Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
Xylose reductase (XR), which requires NADPH as a co-substrate, catalyzes the reduction of D-xylose to xylitol, which is the first step in the metabolism of D-­xylose. The detailed three-dimensional structure of XR will provide a better understanding of the biological significance of XR in the efficient production of xylitol from biomass. XR of molecular mass 36.6 kDa from Candida tropicalis was crystallized using the hanging-drop vapour-diffusion method. According to X-ray diffraction data from C. tropicalis XR crystals at 2.91 Å resolution, the unit cell belongs to space group P31 or P32. Preliminary analysis indicated the presence of four XR molecules in the asymmetric unit, with 68.0% solvent content.

Subscribe to Acta Crystallographica Section F: Structural Biology Communications

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. F
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds