organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

Methyl α-L-sorboside monohydrate

crossmark logo

aDepartment of Advanced Materials Science, Graduate School of Engineering, Kagawa University, 2217-20 Hayashi-cho, Takamatsu, Kagawa 761-0396, Japan, and bFushimi Pharmaceutical Co Ltd, 307 Minatomachi, Marugame, Kagawa 763-8605, Japan
*Correspondence e-mail: ishii.tomohiko@kagawa-u.ac.jp

Edited by R. J. Butcher, Howard University, USA (Received 9 November 2021; accepted 14 December 2021; online 21 December 2021)

Methyl L-sorboside monohydrate, C7H14O6·H2O, was prepared from the rare sugar L-sorbose, C6H12O6, and crystallized. It was confirmed that methyl L-sorboside formed α-pyran­ose with a 2C5 conformation and crystallized with one water molecule of crystallization. In the crystal, mol­ecules are linked by O—H⋯O hydrogen bonds, forming a three-dimensional network. The unit-cell volume of the title compound, methyl L-sorboside monohydrate, is 481.13 (2) Å3 (Z = 2), which is about 108.16 Å3 (29.0%) greater than that of half the amount of the chemical α-L-sorbose [745.94 (2) Å3 (Z = 4)].

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

The rare sugar L-sorbose was the first L-form hexose found in nature (Itoh et al., 1995[Itoh, H., Sato, T., Takeuchi, T., Khan, A. R. & Izumori, K. (1995). J. Ferment. Bioeng. 79, 184-185.]; Khan et al., 1992[Khan, A. R., Takahata, S., Okaya, H., Tsumura, T. & Izumori, K. (1992). J. Ferment. Bioeng. 74, 149-152.]; Nordenson et al., 1979[Nordenson, S., Takagi, S. & Jeffrey, G. A. (1979). Acta Cryst. B35, 1005-1007.]). Methyl L-sorboside (Fig. 1[link]) is an α-pyran­ose form in which the OH group located on the C-2 position in L-sorbose is converted into a meth­oxy group OCH3. The mol­ecular weight of methyl L-sorboside, C7H14O6·H2O, is 212.20. On the other hand, that of L-sorbose, C6H12O6, is 180. The increase in mol­ecular weight from sorbose to sorboside is thus about 18%. In this study, we aimed to produce a single crystal of methyl L-sorboside that contains sorboside mol­ecules and water mol­ecules in the ratio of 1 to 1 in the unit cell. The crystal system of ethyl L-sorboside (Nagayama et al., 2020[Nagayama, N., Taniguchi, N., Matsumoto, M., Takeshita, K. & Ishii, T. (2020). IUCrData, 5, x201625.]), which we reported previously, is ortho­rhom­bic, while that of methyl L-sorboside is triclinic. The space group of ethyl L-sorboside is P212121 (Z = 4), while that of methyl L-sorboside is P1 (Z = 2). Furthermore, concerning the crystal solvent, ethyl-L-sorboside contains no solvent mol­ecules in the crystal, whereas crystals of methyl L-sorboside contain water mol­ecules as crystallization water. Thus, methyl L-sorboside is only one mol­ecule shorter in the alkyl-carbon chain length than ethyl L-sorboside, but the crystal system, space group, and crystal solvent are significantly different.

[Figure 1]
Figure 1
An ORTEP view of the title compound with the atom-labeling scheme. Displacement ellipsoids of all non-hydrogen atoms are drawn at the 50% probability level. H atoms are shown as small spheres of arbitrary radii. Hydrogen bonds are shown as dashed lines.

It was confirmed that methyl L-sorboside formed an α-pyran­ose with a 2C5 conformation and a water mol­ecule of crystallization. Comparing these two independent methyl L-sorboside mol­ecules, we found that the positions of the carbon and oxygen atoms are roughly the same. On the other hand, the positions of the hydrogen atoms determined from the X-ray diffraction measurement results are different, resulting in different orientations of the hy­droxy groups.

Hydrogen bonds (Fig. 2[link], Table 1[link]) occur between the hy­droxy groups of the methyl L-sorboside mol­ecules or through the water mol­ecules of crystallization, and the overall network extends parallel to the ab plane. However, the hydrogen-bond network is weak in the c-axis direction because the hydro­phobic meth­oxy group does not take part in any hydrogen bonds. Therefore, the three-dimensional hydrogen-bonding network has become a pseudo two-dimensional network.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O4—H4A⋯O3 0.85 1.94 2.729 (7) 154
O11—H11⋯O21i 1.00 (8) 1.87 (8) 2.799 (4) 154 (6)
O13—H13⋯O24 0.82 1.83 2.643 (4) 169
O14—H14⋯O11ii 0.82 1.94 2.719 (4) 159
O15—H15⋯O13iii 0.82 2.12 2.898 (4) 158
O21—H21⋯O25iv 0.82 2.10 2.874 (4) 157
O23—H23⋯O14v 0.82 1.84 2.653 (4) 169
O24—H24⋯O4 0.82 1.83 2.650 (5) 176
O25—H25⋯O23iii 0.82 1.97 2.709 (5) 150
Symmetry codes: (i) [x+1, y-1, z]; (ii) x, y+1, z; (iii) x+1, y, z; (iv) [x-1, y+1, z]; (v) [x-1, y, z].
[Figure 2]
Figure 2
A packing diagram of the title compound. Sugar mol­ecules are shown in a framework type, whereas the crystal water mol­ecules are shown in a ball-and stick type.

Synthesis and crystallization

Methyl L-sorboside, α-sorbo­pyran­oside form, was prepared by Fischer glycosidation from L-sorbose and methanol (Taguchi et al., 2018[Taguchi, H., Sogo, K., Ishii, T., Yoshihara, A. & Fukada, K. (2018). IUCrData, 3, x180114.]). The Fisher method produces isomers such as α-, β-, and furan­ose. Therefore, chromatographic separation using an ion-exchange resin was performed. The reaction mixture was evaporated under vacuum at 40°C to remove the solvent and dissolved in water. Then the mixture was applied to a column of ion-exchange resins (Dowex 50W-X2, Ca2+ form) and was eluted with deionized water. After separation, each fraction was analysed by HPLC, and fractions containing the α-pyran­oside type were collected and concentrated to syrup. Small single crystals were obtained by placing the syrup in a Petri dish and keeping it at 4°C. It is obvious that the synthesized methyl α-L-sorboside is still in the L-form after dehydrative condensation, because L-sorbose is used as the starting material. The absolute structure wa also confirmed by the Flack parameter (Flack, 1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]).

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula C7H14O6·H2O
Mr 212.20
Crystal system, space group Triclinic, P1
Temperature (K) 296
a, b, c (Å) 6.7320 (5), 7.7574 (5), 10.6128 (8)
α, β, γ (°) 82.458 (6), 72.596 (5), 65.476 (5)
V3) 481.13 (6)
Z 2
Radiation type Cu Kα
μ (mm−1) 1.15
Crystal size (mm) 0.1 × 0.1 × 0.1
 
Data collection
Diffractometer Rigaku R-AXIS RAPID
Absorption correction Multi-scan (ABSCOR; Rigaku, 1995[Rigaku (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.])
Tmin, Tmax 0.698, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 5541, 2880, 2751
Rint 0.045
(sin θ/λ)max−1) 0.602
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.048, 0.125, 1.13
No. of reflections 2880
No. of parameters 272
No. of restraints 3
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.26, −0.44
Absolute structure Flack x determined using 1053 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.])
Absolute structure parameter 0.10 (17)
Computer programs: RAPID-AUTO (Rigaku, 2009[Rigaku (2009). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.]), CrystalStructure (Rigaku, 2019[Rigaku (2019). CrystalStructure. Rigaku Corporation, Tokyo, Japan.]), olex2.solve (Bourhis et al., 2015[Bourhis, L. J., Dolomanov, O. V., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2015). Acta Cryst. A71, 59-75.]), SHELXL2018/3 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]) and OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

Structural data


Computing details top

Data collection: RAPID-AUTO (Rigaku, 2009); cell refinement: CrystalStructure (Rigaku, 2019); data reduction: RAPID-AUTO (Rigaku, 2009); program(s) used to solve structure: olex2.solve (Bourhis et al., 2015); program(s) used to refine structure: SHELXL2018/3 (Sheldrick, 2015); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

Methyl α-l-sorboside monohydrate top
Crystal data top
C7H14O6·H2OZ = 2
Mr = 212.20F(000) = 228
Triclinic, P1Dx = 1.465 Mg m3
a = 6.7320 (5) ÅCu Kα radiation, λ = 1.54187 Å
b = 7.7574 (5) ÅCell parameters from 5608 reflections
c = 10.6128 (8) Åθ = 4.4–68.4°
α = 82.458 (6)°µ = 1.15 mm1
β = 72.596 (5)°T = 296 K
γ = 65.476 (5)°Block, clear light colourless
V = 481.13 (6) Å30.1 × 0.1 × 0.1 mm
Data collection top
Rigaku R-AXIS RAPID
diffractometer
2751 reflections with I > 2σ(I)
ω scansRint = 0.045
Absorption correction: multi-scan
(ABSCOR; Rigaku, 1995)
θmax = 68.2°, θmin = 4.4°
Tmin = 0.698, Tmax = 1.000h = 88
5541 measured reflectionsk = 99
2880 independent reflectionsl = 1212
Refinement top
Refinement on F2Hydrogen site location: mixed
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.048 w = 1/[σ2(Fo2) + (0.0704P)2 + 0.106P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.125(Δ/σ)max < 0.001
S = 1.13Δρmax = 0.26 e Å3
2880 reflectionsΔρmin = 0.44 e Å3
272 parametersAbsolute structure: Flack x determined using 1053 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
3 restraintsAbsolute structure parameter: 0.10 (17)
Primary atom site location: iterative
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. H atoms were positioned geometrically (C—H = 0.98, 0.97 or 0.96 Å, and O—H = 0.82 Å) and refined using as riding with Uiso(H) = 1.2Ueq(C(H) or C(H,H) groups) or Uiso(H) = 1.5Ueq(C(H,H,H) or O), allowing for free rotation of the OH groups and crystallization water molecules (O3(H3A,H3B) and O4(H4A,H4B)).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O30.3171 (6)0.0810 (5)0.6471 (5)0.0640 (11)
H3A0.3822150.2008730.6400050.096*
H3B0.1765980.0584810.6756520.096*
O40.3946 (9)0.0979 (7)0.4096 (5)0.0750 (13)
H4A0.3301010.0510680.4781410.113*
H4B0.3277230.1013530.3522820.113*
O110.8495 (5)0.0155 (4)0.6286 (3)0.0423 (7)
H110.842 (12)0.045 (11)0.540 (8)0.08 (2)*
O120.4941 (5)0.3476 (4)0.8818 (3)0.0373 (7)
O130.4864 (4)0.5035 (4)0.6457 (3)0.0361 (6)
H130.4831560.4578260.5812770.054*
O140.8089 (5)0.6575 (4)0.6023 (3)0.0394 (7)
H140.8414010.7389900.6225660.059*
O151.0305 (5)0.5731 (5)0.8089 (4)0.0514 (9)
H151.1664240.5503810.7823090.077*
O160.8842 (5)0.1669 (4)0.8198 (3)0.0382 (7)
C110.6562 (7)0.0918 (6)0.7280 (5)0.0398 (10)
H11A0.6272770.0084180.8011800.048*
