metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

{4,4′,6,6′-Tetra­bromo-2,2′-[(2,2-di­methyl­propane-1,3-di­yl)bis­­(nitrilo­methanylyl­­idene)]diphenolato}copper(II)

aDepartment of Chemistry, Payame Noor University, PO Box 19395-3697 Tehran, I. R. of IRAN, bX-ray Crystallography Laboratory, Plasma Physics Research Center, Science and Research Branch, Islamic Azad University, Tehran, Iran, and, Department of Chemistry, Science and Research Branch, Islamic Azad University, Tehran, Iran, and cDepartment of Physics, University of Sargodha, Punjab, Pakistan
*Correspondence e-mail: h.kargar@pnu.ac.ir, dmntahir_uos@yahoo.com

(Received 6 January 2012; accepted 2 March 2012; online 10 March 2012)

In the title compound, [Cu(C19H16Br4N2O2)], the CuII ion and the substituted C atom of the diamine fragment lie on a crystallographic twofold rotation axis. The geometry around the CuII ion is distorted square-planar, which is defined by the N2O2 donor atoms of the coordinated Schiff base ligand. The dihedral angle between the symmetry-related substituted benzene rings is 25.33 (14)°. The crystal structure is stabilized by an inter­molecular ππ inter­action [centroid–centroid distance = 3.8891 (18) Å].

Related literature

For standard bond lengths, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). For applications of Schiff base ligands in coordination chemistry, see: Granovski et al. (1993[Granovski, A. D., Nivorozhkin, A. L. & Minkin, V. I. (1993). Coord. Chem. Rev. 126, 1-69.]); Blower (1998[Blower, P. J. (1998). Transition Met. Chem., 23, 109-112.]). For a related structure, see: Kargar et al. (2008[Kargar, H., Fun, H.-K. & Kia, R. (2008). Acta Cryst. E64, m1541-m1542.]).

[Scheme 1]

Experimental

Crystal data
  • [Cu(C19H16Br4N2O2)]

  • Mr = 687.52

  • Orthorhombic, P b c n

  • a = 16.3594 (8) Å

  • b = 15.5106 (8) Å

  • c = 8.4686 (4) Å

  • V = 2148.86 (18) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 8.47 mm−1

  • T = 291 K

  • 0.21 × 0.12 × 0.08 mm

Data collection
  • Bruker SMART APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.269, Tmax = 0.551

  • 9913 measured reflections

  • 2537 independent reflections

  • 1625 reflections with I > 2σ(I)

  • Rint = 0.052

Refinement
  • R[F2 > 2σ(F2)] = 0.039

  • wR(F2) = 0.078

  • S = 1.00

  • 2537 reflections

  • 128 parameters

  • H-atom parameters constrained

  • Δρmax = 0.58 e Å−3

  • Δρmin = −0.59 e Å−3

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Schiff base complexes are one of the most important stereochemical models in transition metal coordination chemistry, with the ease of preparation and structural variations (Granovski et al., 1993; Blower (1998)).

The asymmetric unit of the title compound, Fig. 1, comprises half of a potentially tetradentate Schiff base ligand. The bond lengths (Allen et al., 1987) and angles are within the normal ranges. The Cu1 and C9 atoms lie on crystallographic two-fold rotation axis. The crystal structure is further stabilized by the intermolecular π-π interaction, (Fig. 2), [Cg1···Cg1i = 3.8891 (18)Å; (i) 1 - X, 1 - Y, -Z; Cg1 is the centroid of Cu(1)/O(1)/C(1)/C(6)/C(7)/N(1) ring].

Related literature top

For standard bond lengths, see: Allen et al. (1987). For applications of Schiff base ligands in coordination chemistry, see: Granovski et al. (1993); Blower (1998). For a related structure, see: Kargar et al. (2008).

Experimental top

The title compound was synthesized by adding 3,5-dibromo-salicylaldehyde-2,2-dimethyl-1,3- propanediamine (2 mmol) to a solution of CuCl2. 4H2O (2.1 mmol) in ethanol (30 ml). The mixture was refluxed with stirring for half an hour. The resultant solution was filtered. Green single crystals of the title compound suitable for X-ray structure determination were recrystallized from ethanol by slow evaporation of the solvents at room temperature over several days.

Refinement top

All hydrogen atoms were positioned geometrically with C—H = 0.93-0.97 Å and included in a riding model and treated as riding atoms: C—H = 0.93, 0.96 and 0.97 Å for CH, CH3 and CH2 H-atoms, respectively, with Uiso (H) = k x Ueq(C), where k = 1.5 for CH3 H-atoms, and k = 1.2 for all other H-atoms..

Structure description top

Schiff base complexes are one of the most important stereochemical models in transition metal coordination chemistry, with the ease of preparation and structural variations (Granovski et al., 1993; Blower (1998)).

The asymmetric unit of the title compound, Fig. 1, comprises half of a potentially tetradentate Schiff base ligand. The bond lengths (Allen et al., 1987) and angles are within the normal ranges. The Cu1 and C9 atoms lie on crystallographic two-fold rotation axis. The crystal structure is further stabilized by the intermolecular π-π interaction, (Fig. 2), [Cg1···Cg1i = 3.8891 (18)Å; (i) 1 - X, 1 - Y, -Z; Cg1 is the centroid of Cu(1)/O(1)/C(1)/C(6)/C(7)/N(1) ring].

For standard bond lengths, see: Allen et al. (1987). For applications of Schiff base ligands in coordination chemistry, see: Granovski et al. (1993); Blower (1998). For a related structure, see: Kargar et al. (2008).

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The ORTEP plot of the title compound, showing 40% probability displacement ellipsoids and the atomic numbering.
[Figure 2] Fig. 2. The packing diagram of the title compound viewed down the b-axis showing linking of molecules through the intermolecular π-π intearctions (dashed lines). The hydrogen atoms omitted for clarity.
{4,4',6,6'-Tetrabromo-2,2'-[(2,2-dimethylpropane-1,3- diyl)bis(nitrilomethanylylidene)]diphenolato}copper(II) top
Crystal data top
[Cu(C19H16Br4N2O2)]F(000) = 1316
Mr = 687.52Dx = 2.125 Mg m3
Orthorhombic, PbcnMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2n 2abCell parameters from 1535 reflections
a = 16.3594 (8) Åθ = 2.5–27.5°
b = 15.5106 (8) ŵ = 8.47 mm1
c = 8.4686 (4) ÅT = 291 K
V = 2148.86 (18) Å3Block, green
Z = 40.21 × 0.12 × 0.08 mm
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
2537 independent reflections
Radiation source: fine-focus sealed tube1625 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.052
φ and ω scansθmax = 28.0°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
h = 2118
Tmin = 0.269, Tmax = 0.551k = 2013
9913 measured reflectionsl = 107
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.078H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.0202P)2 + 1.7635P]
where P = (Fo2 + 2Fc2)/3
2537 reflections(Δ/σ)max = 0.001
128 parametersΔρmax = 0.58 e Å3
0 restraintsΔρmin = 0.59 e Å3
Crystal data top
[Cu(C19H16Br4N2O2)]V = 2148.86 (18) Å3
Mr = 687.52Z = 4
Orthorhombic, PbcnMo Kα radiation
a = 16.3594 (8) ŵ = 8.47 mm1
b = 15.5106 (8) ÅT = 291 K
c = 8.4686 (4) Å0.21 × 0.12 × 0.08 mm
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
2537 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
1625 reflections with I > 2σ(I)
Tmin = 0.269, Tmax = 0.551Rint = 0.052
9913 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0390 restraints
wR(F2) = 0.078H-atom parameters constrained
S = 1.00Δρmax = 0.58 e Å3
2537 reflectionsΔρmin = 0.59 e Å3
128 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.33450 (3)0.74146 (3)0.18143 (5)0.05098 (16)
Br20.10313 (3)0.54552 (4)0.15415 (7)0.0733 (2)
Cu10.50000.48415 (4)0.25000.03410 (18)
N10.4444 (2)0.39656 (19)0.1258 (3)0.0332 (7)
O10.42323 (17)0.57112 (16)0.1958 (3)0.0395 (7)
C10.3547 (2)0.5618 (2)0.1192 (4)0.0341 (9)
C20.3023 (2)0.6335 (2)0.0965 (4)0.0341 (9)
C30.2301 (2)0.6285 (3)0.0162 (4)0.0406 (10)
H30.19820.67760.00300.049*
C40.2042 (2)0.5504 (3)0.0458 (5)0.0417 (10)
C50.2520 (3)0.4788 (3)0.0299 (4)0.0425 (10)
H50.23480.42670.07300.051*
C60.3270 (2)0.4831 (2)0.0511 (4)0.0342 (9)
C70.3757 (3)0.4058 (2)0.0534 (4)0.0368 (10)
H70.35600.35850.00220.044*
C80.4911 (3)0.3163 (2)0.1017 (4)0.0404 (10)
H8A0.54530.33100.06350.048*
H8B0.46440.28250.02040.048*
C90.50000.2606 (3)0.25000.0390 (14)
C100.5749 (3)0.2038 (3)0.2270 (5)0.0574 (13)
H10A0.62310.23910.22530.086*
H10B0.57030.17330.12880.086*
H10C0.57860.16330.31230.086*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.0710 (3)0.0317 (2)0.0503 (3)0.0104 (2)0.0024 (2)0.0063 (2)
Br20.0527 (3)0.0645 (4)0.1027 (4)0.0055 (3)0.0303 (3)0.0001 (3)
Cu10.0387 (4)0.0275 (3)0.0361 (4)0.0000.0012 (3)0.000
N10.041 (2)0.0256 (17)0.0334 (17)0.0063 (16)0.0008 (15)0.0012 (14)
O10.0416 (17)0.0295 (14)0.0475 (16)0.0014 (13)0.0063 (13)0.0027 (13)
C10.042 (3)0.031 (2)0.030 (2)0.002 (2)0.0088 (18)0.0010 (18)
C20.043 (2)0.029 (2)0.031 (2)0.0058 (19)0.0072 (18)0.0018 (18)
C30.044 (3)0.039 (2)0.039 (2)0.013 (2)0.0078 (19)0.002 (2)
C40.035 (2)0.046 (3)0.045 (2)0.006 (2)0.0028 (19)0.001 (2)
C50.045 (3)0.039 (2)0.043 (2)0.002 (2)0.002 (2)0.002 (2)
C60.041 (2)0.029 (2)0.032 (2)0.005 (2)0.0022 (17)0.0001 (18)
C70.049 (3)0.029 (2)0.032 (2)0.001 (2)0.0022 (19)0.0042 (18)
C80.052 (3)0.031 (2)0.038 (2)0.012 (2)0.0001 (19)0.0050 (19)
C90.047 (4)0.026 (3)0.044 (3)0.0000.007 (3)0.000
C100.064 (3)0.046 (3)0.062 (3)0.017 (3)0.013 (2)0.005 (2)
Geometric parameters (Å, º) top
Br1—C21.897 (4)C4—C51.364 (6)
Br2—C41.893 (4)C5—C61.407 (5)
Cu1—O1i1.899 (3)C5—H50.9300
Cu1—O11.899 (3)C6—C71.440 (5)
Cu1—N1i1.944 (3)C7—H70.9300
Cu1—N11.944 (3)C8—C91.531 (5)
N1—C71.288 (5)C8—H8A0.9700
N1—C81.475 (5)C8—H8B0.9700
O1—C11.303 (5)C9—C10i1.522 (5)
C1—C21.418 (5)C9—C101.522 (5)
C1—C61.425 (5)C9—C8i1.531 (5)
C2—C31.364 (5)C10—H10A0.9600
C3—C41.387 (6)C10—H10B0.9600
C3—H30.9300C10—H10C0.9600
O1i—Cu1—O189.50 (16)C5—C6—C1121.0 (4)
O1i—Cu1—N1i93.23 (12)C5—C6—C7116.8 (4)
O1—Cu1—N1i159.45 (11)C1—C6—C7122.1 (4)
O1i—Cu1—N1159.45 (11)N1—C7—C6125.6 (4)
O1—Cu1—N193.23 (12)N1—C7—H7117.2
N1i—Cu1—N191.32 (18)C6—C7—H7117.2
C7—N1—C8118.7 (3)N1—C8—C9114.3 (3)
C7—N1—Cu1126.0 (3)N1—C8—H8A108.7
C8—N1—Cu1115.0 (3)C9—C8—H8A108.7
C1—O1—Cu1127.6 (2)N1—C8—H8B108.7
O1—C1—C2120.1 (4)C9—C8—H8B108.7
O1—C1—C6124.8 (4)H8A—C8—H8B107.6
C2—C1—C6115.1 (4)C10i—C9—C10109.2 (5)
C3—C2—C1123.2 (4)C10i—C9—C8i107.3 (2)
C3—C2—Br1118.7 (3)C10—C9—C8i110.8 (2)
C1—C2—Br1118.2 (3)C10i—C9—C8110.8 (2)
C2—C3—C4120.2 (4)C10—C9—C8107.3 (2)
C2—C3—H3119.9C8i—C9—C8111.3 (4)
C4—C3—H3119.9C9—C10—H10A109.5
C5—C4—C3119.9 (4)C9—C10—H10B109.5
C5—C4—Br2121.1 (3)H10A—C10—H10B109.5
C3—C4—Br2119.0 (3)C9—C10—H10C109.5
C4—C5—C6120.6 (4)H10A—C10—H10C109.5
C4—C5—H5119.7H10B—C10—H10C109.5
C6—C5—H5119.7
O1i—Cu1—N1—C7102.7 (4)C2—C3—C4—Br2179.2 (3)
O1—Cu1—N1—C75.5 (3)C3—C4—C5—C61.0 (6)
N1i—Cu1—N1—C7154.5 (4)Br2—C4—C5—C6179.9 (3)
O1i—Cu1—N1—C870.7 (4)C4—C5—C6—C10.3 (6)
O1—Cu1—N1—C8167.9 (2)C4—C5—C6—C7176.2 (4)
N1i—Cu1—N1—C832.2 (2)O1—C1—C6—C5180.0 (3)
O1i—Cu1—O1—C1167.4 (3)C2—C1—C6—C50.9 (5)
N1i—Cu1—O1—C194.7 (4)O1—C1—C6—C73.7 (6)
N1—Cu1—O1—C17.8 (3)C2—C1—C6—C7175.4 (3)
Cu1—O1—C1—C2176.5 (2)C8—N1—C7—C6173.3 (3)
Cu1—O1—C1—C64.5 (5)Cu1—N1—C7—C60.1 (6)
O1—C1—C2—C3179.4 (3)C5—C6—C7—N1177.5 (4)
C6—C1—C2—C30.2 (5)C1—C6—C7—N16.1 (6)
O1—C1—C2—Br10.4 (5)C7—N1—C8—C9115.0 (4)
C6—C1—C2—Br1179.5 (3)Cu1—N1—C8—C971.1 (4)
C1—C2—C3—C41.0 (6)N1—C8—C9—C10i83.8 (4)
Br1—C2—C3—C4179.2 (3)N1—C8—C9—C10157.0 (4)
C2—C3—C4—C51.7 (6)N1—C8—C9—C8i35.6 (2)
Symmetry code: (i) x+1, y, z+1/2.

Experimental details

Crystal data
Chemical formula[Cu(C19H16Br4N2O2)]
Mr687.52
Crystal system, space groupOrthorhombic, Pbcn
Temperature (K)291
a, b, c (Å)16.3594 (8), 15.5106 (8), 8.4686 (4)
V3)2148.86 (18)
Z4
Radiation typeMo Kα
µ (mm1)8.47
Crystal size (mm)0.21 × 0.12 × 0.08
Data collection
DiffractometerBruker SMART APEXII CCD area-detector
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.269, 0.551
No. of measured, independent and
observed [I > 2σ(I)] reflections
9913, 2537, 1625
Rint0.052
(sin θ/λ)max1)0.659
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.078, 1.00
No. of reflections2537
No. of parameters128
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.58, 0.59

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

 

Acknowledgements

HK and MH thank PNU for financial support. MNT thanks GC University of Sargodha, Pakistan, for the research facility.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CSD CrossRef Web of Science Google Scholar
First citationBlower, P. J. (1998). Transition Met. Chem., 23, 109–112.  CrossRef CAS Google Scholar
First citationBruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationGranovski, A. D., Nivorozhkin, A. L. & Minkin, V. I. (1993). Coord. Chem. Rev. 126, 1–69.  Google Scholar
First citationKargar, H., Fun, H.-K. & Kia, R. (2008). Acta Cryst. E64, m1541–m1542.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds