  • T = 298 K
  • Mean [sigma](C-C) = 0.005 Å
  • Disorder in solvent or counterion
  • R factor = 0.056
  • wR factor = 0.151
  • Data-to-parameter ratio = 18.8

checkCIF/PLATON results

No syntax errors found



Alert level C PLAT042_ALERT_1_C Calc. and Rep. MoietyFormula Strings Differ .... ? PLAT152_ALERT_1_C Supplied and Calc Volume s.u. Inconsistent ..... ? PLAT241_ALERT_2_C Check High Ueq as Compared to Neighbors for C3 PLAT244_ALERT_4_C Low 'Solvent' Ueq as Compared to Neighbors for B1 PLAT302_ALERT_4_C Anion/Solvent Disorder ......................... 29.00 Perc. PLAT779_ALERT_2_C Suspect or Irrelevant (Bond) Angle in CIF ...... 31.60 Deg. F3' -B1 -F3 1.555 1.555 1.555 PLAT779_ALERT_2_C Suspect or Irrelevant (Bond) Angle in CIF ...... 37.50 Deg. F4 -B1 -F4' 1.555 1.555 1.555
Alert level G PLAT860_ALERT_3_G Note: Number of Least-Squares Restraints ....... 24
0 ALERT level A = In general: serious problem 0 ALERT level B = Potentially serious problem 7 ALERT level C = Check and explain 1 ALERT level G = General alerts; check 2 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 3 ALERT type 2 Indicator that the structure model may be wrong or deficient 1 ALERT type 3 Indicator that the structure quality may be low 2 ALERT type 4 Improvement, methodology, query or suggestion 0 ALERT type 5 Informative message, check

Comment top

It is well documented in the literature that copper(I) complexes with diimine ligands exhibit low energy metal-to-ligand charge-transfer (MLCT) transition (Horváth et al., 1994; McMillin et al., 1998; Scaltrito et al., 2000). Specially, dinuclear polypyridine copper(I) complexes with unexpected stablity diplay potential applicance in photocatalysts and multi-electron storage systems. Electron transfer between two copper(I) centers is influenced by the acceptor and donor properties of the coordination sites, as well as the length and rigidity of the spacers. Previously, we reported two copper(I) complexes with 4,4'-bipyridine ligand as a bridge (Chen et al., 2007; Wang et al., 2007). We report here the title complex, (I).

The structure of the trans-[Cu2(C12H10N2) (C10H8N2)2(C18H15P)2]2+ cation is shown in Fig. 1, and selected bond lengths and angles are dipicted in Table 1. The cation is centrosymmetric with the center of symmetry at the mid-point of the C=C bond. Each Cu atom has a distorted tetrahedral geometry. The mean Cu—N distance of 2.049 (2) Å and Cu—P bond length of 2.1877 (9) Å are consistent with those in the case of [Cu2(2,2'-bipyridine)2(PPh3)2 (4,4'-bipyridine)]2+(PPh3 = triphenylphosphine). All bond angles are similar with its analogues, also (Chen et al., 2007; Wang et al., 2007).

Related literature top

For related literature, see: Chen et al. (2007); Horváth (1994); Kubas et al. (1990); McMillin & McNett (1998); Scaltrito et al. (2000); Wang et al. (2007).

Experimental top

Triphenylphosphine, 2,2'-bipyridine and trans-1,2-di-4-pyridylethylene were obtained commercially. [Cu(CH3CN)4]BF4 was prepared according to a published method (Kubas et al., 1990). Solvents were distilled using standard techniques and saturated with dinitrogen before use. All reactions were performed under a nitrogen atmosphere.

Trans-1,2-di-4-pyridylethylene (18.2 mg, 0.10 mmol) and [Cu(CH3CN)4]BF4 (63.0 mg, 0.20 mmol) in CH2Cl2 (30 ml) was stirred at room temperature for 2 h, then 2,2'-bipyridine (21.2 mg, 0.20 mmol) was added to above red solution. And after another 4 h, triphenylphosphine (52.4 mg, 0.2 mmol) in CH2Cl2 (20 ml) was added dropwise. Recrystallization by slow diffusion of diethyl ether into the resulting solution gave orange crystals suitable for X-ray diffraction (yield 84.5 mg, 64%).