H11B0.5254030.1440480.6927460.048*
C120.6836 (6)0.2508 (5)0.7784 (4)0.0287 (8)
C130.7011 (6)0.4015 (5)0.6724 (4)0.0285 (8)
H13A0.8121480.3383440.5913410.034*
C140.7743 (6)0.5397 (5)0.7129 (4)0.0279 (8)
H14A0.6526160.6174050.7853600.033*
C150.9857 (7)0.4371 (6)0.7581 (5)0.0360 (9)
H15A1.1135080.3705000.6838890.043*
C160.9460 (8)0.2978 (7)0.8656 (5)0.0433 (10)
H16A1.0829040.2289580.8940200.052*
H16B0.8260330.3657980.9409800.052*
C170.4524 (9)0.2445 (8)1.0017 (5)0.0505 (12)
H17A0.4322900.1355760.9836370.076*
H17B0.3178210.3244241.0635700.076*
H17C0.5791220.2041931.0382880.076*
O210.0310 (5)1.0841 (4)0.3619 (3)0.0416 (7)
H210.0883051.1983740.3481180.062*
O220.2120 (5)0.7111 (4)0.1172 (3)0.0358 (6)
O230.0693 (5)0.5868 (5)0.3561 (3)0.0382 (7)
H230.0008610.5948350.4344040.057*
O240.4907 (6)0.3936 (4)0.4191 (3)0.0407 (7)
H240.4614660.3031800.4123080.061*
O250.8573 (5)0.4521 (5)0.2383 (4)0.0505 (9)
H250.9507790.4894880.2456700.076*
O260.3751 (5)0.8804 (4)0.1895 (3)0.0359 (7)
C210.0209 (7)0.9850 (6)0.2564 (5)0.0399 (10)
H21A0.0345441.0681250.1799790.048*
H21B0.1467110.9456250.2808960.048*
C220.2012 (6)0.8120 (5)0.2214 (4)0.0299 (8)
C230.2295 (6)0.6684 (5)0.3348 (4)0.0275 (8)
H23A0.2008070.7345290.4151270.033*
C240.4663 (7)0.5142 (5)0.3059 (4)0.0295 (8)
H24A0.4909140.4393970.2309010.035*
C250.6379 (6)0.5996 (6)0.2730 (5)0.0348 (9)
H25A0.6210750.6670120.3499580.042*
C260.5985 (7)0.7374 (6)0.1591 (5)0.0424 (10)
H26A0.7068260.7961230.1382500.051*
H26B0.6235810.6688810.0818400.051*
C270.1985 (9)0.8085 (7)0.0053 (4)0.0485 (12)
H27A0.2437170.7189540.0733250.073*
H27B0.2974560.8747700.0270870.073*
H27C0.0454010.8976260.0019030.073*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O30.0457 (19)0.048 (2)0.090 (3)0.0091 (17)0.0201 (19)0.004 (2)
O40.098 (3)0.062 (3)0.098 (3)0.054 (3)0.047 (3)0.016 (3)
O110.0536 (18)0.0270 (15)0.0462 (17)0.0171 (13)0.0100 (14)0.0037 (13)
O120.0428 (15)0.0325 (15)0.0320 (14)0.0159 (12)0.0030 (12)0.0017 (12)
O130.0333 (14)0.0382 (16)0.0424 (15)0.0142 (12)0.0193 (12)0.0026 (12)
O140.0534 (18)0.0294 (15)0.0389 (15)0.0254 (14)0.0056 (13)0.0026 (12)
O150.0384 (15)0.0462 (19)0.082 (2)0.0216 (14)0.0207 (16)0.0160 (17)
O160.0411 (15)0.0254 (14)0.0507 (17)0.0103 (12)0.0219 (13)0.0033 (12)
C110.043 (2)0.030 (2)0.050 (2)0.0201 (18)0.0071 (19)0.0055 (19)
C120.0268 (17)0.0219 (17)0.0372 (19)0.0091 (14)0.0091 (15)0.0007 (15)
C130.0302 (18)0.0288 (19)0.0299 (17)0.0135 (16)0.0102 (14)0.0007 (15)
C140.0286 (17)0.0256 (18)0.0302 (18)0.0129 (15)0.0048 (15)0.0033 (15)
C150.0282 (17)0.031 (2)0.051 (2)0.0111 (16)0.0104 (17)0.0108 (18)
C160.049 (2)0.040 (2)0.054 (3)0.020 (2)0.031 (2)0.003 (2)
C170.063 (3)0.053 (3)0.039 (2)0.031 (2)0.009 (2)0.005 (2)
O210.0458 (16)0.0250 (14)0.0488 (18)0.0019 (13)0.0207 (13)0.0058 (13)
O220.0518 (16)0.0281 (14)0.0327 (14)0.0150 (13)0.0201 (12)0.0003 (11)
O230.0395 (15)0.0497 (17)0.0363 (14)0.0298 (14)0.0083 (12)0.0002 (13)
O240.0595 (18)0.0286 (15)0.0457 (16)0.0187 (14)0.0329 (14)0.0089 (13)
O250.0264 (14)0.0376 (17)0.086 (2)0.0052 (12)0.0183 (15)0.0139 (17)
O260.0357 (15)0.0260 (14)0.0492 (17)0.0154 (12)0.0142 (13)0.0061 (12)
C210.035 (2)0.029 (2)0.052 (3)0.0013 (17)0.0217 (18)0.0054 (18)
C220.0272 (18)0.028 (2)0.036 (2)0.0089 (15)0.0130 (16)0.0019 (16)
C230.0271 (17)0.0285 (19)0.0293 (18)0.0117 (15)0.0100 (14)0.0002 (15)
C240.0337 (18)0.0232 (18)0.0335 (19)0.0082 (15)0.0157 (15)0.0015 (15)
C250.0250 (17)0.025 (2)0.053 (2)0.0048 (15)0.0132 (17)0.0078 (17)
C260.030 (2)0.040 (2)0.055 (3)0.0174 (18)0.0025 (19)0.001 (2)
C270.064 (3)0.048 (3)0.033 (2)0.018 (2)0.022 (2)0.007 (2)
Geometric parameters (Å, º) top
O3—H3A0.8500C17—H17B0.9600
O3—H3B0.8500C17—H17C0.9600
O4—H4A0.8502O21—H210.8200
O4—H4B0.8500O21—C211.409 (5)
O11—H111.00 (8)O22—C221.405 (5)
O11—C111.417 (5)O22—C271.423 (5)
O12—C121.407 (5)O23—H230.8200
O12—C171.429 (5)O23—C231.413 (5)
O13—H130.8200O24—H240.8200
O13—C131.425 (4)O24—C241.429 (5)
O14—H140.8200O25—H250.8200
O14—C141.414 (4)O25—C251.417 (5)
O15—H150.8200O26—C221.413 (5)
O15—C151.416 (5)O26—C261.420 (5)
O16—C121.411 (5)C21—H21A0.9700
O16—C161.429 (6)C21—H21B0.9700
C11—H11A0.9700C21—C221.519 (5)
C11—H11B0.9700C22—C231.528 (5)
C11—C121.505 (6)C23—H23A0.9800
C12—C131.529 (5)C23—C241.512 (5)
C13—H13A0.9800C24—H24A0.9800
C13—C141.505 (5)C24—C251.493 (6)
C14—H14A0.9800C25—H25A0.9800
C14—C151.503 (5)C25—C261.514 (6)
C15—H15A0.9800C26—H26A0.9700
C15—C161.508 (6)C26—H26B0.9700
C16—H16A0.9700C27—H27A0.9600
C16—H16B0.9700C27—H27B0.9600
C17—H17A0.9600C27—H27C0.9600
H3A—O3—H3B104.5H17B—C17—H17C109.5
H4A—O4—H4B104.5C21—O21—H21109.5
C11—O11—H11111 (4)C22—O22—C27117.3 (3)
C12—O12—C17117.3 (3)C23—O23—H23109.5
C13—O13—H13109.5C24—O24—H24109.5
C14—O14—H14109.5C25—O25—H25109.5
C15—O15—H15109.5C22—O26—C26114.6 (3)
C12—O16—C16114.6 (3)O21—C21—H21A109.5
O11—C11—H11A109.0O21—C21—H21B109.5
O11—C11—H11B109.0O21—C21—C22110.9 (3)
O11—C11—C12112.8 (3)H21A—C21—H21B108.1
H11A—C11—H11B107.8C22—C21—H21A109.5
C12—C11—H11A109.0C22—C21—H21B109.5
C12—C11—H11B109.0O22—C22—O26112.4 (3)
O12—C12—O16111.9 (3)O22—C22—C21111.3 (3)
O12—C12—C11111.3 (3)O22—C22—C23104.6 (3)
O12—C12—C13105.2 (3)O26—C22—C21106.0 (3)
O16—C12—C11106.1 (3)O26—C22—C23110.0 (3)
O16—C12—C13110.3 (3)C21—C22—C23112.7 (3)
C11—C12—C13112.2 (3)O23—C23—C22109.2 (3)
O13—C13—C12109.5 (3)O23—C23—H23A108.8
O13—C13—H13A108.7O23—C23—C24109.6 (3)
O13—C13—C14108.8 (3)C22—C23—H23A108.8
C12—C13—H13A108.7C24—C23—C22111.5 (3)
C14—C13—C12112.4 (3)C24—C23—H23A108.8
C14—C13—H13A108.7O24—C24—C23109.4 (3)
O14—C14—C13107.0 (3)O24—C24—H24A109.3
O14—C14—H14A109.1O24—C24—C25109.4 (3)
O14—C14—C15111.6 (3)C23—C24—H24A109.3
C13—C14—H14A109.1C25—C24—C23110.1 (3)
C15—C14—C13110.8 (3)C25—C24—H24A109.3
C15—C14—H14A109.1O25—C25—C24108.6 (3)
O15—C15—C14107.9 (3)O25—C25—H25A109.6
O15—C15—H15A110.1O25—C25—C26110.9 (3)
O15—C15—C16109.7 (4)C24—C25—H25A109.6
C14—C15—H15A110.1C24—C25—C26108.5 (3)
C14—C15—C16108.9 (3)C26—C25—H25A109.6
C16—C15—H15A110.1O26—C26—C25111.7 (3)
O16—C16—C15110.9 (4)O26—C26—H26A109.3
O16—C16—H16A109.5O26—C26—H26B109.3
O16—C16—H16B109.5C25—C26—H26A109.3
C15—C16—H16A109.5C25—C26—H26B109.3
C15—C16—H16B109.5H26A—C26—H26B108.0
H16A—C16—H16B108.1O22—C27—H27A109.5
O12—C17—H17A109.5O22—C27—H27B109.5
O12—C17—H17B109.5O22—C27—H27C109.5
O12—C17—H17C109.5H27A—C27—H27B109.5
H17A—C17—H17B109.5H27A—C27—H27C109.5
H17A—C17—H17C109.5H27B—C27—H27C109.5
O11—C11—C12—O12176.7 (3)O21—C21—C22—O22179.4 (3)
O11—C11—C12—O1654.8 (4)O21—C21—C22—O2658.1 (4)
O11—C11—C12—C1365.6 (4)O21—C21—C22—C2362.3 (5)
O12—C12—C13—O1350.8 (4)O22—C22—C23—O2352.9 (4)
O12—C12—C13—C1470.2 (4)O22—C22—C23—C2468.4 (4)
O13—C13—C14—O1465.1 (3)O23—C23—C24—O2464.1 (4)
O13—C13—C14—C15173.1 (3)O23—C23—C24—C25175.6 (3)
O14—C14—C15—O1567.4 (4)O24—C24—C25—O2563.4 (4)
O14—C14—C15—C16173.6 (3)O24—C24—C25—C26176.0 (3)
O15—C15—C16—O16175.8 (3)O25—C25—C26—O26176.8 (3)
O16—C12—C13—O13171.6 (3)O26—C22—C23—O23173.8 (3)
O16—C12—C13—C1450.6 (4)O26—C22—C23—C2452.5 (4)
C11—C12—C13—O1370.4 (4)C21—C22—C23—O2368.1 (4)
C11—C12—C13—C14168.6 (3)C21—C22—C23—C24170.6 (3)
C12—O16—C16—C1560.5 (5)C22—O26—C26—C2559.1 (5)
C12—C13—C14—O14173.5 (3)C22—C23—C24—O24174.8 (3)
C12—C13—C14—C1551.7 (4)C22—C23—C24—C2554.6 (4)
C13—C14—C15—O15173.4 (3)C23—C24—C25—O25176.3 (3)
C13—C14—C15—C1654.4 (4)C23—C24—C25—C2655.8 (4)
C14—C15—C16—O1657.9 (5)C24—C25—C26—O2657.6 (5)
C16—O16—C12—O1261.3 (4)C26—O26—C22—O2260.8 (4)
C16—O16—C12—C11177.1 (4)C26—O26—C22—C21177.4 (4)
C16—O16—C12—C1355.4 (4)C26—O26—C22—C2355.3 (4)
C17—O12—C12—O1653.3 (5)C27—O22—C22—O2658.5 (4)
C17—O12—C12—C1165.2 (5)C27—O22—C22—C2160.3 (5)
C17—O12—C12—C13173.1 (4)C27—O22—C22—C23177.8 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4—H4A···O30.851.942.729 (7)154
O11—H11···O21i1.00 (8)1.87 (8)2.799 (4)154 (6)
O13—H13···O240.821.832.643 (4)169
O14—H14···O11ii0.821.942.719 (4)159
O15—H15···O13iii0.822.122.898 (4)158
O21—H21···O25iv0.822.102.874 (4)157
O23—H23···O14v0.821.842.653 (4)169
O24—H24···O40.821.832.650 (5)176
O25—H25···O23iii0.821.972.709 (5)150
Symmetry codes: (i) x+1, y1, z; (ii) x, y+1, z; (iii) x+1, y, z; (iv) x1, y+1, z; (v) x1, y, z.
 

Acknowledgements

The authors are sincerely grateful to Professor Genta Sakane (Okayama University of Science) for excellent discussions and useful technical advice. The authors are grateful to Grants-in-Aid for Rare Sugar Research from Kagawa University and to the Strategic Foundational Technology Improvement Support Operation (Supporting Industry Program) for support.

Funding information

Funding for this research was provided by: Kagawa University; Strategic Foundational Technology Improvement Support Operation.

References

First citationBourhis, L. J., Dolomanov, O. V., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2015). Acta Cryst. A71, 59–75.  Web of Science CrossRef IUCr Journals Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationItoh, H., Sato, T., Takeuchi, T., Khan, A. R. & Izumori, K. (1995). J. Ferment. Bioeng. 79, 184–185.  CrossRef CAS Web of Science Google Scholar
First citationKhan, A. R., Takahata, S., Okaya, H., Tsumura, T. & Izumori, K. (1992). J. Ferment. Bioeng. 74, 149–152.  CrossRef CAS Web of Science Google Scholar
First citationNagayama, N., Taniguchi, N., Matsumoto, M., Takeshita, K. & Ishii, T. (2020). IUCrData, 5, x201625.  Google Scholar
First citationNordenson, S., Takagi, S. & Jeffrey, G. A. (1979). Acta Cryst. B35, 1005–1007.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationParsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationRigaku (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku (2009). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku (2019). CrystalStructure. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationTaguchi, H., Sogo, K., Ishii, T., Yoshihara, A. & Fukada, K. (2018). IUCrData, 3, x180114.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds