metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

Cobaltoceniumsulfonate

CROSSMARK_Color_square_no_text.svg

aUniversity of Innsbruck, Faculty of Chemistry and Pharmacy, Innrain 80–82, 6020 Innsbruck, Austria
*Correspondence e-mail: benno.bildstein@uibk.ac.at

Edited by R. J. Butcher, Howard University, USA (Received 25 October 2017; accepted 27 November 2017; online 30 November 2017)

The title compound, [Co(C5H5)(C5H4O3S)], was synthesized by de­diazo­niation of cobaltoceniumdiazo­nium bis­(hexa­fluorido­phosphate) with CuCl and SO2, crystallizing as yellow platelets. Structurally, a regular cobaltocenium sandwich moiety is observed containing coplanar cyclo­penta­dienyl rings and displaying unexceptional carbon–cobalt [2.0230 (16)–2.0452 (14) Å] and carbon–carbon [1.410 (3)–1.431 (3) Å] bond distances. In this mesoionic mol­ecule, the cationic cobaltoceniumyl part is connected to its anionic sulfonate part by a carbon–sulfur single bond of 1.7717 (15) Å.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

The title compound (Fig. 1[link]) is the first and only sulfonic acid derivative in the compound class of cobaltocenium salts. As a result of the strongly electron-withdrawing cationic cobaltocenium moiety, the corresponding sulfonic acid is fully dissociated, thereby stabilizing the title compound as its zwitterionic cobaltoceniumsulfonate.

[Figure 1]
Figure 1
The structure of the title compound, with displacement ellipsoids drawn at the 50% probability level for non-H atoms.

Structurally, a regular cobaltocenium sandwich moiety is observed containing coplanar cyclo­penta­dienyl rings and displaying unexceptional carbon–cobalt [2.0230 (16)–2.0452 (14) Å] and carbon–carbon [1.410 (3)–1.431 (3) Å] bond distances. The structural properties of the sulfonate group are also unexceptional, showing a tetra­hedral sulfonate functional group with sulfur–oxygen bond distances [1.4402 (12)–1.4499 (14) Å] and oxygen–sulfur–oxygen angles [113.04 (9)–114.09 (9)°] in line with expectations. In this mesoionic mol­ecule, the cationic cobaltoceniumyl part is connected to its anionic sulfonate part by a carbon–sulfur single bond of 1.7717 (15) Å. The arrangement of mol­ecular entities in the unit cell is shown in Fig. 2[link].

[Figure 2]
Figure 2
The arrangement of mol­ecular entities of the zwitterionic title compound in the unit cell. [Symmetry codes: (A) x, y, z; (B) 1 − x, 1 − y, 1 − z; (C) [{3\over 2}] − x, y − [{1\over 2}], [{1\over 2}] − z; (D) x − [{1\over 2}], [{3\over 2}] − y, [{1\over 2}] + z.]

Synthesis and crystallization

Cobaltoceniumsulfonate was obtained by a Sandmeyer-type chloro­sulfo-de­diazo­niation reaction of cobaltoceniumdiazo­nium bis­(hexa­fluorido­phosphate) (Vanicek et al., 2016[Vanicek, S., Kopacka, H., Wurst, K., Müller, T., Hassenrück, C., Winter, R. F. & Bildstein, B. (2016). Organometallics, 35, 2101-2109.]) with sulfur dioxide in the presence of cupric chloride in hydro­chloric acid according to literature (Hoffman, 1981[Hoffman, R. V. (1981). Org. Synth. 60, 121-126.]), followed by aqueous workup. From the resulting product mixture containing various cobaltocenium compounds according to 1H and 13C NMR analysis, single crystals of the title compound were obtained at room temperature from a mixture of aceto­nitrile and water.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 1[link].

Table 1
Experimental details

Crystal data
Chemical formula [Co(C5H5)(C5H4O3S)]
Mr 268.16
Crystal system, space group Monoclinic, P21/n
Temperature (K) 193
a, b, c (Å) 7.6234 (4), 13.1489 (6), 9.6785 (5)
β (°) 94.206 (1)
V3) 967.55 (8)
Z 4
Radiation type Mo Kα
μ (mm−1) 1.97
Crystal size (mm) 0.18 × 0.14 × 0.14
 
Data collection
Diffractometer Bruker D8 QUEST PHOTON 100
Absorption correction Multi-scan (SADABS; Bruker, 2014[Bruker (2014). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.676, 0.790
No. of measured, independent and observed [I > 2σ(I)] reflections 22746, 2116, 2032
Rint 0.025
(sin θ/λ)max−1) 0.639
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.020, 0.054, 1.08
No. of reflections 2116
No. of parameters 136
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.24, −0.43
Computer programs: APEX2 and SAINT (Bruker, 2014[Bruker (2014). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT2014 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2014 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]).

Structural data


Computing details top

Data collection: APEX2 (Bruker, 2014); cell refinement: SAINT (Bruker, 2014); data reduction: SAINT (Bruker, 2014); program(s) used to solve structure: SHELXT2014 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: Mercury (Macrae et al., 2008).

Cobaltoceniumsulfonate top
Crystal data top
[Co(C5H5)(C5H4O3S)]F(000) = 544
Mr = 268.16Dx = 1.841 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 7.6234 (4) ÅCell parameters from 9062 reflections
b = 13.1489 (6) Åθ = 2.6–27.5°
c = 9.6785 (5) ŵ = 1.97 mm1
β = 94.206 (1)°T = 193 K
V = 967.55 (8) Å3Platelet, yellow
Z = 40.18 × 0.14 × 0.14 mm
Data collection top
Bruker D8 QUEST PHOTON 100
diffractometer
2116 independent reflections
Radiation source: Incoatec Microfocus2032 reflections with I > 2σ(I)
Multi layered optics monochromatorRint = 0.025
Detector resolution: 10.4 pixels mm-1θmax = 27.0°, θmin = 2.6°
φ and ω scansh = 99
Absorption correction: multi-scan
(DIFABS; Walker & Stuart, 1983)
k = 1616
Tmin = 0.676, Tmax = 0.790l = 1212
22746 measured reflections
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.020H-atom parameters constrained
wR(F2) = 0.054 w = 1/[σ2(Fo2) + (0.0286P)2 + 0.5214P]
where P = (Fo2 + 2Fc2)/3
S = 1.08(Δ/σ)max = 0.001
2116 reflectionsΔρmax = 0.24 e Å3
136 parametersΔρmin = 0.43 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Hydrogen atoms were located in the difference Fourier syntheses and included and refined as riding atoms in their calculated positions.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Co10.72231 (2)0.58762 (2)0.24293 (2)0.01743 (8)
S10.83395 (5)0.69190 (3)0.55827 (4)0.02232 (10)
O10.76626 (18)0.67652 (11)0.69286 (13)0.0405 (3)
O21.00545 (15)0.64785 (10)0.54789 (15)0.0381 (3)
O30.81863 (18)0.79505 (9)0.50811 (15)0.0398 (3)
C10.8206 (2)0.68857 (14)0.10960 (19)0.0355 (4)
H10.79140.75860.10100.043*
C20.7347 (2)0.60824 (16)0.03566 (17)0.0367 (4)
H20.63810.61480.03150.044*
C30.8179 (2)0.51592 (14)0.07925 (18)0.0357 (4)
H30.78680.44970.04660.043*
C40.9564 (2)0.54022 (14)0.18074 (18)0.0323 (4)
H41.03400.49310.22790.039*
C50.9578 (2)0.64712 (14)0.19881 (18)0.0322 (4)
H51.03680.68440.26000.039*
C60.54570 (19)0.66101 (12)0.35710 (15)0.0222 (3)
H60.51130.73040.35030.027*
C70.4639 (2)0.57829 (13)0.28320 (16)0.0260 (3)
H70.36530.58290.21760.031*
C80.5545 (2)0.48737 (12)0.32406 (15)0.0252 (3)
H80.52640.42090.29080.030*
C90.69493 (19)0.51320 (11)0.42370 (15)0.0209 (3)
H90.77690.46730.46840.025*
C100.68939 (18)0.62079 (11)0.44371 (14)0.0187 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Co10.01734 (12)0.01810 (12)0.01726 (11)0.00121 (7)0.00411 (7)0.00056 (6)
S10.02178 (18)0.01959 (18)0.02482 (18)0.00203 (13)0.00344 (14)0.00436 (13)
O10.0459 (8)0.0523 (8)0.0231 (6)0.0119 (6)0.0008 (5)0.0104 (5)
O20.0212 (6)0.0373 (7)0.0541 (8)0.0067 (5)0.0086 (5)0.0140 (6)
O30.0454 (8)0.0187 (6)0.0526 (8)0.0002 (5)0.0145 (6)0.0005 (5)
C10.0388 (10)0.0295 (8)0.0406 (10)0.0021 (7)0.0199 (8)0.0123 (7)
C20.0333 (9)0.0581 (11)0.0195 (7)0.0007 (8)0.0080 (7)0.0048 (7)
C30.0426 (10)0.0357 (9)0.0314 (8)0.0064 (8)0.0200 (7)0.0119 (7)
C40.0258 (8)0.0370 (9)0.0360 (9)0.0071 (7)0.0153 (7)0.0050 (7)
C50.0247 (8)0.0383 (9)0.0352 (9)0.0103 (7)0.0120 (6)0.0022 (7)
C60.0177 (7)0.0285 (8)0.0208 (7)0.0049 (6)0.0036 (5)0.0003 (5)
C70.0163 (7)0.0404 (9)0.0213 (7)0.0040 (6)0.0026 (5)0.0017 (6)
C80.0267 (8)0.0261 (7)0.0233 (7)0.0102 (6)0.0055 (6)0.0005 (6)
C90.0231 (7)0.0207 (7)0.0192 (6)0.0007 (5)0.0035 (5)0.0017 (5)
C100.0182 (7)0.0205 (7)0.0176 (6)0.0021 (5)0.0028 (5)0.0003 (5)
Geometric parameters (Å, º) top
Co1—C42.0230 (16)C2—C31.419 (3)
Co1—C32.0245 (16)C2—H20.9500
Co1—C102.0251 (14)C3—C41.425 (3)
Co1—C92.0288 (14)C3—H30.9500
Co1—C52.0320 (16)C4—C51.416 (3)
Co1—C12.0323 (16)C4—H40.9500
Co1—C22.0333 (16)C5—H50.9500
Co1—C82.0345 (15)C6—C71.421 (2)
Co1—C72.0399 (15)C6—C101.431 (2)
Co1—C62.0452 (14)C6—H60.9500
S1—O21.4402 (12)C7—C81.422 (2)
S1—O31.4425 (12)C7—H70.9500
S1—O11.4499 (14)C8—C91.429 (2)
S1—C101.7717 (15)C8—H80.9500
C1—C21.410 (3)C9—C101.4289 (19)
C1—C51.416 (3)C9—H90.9500
C1—H10.9500
C4—Co1—C341.22 (8)Co1—C1—H1126.4
C4—Co1—C10121.73 (7)C1—C2—C3108.00 (16)
C3—Co1—C10158.16 (7)C1—C2—Co169.67 (10)
C4—Co1—C9104.88 (7)C3—C2—Co169.20 (10)
C3—Co1—C9121.06 (7)C1—C2—H2126.0
C10—Co1—C941.28 (5)C3—C2—H2126.0
C4—Co1—C540.89 (7)Co1—C2—H2126.7
C3—Co1—C568.94 (7)C2—C3—C4107.79 (16)
C10—Co1—C5106.99 (7)C2—C3—Co169.86 (10)
C9—Co1—C5121.02 (7)C4—C3—Co169.33 (9)
C4—Co1—C168.77 (7)C2—C3—H3126.1
C3—Co1—C168.70 (7)C4—C3—H3126.1
C10—Co1—C1123.10 (7)Co1—C3—H3126.3
C9—Co1—C1158.23 (7)C5—C4—C3107.83 (16)
C5—Co1—C140.76 (8)C5—C4—Co169.90 (9)
C4—Co1—C269.01 (7)C3—C4—Co169.45 (10)
C3—Co1—C240.95 (8)C5—C4—H4126.1
C10—Co1—C2159.39 (7)C3—C4—H4126.1
C9—Co1—C2158.48 (7)Co1—C4—H4126.1
C5—Co1—C268.64 (7)C1—C5—C4107.95 (16)
C1—Co1—C240.58 (8)C1—C5—Co169.63 (9)
C4—Co1—C8120.58 (7)C4—C5—Co169.22 (9)
C3—Co1—C8105.84 (7)C1—C5—H5126.0
C10—Co1—C869.11 (6)C4—C5—H5126.0
C9—Co1—C841.17 (6)Co1—C5—H5126.7
C5—Co1—C8157.06 (7)C7—C6—C10107.52 (13)
C1—Co1—C8160.03 (7)C7—C6—Co169.45 (9)
C2—Co1—C8122.90 (7)C10—C6—Co168.66 (8)
C4—Co1—C7157.47 (7)C7—C6—H6126.2
C3—Co1—C7121.97 (7)C10—C6—H6126.2
C10—Co1—C768.91 (6)Co1—C6—H6127.2
C9—Co1—C769.16 (6)C6—C7—C8108.50 (13)
C5—Co1—C7160.70 (7)C6—C7—Co169.85 (8)
C1—Co1—C7124.53 (7)C8—C7—Co169.37 (9)
C2—Co1—C7108.17 (7)C6—C7—H7125.8
C8—Co1—C740.85 (7)C8—C7—H7125.8
C4—Co1—C6159.40 (7)Co1—C7—H7126.6
C3—Co1—C6158.66 (7)C7—C8—C9108.21 (13)
C10—Co1—C641.16 (6)C7—C8—Co169.78 (9)
C9—Co1—C669.40 (6)C9—C8—Co169.20 (8)
C5—Co1—C6123.96 (7)C7—C8—H8125.9
C1—Co1—C6108.84 (7)C9—C8—H8125.9
C2—Co1—C6123.38 (7)Co1—C8—H8126.7
C8—Co1—C668.87 (6)C8—C9—C10107.38 (13)
C7—Co1—C640.70 (6)C8—C9—Co169.63 (8)
O2—S1—O3113.96 (9)C10—C9—Co169.22 (8)
O2—S1—O1113.04 (9)C8—C9—H9126.3
O3—S1—O1114.09 (9)C10—C9—H9126.3
O2—S1—C10105.68 (7)Co1—C9—H9126.4
O3—S1—C10104.73 (7)C9—C10—C6108.39 (13)
O1—S1—C10104.05 (7)C9—C10—S1125.74 (11)
C2—C1—C5108.43 (16)C6—C10—S1125.87 (11)
C2—C1—Co169.75 (10)C9—C10—Co169.50 (8)
C5—C1—Co169.61 (9)C6—C10—Co170.17 (8)
C2—C1—H1125.8S1—C10—Co1126.80 (8)
C5—C1—H1125.8
C5—C1—C2—C30.29 (19)Co1—C8—C9—C1059.15 (10)
Co1—C1—C2—C358.76 (12)C7—C8—C9—Co159.05 (10)
C5—C1—C2—Co159.04 (12)C8—C9—C10—C60.20 (16)
C1—C2—C3—C40.12 (19)Co1—C9—C10—C659.61 (10)
Co1—C2—C3—C459.17 (11)C8—C9—C10—S1179.33 (11)
C1—C2—C3—Co159.05 (12)Co1—C9—C10—S1121.26 (11)
C2—C3—C4—C50.09 (18)C8—C9—C10—Co159.41 (10)
Co1—C3—C4—C559.59 (11)C7—C6—C10—C90.42 (16)
C2—C3—C4—Co159.50 (12)Co1—C6—C10—C959.19 (10)
C2—C1—C5—C40.34 (18)C7—C6—C10—S1179.55 (11)
Co1—C1—C5—C458.79 (11)Co1—C6—C10—S1121.68 (12)
C2—C1—C5—Co159.13 (12)C7—C6—C10—Co158.77 (10)
C3—C4—C5—C10.26 (18)O2—S1—C10—C939.68 (15)
Co1—C4—C5—C159.05 (11)O3—S1—C10—C9160.34 (13)
C3—C4—C5—Co159.31 (11)O1—S1—C10—C979.61 (14)
C10—C6—C7—C80.49 (17)O2—S1—C10—C6141.34 (13)
Co1—C6—C7—C858.77 (11)O3—S1—C10—C620.68 (15)
C10—C6—C7—Co158.28 (10)O1—S1—C10—C699.37 (14)
C6—C7—C8—C90.37 (17)O2—S1—C10—Co150.30 (11)
Co1—C7—C8—C958.69 (10)O3—S1—C10—Co170.37 (11)
C6—C7—C8—Co159.06 (11)O1—S1—C10—Co1169.58 (10)
C7—C8—C9—C100.10 (17)
 

Funding information

The presented work was supported by the Austrian Science Fund (FWF), P 30221-NBL.

References

First citationBruker (2014). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationHoffman, R. V. (1981). Org. Synth. 60, 121–126.  CAS Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationVanicek, S., Kopacka, H., Wurst, K., Müller, T., Hassenrück, C., Winter, R. F. & Bildstein, B. (2016). Organometallics, 35, 2101–2109.  CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds

[# https x2 cm 20170801 %]