Refinement top

All H atoms were placed in calculated positions, The H atoms were then constrained to an ideal geometry with C—H distances of 0.93 Å, Uiso(H) = 1.2Ueq(C). The fluorine atoms F3 and F4 were disordered over two sites, with site occupancy factors being refined to 0.53 (2) and 0.47 (2).

Structure description top

It is well documented in the literature that copper(I) complexes with diimine ligands exhibit low energy metal-to-ligand charge-transfer (MLCT) transition (Horváth et al., 1994; McMillin et al., 1998; Scaltrito et al., 2000). Specially, dinuclear polypyridine copper(I) complexes with unexpected stablity diplay potential applicance in photocatalysts and multi-electron storage systems. Electron transfer between two copper(I) centers is influenced by the acceptor and donor properties of the coordination sites, as well as the length and rigidity of the spacers. Previously, we reported two copper(I) complexes with 4,4'-bipyridine ligand as a bridge (Chen et al., 2007; Wang et al., 2007). We report here the title complex, (I).

The structure of the trans-[Cu2(C12H10N2) (C10H8N2)2(C18H15P)2]2+ cation is shown in Fig. 1, and selected bond lengths and angles are dipicted in Table 1. The cation is centrosymmetric with the center of symmetry at the mid-point of the C=C bond. Each Cu atom has a distorted tetrahedral geometry. The mean Cu—N distance of 2.049 (2) Å and Cu—P bond length of 2.1877 (9) Å are consistent with those in the case of [Cu2(2,2'-bipyridine)2(PPh3)2 (4,4'-bipyridine)]2+(PPh3 = triphenylphosphine). All bond angles are similar with its analogues, also (Chen et al., 2007; Wang et al., 2007).

For related literature, see: Chen et al. (2007); Horváth (1994); Kubas et al. (1990); McMillin & McNett (1998); Scaltrito et al. (2000); Wang et al. (2007).

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SMART; data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXTL (Bruker, 2000); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Figures top
[Figure 1] Fig. 1. The structure of the cation of (I). Displacement ellipsoids are drawn at the 30% probability level. H atoms have been omitted. [symmetry code: (A) -x + 1, -y, -z + 1.]
(µ-trans-1,2-Di-4-pyridylethylene-κ2N:N')bis[(bipyridine- κ2N,N')(triphenylphosphine-κP)copper(I)] bis(tetrafluoroborate) top
Crystal data top
[Cu2(C10H8N2)2(C12H10N2)(C18H15P)2](BF4)2F(000) = 1352
Mr = 1319.83Dx = 1.403 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 4281 reflections
a = 9.9800 (17) Åθ = 2.4–23.9°
b = 15.420 (3) ŵ = 0.80 mm1
c = 20.461 (4) ÅT = 298 K
β = 97.021 (3)°Block, orange
V = 3125.1 (9) Å30.43 × 0.33 × 0.28 mm
Z = 2
Data collection top
Bruker SMART CCD area-detector
diffractometer
7853 independent reflections
Radiation source: fine-focus sealed tube5153 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.039
φ and ω scansθmax = 28.5°, θmin = 1.7°
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
h = 1211
Tmin = 0.724, Tmax = 0.807k = 2019
18965 measured reflectionsl = 2426
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.056Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.151H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.08P)2 + 0.3449P]
where P = (Fo2 + 2Fc2)/3
7853 reflections(Δ/σ)max < 0.001
417 parametersΔρmax = 0.58 e Å3
24 restraintsΔρmin = 0.30 e Å3
Crystal data top
[Cu2(C10H8N2)2(C12H10N2)(C18H15P)2](BF4)2V = 3125.1 (9) Å3
Mr = 1319.83Z = 2
Monoclinic, P21/cMo Kα radiation
a = 9.9800 (17) ŵ = 0.80 mm1
b = 15.420 (3) ÅT = 298 K
c = 20.461 (4) Å0.43 × 0.33 × 0.28 mm
β = 97.021 (3)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
7853 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
5153 reflections with I > 2σ(I)
Tmin = 0.724, Tmax = 0.807Rint = 0.039
18965 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.05624 restraints
wR(F2) = 0.151H-atom parameters constrained
S = 1.02Δρmax = 0.58 e Å3
7853 reflectionsΔρmin = 0.30 e Å3
417 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Cu10.42023 (3)0.38370 (2)0.344472 (16)0.04103 (13)
B10.9491 (4)0.2631 (3)0.4471 (2)0.0644 (11)
F11.0554 (3)0.2971 (3)0.48247 (17)0.1462 (14)
F20.8749 (4)0.3173 (3)0.4106 (3)0.204 (2)
F30.8605 (10)0.2406 (11)0.4895 (5)0.111 (3)0.53 (2)
F41.0069 (8)0.1932 (6)0.4234 (10)0.120 (4)0.53 (2)
F3'0.8805 (14)0.1996 (11)0.4747 (8)0.116 (4)0.47 (2)
F4'0.9873 (12)0.2275 (13)0.3889 (7)0.121 (5)0.47 (2)
N10.2699 (2)0.46424 (17)0.36860 (12)0.0478 (6)
N20.5345 (2)0.47842 (16)0.39456 (11)0.0447 (6)
N30.4329 (2)0.27321 (15)0.40019 (12)0.0441 (6)
P10.41005 (8)0.33931 (5)0.24243 (4)0.04054 (19)
C10.1367 (3)0.4520 (3)0.35548 (18)0.0652 (9)
H10.10560.39980.33660.078*
C20.0443 (4)0.5131 (4)0.3686 (2)0.0876 (13)
H20.04770.50290.35840.105*
C30.0895 (5)0.5886 (4)0.3969 (3)0.1018 (16)
H30.02850.63090.40680.122*
C40.2254 (5)0.6024 (3)0.4110 (2)0.0830 (13)
H40.25750.65430.43020.100*
C50.3149 (3)0.5387 (2)0.39656 (15)0.0491 (7)
C60.4622 (3)0.5462 (2)0.41245 (14)0.0492 (7)
C70.5263 (5)0.6166 (2)0.4450 (2)0.0747 (11)
H70.47570.66370.45620.090*
C80.6619 (5)0.6170 (3)0.4604 (2)0.0888 (15)
H80.70480.66460.48160.107*
C90.7351 (4)0.5474 (3)0.44471 (19)0.0795 (13)
H90.82810.54570.45640.095*
C100.6687 (3)0.4794 (3)0.41107 (17)0.0623 (9)
H100.71900.43230.39940.075*
C110.3221 (3)0.2292 (2)0.40972 (16)0.0519 (8)
H110.23870.25450.39640.062*
C120.3244 (3)0.1487 (2)0.43810 (17)0.0550 (8)
H120.24370.12110.44350.066*
C130.4454 (3)0.10855 (19)0.45863 (15)0.0474 (7)
C140.5616 (3)0.1536 (2)0.44819 (15)0.0514 (8)
H140.64620.12910.46030.062*
C150.5508 (3)0.2342 (2)0.41999 (15)0.0492 (7)
H150.62990.26360.41420.059*
C160.4468 (3)0.0232 (2)0.48979 (16)0.0530 (8)
H160.36350.00060.49570.064*
C170.3409 (3)0.22928 (19)0.23978 (14)0.0460 (7)
C180.2070 (4)0.2191 (2)0.24903 (19)0.0646 (9)
H180.15190.26780.24860.077*
C190.1535 (4)0.1386 (3)0.2589 (2)0.0800 (12)
H190.06320.13290.26530.096*
C200.2350 (5)0.0670 (3)0.2593 (2)0.0811 (12)
H200.20010.01240.26660.097*
C210.3662 (4)0.0750 (2)0.2490 (2)0.0769 (11)
H210.42000.02580.24830.092*
C220.4205 (4)0.1564 (2)0.23954 (18)0.0606 (9)
H220.51070.16160.23300.073*
C230.2975 (3)0.3979 (2)0.18074 (15)0.0475 (7)
C240.2294 (4)0.3593 (3)0.12521 (16)0.0617 (9)
H240.24360.30100.11680.074*
C250.1402 (4)0.4072 (4)0.08217 (19)0.0792 (12)
H250.09360.38060.04540.095*
C260.1208 (4)0.4925 (4)0.0935 (2)0.0875 (14)
H260.06200.52450.06400.105*
C270.1871 (4)0.5319 (3)0.1479 (2)0.0807 (12)
H270.17320.59050.15540.097*
C280.2744 (3)0.4847 (2)0.19161 (17)0.0600 (9)
H280.31830.51160.22890.072*
C290.5715 (3)0.33021 (18)0.20944 (14)0.0445 (7)
C300.6839 (3)0.3112 (2)0.25418 (17)0.0606 (9)
H300.67380.30290.29830.073*
C310.8103 (4)0.3045 (3)0.2338 (2)0.0727 (11)
H310.88440.29040.26410.087*
C320.8271 (4)0.3185 (3)0.1696 (2)0.0765 (11)
H320.91240.31490.15590.092*
C330.7172 (4)0.3377 (3)0.1256 (2)0.0833 (13)
H330.72800.34660.08160.100*
C340.5904 (4)0.3441 (3)0.14528 (17)0.0631 (9)
H340.51690.35800.11460.076*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0438 (2)0.0354 (2)0.0437 (2)0.00140 (14)0.00421 (15)0.00142 (15)
B10.042 (2)0.061 (3)0.088 (3)0.0003 (19)0.001 (2)0.008 (2)
F10.0811 (19)0.203 (4)0.153 (3)0.052 (2)0.0074 (18)0.076 (3)
F20.131 (3)0.188 (4)0.287 (6)0.042 (3)0.001 (3)0.116 (4)
F30.085 (4)0.148 (8)0.108 (5)0.037 (5)0.037 (3)0.014 (5)
F40.102 (4)0.099 (5)0.158 (9)0.021 (4)0.012 (5)0.022 (5)
F3'0.101 (6)0.120 (7)0.123 (7)0.036 (5)0.000 (5)0.027 (6)
F4'0.111 (6)0.152 (9)0.097 (6)0.023 (5)0.009 (4)0.037 (6)
N10.0456 (14)0.0488 (15)0.0494 (15)0.0084 (11)0.0072 (11)0.0006 (12)
N20.0445 (14)0.0452 (14)0.0441 (13)0.0061 (11)0.0038 (11)0.0007 (11)
N30.0481 (14)0.0412 (13)0.0424 (13)0.0004 (11)0.0037 (11)0.0065 (11)
P10.0428 (4)0.0375 (4)0.0406 (4)0.0047 (3)0.0022 (3)0.0004 (3)
C10.049 (2)0.074 (2)0.072 (2)0.0068 (17)0.0040 (17)0.0035 (19)
C20.052 (2)0.104 (4)0.108 (3)0.023 (2)0.015 (2)0.002 (3)
C30.086 (3)0.088 (3)0.136 (4)0.044 (3)0.033 (3)0.001 (3)
C40.089 (3)0.058 (2)0.107 (3)0.018 (2)0.030 (3)0.008 (2)
C50.062 (2)0.0404 (16)0.0470 (17)0.0069 (14)0.0159 (15)0.0042 (13)
C60.066 (2)0.0432 (17)0.0399 (16)0.0055 (15)0.0138 (14)0.0008 (13)
C70.094 (3)0.062 (2)0.071 (3)0.018 (2)0.022 (2)0.024 (2)
C80.106 (4)0.097 (4)0.066 (3)0.049 (3)0.018 (2)0.033 (2)
C90.062 (2)0.114 (4)0.062 (2)0.036 (2)0.0053 (19)0.013 (2)
C100.053 (2)0.072 (2)0.062 (2)0.0132 (17)0.0058 (16)0.0056 (18)
C110.0486 (18)0.0519 (19)0.0562 (19)0.0079 (14)0.0105 (14)0.0100 (15)
C120.0480 (18)0.0500 (18)0.068 (2)0.0027 (15)0.0107 (15)0.0139 (16)
C130.0574 (19)0.0422 (17)0.0428 (16)0.0011 (14)0.0073 (14)0.0035 (13)
C140.0490 (18)0.0522 (18)0.0522 (18)0.0082 (15)0.0024 (14)0.0124 (15)
C150.0482 (18)0.0495 (18)0.0486 (17)0.0053 (14)0.0008 (14)0.0083 (14)
C160.0541 (19)0.0506 (19)0.0547 (18)0.0001 (14)0.0085 (15)0.0102 (15)
C170.0538 (18)0.0405 (16)0.0426 (16)0.0011 (13)0.0016 (13)0.0049 (13)
C180.055 (2)0.049 (2)0.091 (3)0.0012 (16)0.0105 (18)0.0096 (19)
C190.070 (3)0.066 (3)0.104 (3)0.023 (2)0.013 (2)0.011 (2)
C200.107 (4)0.046 (2)0.088 (3)0.023 (2)0.003 (2)0.006 (2)
C210.087 (3)0.0392 (19)0.102 (3)0.0015 (19)0.004 (2)0.008 (2)
C220.064 (2)0.0415 (18)0.076 (2)0.0038 (16)0.0073 (18)0.0062 (17)
C230.0440 (17)0.0535 (19)0.0450 (16)0.0063 (13)0.0050 (13)0.0041 (14)
C240.059 (2)0.073 (2)0.0508 (19)0.0030 (18)0.0007 (16)0.0007 (17)
C250.063 (2)0.118 (4)0.052 (2)0.000 (2)0.0101 (18)0.011 (2)
C260.067 (3)0.116 (4)0.076 (3)0.021 (3)0.004 (2)0.037 (3)
C270.083 (3)0.073 (3)0.084 (3)0.027 (2)0.003 (2)0.022 (2)
C280.060 (2)0.056 (2)0.063 (2)0.0106 (16)0.0005 (16)0.0099 (17)
C290.0479 (17)0.0405 (16)0.0460 (17)0.0027 (13)0.0092 (13)0.0012 (13)
C300.054 (2)0.077 (2)0.0510 (19)0.0099 (18)0.0080 (15)0.0054 (17)
C310.049 (2)0.094 (3)0.074 (3)0.0117 (19)0.0036 (18)0.001 (2)
C320.058 (2)0.088 (3)0.089 (3)0.008 (2)0.031 (2)0.006 (2)
C330.078 (3)0.110 (4)0.066 (3)0.014 (3)0.029 (2)0.016 (2)
C340.063 (2)0.076 (3)0.052 (2)0.0132 (18)0.0105 (16)0.0103 (17)
Geometric parameters (Å, º) top
Cu1—N32.045 (2)C13—C141.391 (4)
Cu1—N22.049 (2)C13—C161.462 (4)
Cu1—N12.054 (2)C14—C151.369 (4)
Cu1—P12.1877 (9)C14—H140.9300
B1—F21.292 (5)C15—H150.9300
B1—F11.318 (5)C16—C16i1.305 (6)
B1—F41.340 (8)C16—H160.9300
B1—F3'1.356 (11)C17—C221.377 (4)
B1—F31.358 (10)C17—C181.381 (5)
B1—F4'1.405 (9)C18—C191.376 (5)
N1—C51.336 (4)C18—H180.9300
N1—C11.337 (4)C19—C201.372 (6)
N2—C101.341 (4)C19—H190.9300
N2—C61.346 (4)C20—C211.356 (6)
N3—C111.332 (4)C20—H200.9300
N3—C151.339 (4)C21—C221.391 (5)
P1—C231.824 (3)C21—H210.9300
P1—C291.827 (3)C22—H220.9300
P1—C171.830 (3)C23—C281.380 (4)
C1—C21.368 (5)C23—C241.385 (5)
C1—H10.9300C24—C251.386 (5)
C2—C31.353 (7)C24—H240.9300
C2—H20.9300C25—C261.353 (6)
C3—C41.369 (7)C25—H250.9300
C3—H30.9300C26—C271.366 (6)
C4—C51.383 (5)C26—H260.9300
C4—H40.9300C27—C281.378 (5)
C5—C61.471 (5)C27—H270.9300
C6—C71.388 (5)C28—H280.9300
C7—C81.352 (6)C29—C341.366 (4)
C7—H70.9300C29—C301.390 (4)
C8—C91.358 (6)C30—C311.380 (5)
C8—H80.9300C30—H300.9300
C9—C101.379 (5)C31—C321.362 (5)
C9—H90.9300C31—H310.9300
C10—H100.9300C32—C331.365 (6)
C11—C121.369 (4)C32—H320.9300
C11—H110.9300C33—C341.378 (5)
C12—C131.376 (4)C33—H330.9300
C12—H120.9300C34—H340.9300
N3—Cu1—N2108.80 (10)C11—C12—C13120.4 (3)
N3—Cu1—N1111.53 (10)C11—C12—H12119.8
N2—Cu1—N180.03 (10)C13—C12—H12119.8
N3—Cu1—P1105.30 (7)C12—C13—C14116.4 (3)
N2—Cu1—P1131.18 (7)C12—C13—C16120.0 (3)
N1—Cu1—P1117.94 (7)C14—C13—C16123.5 (3)
F2—B1—F1115.2 (5)C15—C14—C13119.6 (3)
F2—B1—F4123.7 (9)C15—C14—H14120.2
F1—B1—F499.5 (6)C13—C14—H14120.2
F2—B1—F3'115.1 (7)N3—C15—C14123.8 (3)
F1—B1—F3'118.1 (7)N3—C15—H15118.1
F4—B1—F3'80.3 (7)C14—C15—H15118.1
F2—B1—F399.3 (7)C16i—C16—C13126.6 (4)
F1—B1—F3107.1 (6)C16i—C16—H16116.7
F4—B1—F3111.6 (6)C13—C16—H16116.7
F3'—B1—F331.6 (6)C22—C17—C18118.5 (3)
F2—B1—F4'87.7 (10)C22—C17—P1122.8 (3)
F1—B1—F4'109.7 (5)C18—C17—P1118.0 (2)
F4—B1—F4'37.5 (4)C19—C18—C17121.5 (4)
F3'—B1—F4'105.9 (7)C19—C18—H18119.3
F3—B1—F4'135.0 (6)C17—C18—H18119.3
C5—N1—C1118.7 (3)C20—C19—C18119.1 (4)
C5—N1—Cu1114.0 (2)C20—C19—H19120.5
C1—N1—Cu1127.1 (2)C18—C19—H19120.5
C10—N2—C6118.4 (3)C21—C20—C19120.6 (4)
C10—N2—Cu1127.7 (2)C21—C20—H20119.7
C6—N2—Cu1113.9 (2)C19—C20—H20119.7
C11—N3—C15116.2 (3)C20—C21—C22120.2 (4)
C11—N3—Cu1120.7 (2)C20—C21—H21119.9
C15—N3—Cu1122.3 (2)C22—C21—H21119.9
C23—P1—C29106.18 (14)C17—C22—C21120.1 (3)
C23—P1—C17103.95 (14)C17—C22—H22119.9
C29—P1—C17105.34 (14)C21—C22—H22119.9
C23—P1—Cu1117.28 (10)C28—C23—C24118.3 (3)
C29—P1—Cu1115.88 (10)C28—C23—P1118.0 (2)
C17—P1—Cu1106.96 (10)C24—C23—P1123.6 (3)
N1—C1—C2122.7 (4)C23—C24—C25120.3 (4)
N1—C1—H1118.6C23—C24—H24119.9
C2—C1—H1118.6C25—C24—H24119.9
C3—C2—C1118.7 (4)C26—C25—C24120.2 (4)
C3—C2—H2120.7C26—C25—H25119.9
C1—C2—H2120.7C24—C25—H25119.9
C2—C3—C4119.6 (4)C25—C26—C27120.4 (4)
C2—C3—H3120.2C25—C26—H26119.8
C4—C3—H3120.2C27—C26—H26119.8
C3—C4—C5119.6 (4)C26—C27—C28119.9 (4)
C3—C4—H4120.2C26—C27—H27120.0
C5—C4—H4120.2C28—C27—H27120.0
N1—C5—C4120.7 (3)C27—C28—C23120.8 (4)
N1—C5—C6115.8 (3)C27—C28—H28119.6
C4—C5—C6123.4 (3)C23—C28—H28119.6
N2—C6—C7120.4 (3)C34—C29—C30118.1 (3)
N2—C6—C5115.7 (3)C34—C29—P1125.1 (2)
C7—C6—C5123.8 (3)C30—C29—P1116.8 (2)
C8—C7—C6120.3 (4)C31—C30—C29120.8 (3)
C8—C7—H7119.8C31—C30—H30119.6
C6—C7—H7119.8C29—C30—H30119.6
C7—C8—C9119.6 (4)C32—C31—C30120.3 (3)
C7—C8—H8120.2C32—C31—H31119.9
C9—C8—H8120.2C30—C31—H31119.9
C8—C9—C10118.6 (4)C31—C32—C33119.2 (4)
C8—C9—H9120.7C31—C32—H32120.4
C10—C9—H9120.7C33—C32—H32120.4
N2—C10—C9122.5 (4)C32—C33—C34121.0 (4)
N2—C10—H10118.7C32—C33—H33119.5
C9—C10—H10118.7C34—C33—H33119.5
N3—C11—C12123.6 (3)C29—C34—C33120.7 (3)
N3—C11—H11118.2C29—C34—H34119.7
C12—C11—H11118.2C33—C34—H34119.7
Symmetry code: (i) x+1, y, z+1.

Experimental details

Crystal data
Chemical formula[Cu2(C10H8N2)2(C12H10N2)(C18H15P)2](BF4)2
Mr1319.83
Crystal system, space groupMonoclinic, P21/c
Temperature (K)298
a, b, c (Å)9.9800 (17), 15.420 (3), 20.461 (4)
β (°) 97.021 (3)
V3)3125.1 (9)
Z2
Radiation typeMo Kα
µ (mm1)0.80
Crystal size (mm)0.43 × 0.33 × 0.28
Data collection
DiffractometerBruker SMART CCD area-detector
Absorption correctionMulti-scan
(SADABS; Bruker, 2000)
Tmin, Tmax0.724, 0.807
No. of measured, independent and
observed [I > 2σ(I)] reflections
18965, 7853, 5153
Rint0.039
(sin θ/λ)max1)0.670
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.056, 0.151, 1.02
No. of reflections7853
No. of parameters417
No. of restraints24
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.58, 0.30

Computer programs: SMART (Bruker, 2000), SMART, SAINT (Bruker, 2000), SHELXTL (Bruker, 2000), SHELXTL.

Selected geometric parameters (Å, º) top
Cu1—N32.045 (2)Cu1—N12.054 (2)
N3—Cu1—N2108.80 (10)N3—Cu1—P1105.30 (7)
N3—Cu1—N1111.53 (10)N2—Cu1—P1131.18 (7)
N2—Cu1—N180.03 (10)N1—Cu1—P1117.94 (7)
 

Subscribe to Acta Crystallographica Section E: Crystallographic Communications

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds