organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N,N-Di­ethyl­anilinium 2,4-dioxo-5-(2,4,6-tri­nitro­phen­yl)-1,2,3,4-tetra­hydro­pyrimi­din-6-olate

aPG and Research Department of Chemistry, Seethalakshmi Ramaswami College, Tiruchirappalli 620 002, Tamil Nadu, India
*Correspondence e-mail: kalaivbalaj@yahoo.co.in

(Received 1 September 2011; accepted 19 November 2011; online 30 November 2011)

In the crystal structure of the title mol­ecular salt, C10H16N+·C10H4N5O9, the components are linked through a N—H⋯O hydrogen bonds. R22(8) ring motifs are formed between inversion-related barbiturate residues. Two intra­moleculer N—H⋯O hydrogen bonds are observed in the anion. The dihedral angle between 2,4,6-trinitro­phenyl and barbiturate rings is 53.6 (2)°. The N,N-diethyl­amine substituent is disordered and was modeled as two geometrically equivalent conformers with occupancies of 0.737 (2) and 0.273 (2).

Related literature

N,N-Dialkyl­aniline (aromatic amine) usually forms donor–acceptor adducts with electron-deficient nitro aromatics, see: Radha et al. (1987[Radha, N., Dhoulathbegum, S. & Sahayamary, J. (1987). Indian J. Chem. Sect. A, 26, 1006-1008.]); Rizk et al. (1993[Rizk, M. S., Issa, Y. M., Ahmed, M. A. & Shaaban, S. M. (1993). J. Mater. Sci. 4, 109-112.]). For similar structures containing the barbiturate anion, see: Buvaneswari & Kalaivani (2011[Buvaneswari, M. & Kalaivani, D. (2011). Acta Cryst. E67, o1433-o1434.]); Kalaivani & Buvaneswari (2010[Kalaivani, D. & Buvaneswari, M. (2010). Recent Advances in Clinical Medicine, pp. 255-260. UK: WSEAS publication.]); Kalaivani & Malarvizhi (2009[Kalaivani, D. & Malarvizhi, R. (2009). Acta Cryst. E65, o2548.]); Kalaivani et al. (2008[Kalaivani, D., Malarvizhi, R. & Subbalakshmi, R. (2008). Med. Chem. Res. 17, 369-373.]).

[Scheme 1]

Experimental

Crystal data
  • C10H16N+·C10H4N5O9

  • Mr = 488.42

  • Monoclinic, P 21 /c

  • a = 17.1903 (7) Å

  • b = 10.3925 (5) Å

  • c = 13.3613 (5) Å

  • β = 110.272 (2)°

  • V = 2239.14 (16) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.12 mm−1

  • T = 293 K

  • 0.30 × 0.20 × 0.20 mm

Data collection
  • Bruker Kappa APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2001)[Sheldrick, G. M. (2001). SADABS. University of Göttingen, Germany.] Tmin = 0.923, Tmax = 0.962

  • 3550 measured reflections

  • 3550 independent reflections

  • 2763 reflections with I > 2σ(I)

  • θmax = 24.1°

Refinement
  • R[F2 > 2σ(F2)] = 0.038

  • wR(F2) = 0.105

  • S = 1.03

  • 3550 reflections

  • 337 parameters

  • 9 restraints

  • H-atom parameters constrained

  • Δρmax = 0.20 e Å−3

  • Δρmin = −0.17 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯O1i 0.86 2.01 2.8451 (18) 162
N2—H2A⋯O3ii 0.86 1.98 2.8230 (16) 167
N6A—H6AA⋯O2 0.91 1.88 2.790 (3) 175
N6B—H6BA⋯O2 0.91 1.71 2.617 (8) 174
Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) -x+1, -y, -z+1.

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: APEX2 and SAINT (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT and XPREP (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

N,N-Dialkylaniline (aromatic amine) usually forms donor-acceptor adducts with electron-deficient nitro aromatics (Radha et al., 1987, Rizk et al., 1993). In the present investigation, it forms a different type of molecular salt (scheme) with the electron-deficient nitro aromatic compound, 1-chloro-2,4,6-trinitrobenzene (picryl chloride) in the presence of barbituric acid. We have already reported molecular salts of a similar type obtained from chlorine containing nitro aromatic compounds, barbituric acid and aliphatic amines (Kalaivani et al., 2008, Kalaivani & Malarvizhi, 2009, Kalaivani & Buvaneswari, 2010, Buvaneswari & Kalaivani, 2011). As noticed in other barbiturates, ring motifs are observed in the crystal structure of the title molecule. The protonated nitrogen atom of N,N-diethylaniline forms a hydrogen bond with the oxygen atom of the barbiturate anion and this may probably be the driving force for the formation of the title molecular salt.The negative charge on the oxygen atom of olate is delocalized over the nitro groups of the trinitrophenyl moiety and due to this extended conjugation the salt appears bright maroon red in colour.The title molecular salt is obtained with high purity in good yield (90%). Fig.1and 2 represent the ORTEP and packing view of the title molecule.

Related literature top

N,N-Dialkylaniline (aromatic amine) usually forms donor–acceptor adducts with electron-deficient nitro aromatics, see: Radha et al. (1987); Rizk et al. (1993). For similar structures containing the barbiturate anion, see: Buvaneswari & Kalaivani (2011); Kalaivani & Buvaneswari (2010); Kalaivani & Malarvizhi (2009); Kalaivani et al. (2008).

Experimental top

Picryl chloride(1.3.g, 0.005 mol) was dissolved in 15 ml absolute alcohol. Barbituric acid (0.6 g, 0.005 mol)was dissolved in 30 ml of absolute alcohol. These two solutions were mixed and heated to 50°C.To this hot mixture, 4 ml of N,N-diethylaniline (0.03 mol) was added and shaken well for 3hrs. The crystals obtained were filtered, washed with 50 ml of dry ether and recrystallized from absolute alcohol (yield of pure crystals 90%, m.p.> 573 K). Maroon red block-like single crystals, suitable for X-ray diffraction analysis, were obtained by slow evaporation of an ethanolic solution of the title compound at room temperature.

Refinement top

H atoms bonded to C atoms were placed in their geometrically calculated positions and refined using the riding model, with C–H distances 0.93 - 0.97Å (N–H = 0.86 Å) and Uiso(H) = 1.2 Ueq(C) [Uiso(H) = 1.5 Ueq(CH3)]. The N,N-diethylamine substituent is disordered and was modeled as two geometrically equivalent conformers with occupancies of 0.737 (2) and 0.273 (2).

Structure description top

N,N-Dialkylaniline (aromatic amine) usually forms donor-acceptor adducts with electron-deficient nitro aromatics (Radha et al., 1987, Rizk et al., 1993). In the present investigation, it forms a different type of molecular salt (scheme) with the electron-deficient nitro aromatic compound, 1-chloro-2,4,6-trinitrobenzene (picryl chloride) in the presence of barbituric acid. We have already reported molecular salts of a similar type obtained from chlorine containing nitro aromatic compounds, barbituric acid and aliphatic amines (Kalaivani et al., 2008, Kalaivani & Malarvizhi, 2009, Kalaivani & Buvaneswari, 2010, Buvaneswari & Kalaivani, 2011). As noticed in other barbiturates, ring motifs are observed in the crystal structure of the title molecule. The protonated nitrogen atom of N,N-diethylaniline forms a hydrogen bond with the oxygen atom of the barbiturate anion and this may probably be the driving force for the formation of the title molecular salt.The negative charge on the oxygen atom of olate is delocalized over the nitro groups of the trinitrophenyl moiety and due to this extended conjugation the salt appears bright maroon red in colour.The title molecular salt is obtained with high purity in good yield (90%). Fig.1and 2 represent the ORTEP and packing view of the title molecule.

N,N-Dialkylaniline (aromatic amine) usually forms donor–acceptor adducts with electron-deficient nitro aromatics, see: Radha et al. (1987); Rizk et al. (1993). For similar structures containing the barbiturate anion, see: Buvaneswari & Kalaivani (2011); Kalaivani & Buvaneswari (2010); Kalaivani & Malarvizhi (2009); Kalaivani et al. (2008).

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: APEX2 and SAINT (Bruker, 2004); data reduction: SAINT and XPREP (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. ORTEP view of N,N-diethylanilinium 2,4,6-trinitrophenyl barbiturate showing atom labeling.
[Figure 2] Fig. 2. Packing view of N,N-diethylanilinium 2,4,6-trinitrophenyl barbiturate. Hydrogen bonds are shown by dashed lines.
N,N-Diethylanilinium 2,4-dioxo-5-(2,4,6-trinitrophenyl)-1,2,3,4-tetrahydropyrimidin-6-olate top
Crystal data top
C10H16N+·C10H4N5O9F(000) = 1016
Mr = 488.42Dx = 1.449 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 5399 reflections
a = 17.1903 (7) Åθ = 2.4–23.5°
b = 10.3925 (5) ŵ = 0.12 mm1
c = 13.3613 (5) ÅT = 293 K
β = 110.272 (2)°Block, red
V = 2239.14 (16) Å30.30 × 0.20 × 0.20 mm
Z = 4
Data collection top
Bruker Kappa APEXII CCD
diffractometer
3550 independent reflections
Radiation source: fine-focus sealed tube2763 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.000
ω and φ scanθmax = 24.1°, θmin = 2.3°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2001)
h = 1918
Tmin = 0.923, Tmax = 0.962k = 011
3550 measured reflectionsl = 015
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.038Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.105H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0501P)2 + 0.6573P]
where P = (Fo2 + 2Fc2)/3
3550 reflections(Δ/σ)max < 0.001
337 parametersΔρmax = 0.20 e Å3
9 restraintsΔρmin = 0.17 e Å3
Crystal data top
C10H16N+·C10H4N5O9V = 2239.14 (16) Å3
Mr = 488.42Z = 4
Monoclinic, P21/cMo Kα radiation
a = 17.1903 (7) ŵ = 0.12 mm1
b = 10.3925 (5) ÅT = 293 K
c = 13.3613 (5) Å0.30 × 0.20 × 0.20 mm
β = 110.272 (2)°
Data collection top
Bruker Kappa APEXII CCD
diffractometer
3550 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2001)
2763 reflections with I > 2σ(I)
Tmin = 0.923, Tmax = 0.962Rint = 0.000
3550 measured reflectionsθmax = 24.1°
Refinement top
R[F2 > 2σ(F2)] = 0.0389 restraints
wR(F2) = 0.105H-atom parameters constrained
S = 1.03Δρmax = 0.20 e Å3
3550 reflectionsΔρmin = 0.17 e Å3
337 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
O10.55484 (7)0.34991 (11)0.49281 (10)0.0450 (3)
O20.29232 (6)0.41484 (10)0.48379 (9)0.0409 (3)
O30.40988 (7)0.00160 (10)0.53210 (10)0.0440 (3)
O40.21699 (8)0.20296 (15)0.31509 (10)0.0606 (4)
O50.11256 (9)0.30015 (17)0.33237 (13)0.0803 (5)
O60.00042 (9)0.10375 (17)0.58155 (14)0.0813 (5)
O70.07485 (10)0.03877 (17)0.68980 (15)0.0881 (5)
O80.37537 (10)0.03623 (15)0.75870 (11)0.0737 (4)
O90.41237 (9)0.15682 (15)0.73996 (11)0.0692 (4)
N10.42299 (7)0.37873 (12)0.48839 (10)0.0361 (3)
H1A0.42710.46000.47920.043*
N20.47941 (8)0.17627 (12)0.50602 (11)0.0359 (3)
H2A0.51870.12610.50420.043*
N30.17306 (9)0.23115 (15)0.36562 (12)0.0484 (4)
N40.06518 (11)0.04642 (19)0.62447 (15)0.0641 (5)
N50.36317 (10)0.06897 (16)0.71637 (11)0.0505 (4)
C10.34912 (9)0.33433 (15)0.49459 (12)0.0321 (4)
C20.34512 (9)0.20346 (15)0.51552 (12)0.0317 (4)
C30.41044 (9)0.11993 (15)0.51931 (12)0.0332 (4)
C40.48971 (9)0.30453 (15)0.49560 (13)0.0336 (4)
C50.27378 (9)0.15512 (14)0.53912 (13)0.0327 (4)
C60.19142 (9)0.17548 (16)0.47270 (13)0.0376 (4)
C70.12349 (10)0.14351 (18)0.49944 (15)0.0472 (5)
H70.07010.16310.45420.057*
C80.13670 (11)0.08212 (18)0.59447 (15)0.0478 (5)
C90.21488 (11)0.05304 (17)0.66264 (14)0.0465 (4)
H90.22290.00890.72600.056*
C100.28116 (10)0.09117 (16)0.63455 (13)0.0386 (4)
C110.17516 (17)0.6686 (3)0.6939 (2)0.0944 (8)
H110.20480.74290.72220.113*
C120.10144 (18)0.6418 (3)0.7087 (2)0.1087 (10)
H120.08110.69950.74680.130*
C130.05792 (17)0.5336 (3)0.6692 (2)0.0902 (8)
H130.00930.51540.68220.108*
C140.08618 (15)0.4522 (3)0.6104 (2)0.0843 (7)
H140.05610.37860.58130.101*
C150.15923 (13)0.4777 (2)0.59356 (18)0.0665 (6)
H150.17790.42180.55240.080*
C160.20396 (9)0.58369 (19)0.63669 (15)0.0555 (5)
N6A0.28140 (9)0.6169 (2)0.61581 (18)0.0508 (7)0.737 (2)
H6AA0.28610.55460.57030.061*0.737 (2)
C17A0.36242 (16)0.6089 (3)0.7110 (2)0.0598 (8)0.737 (2)
H17A0.40830.63240.68820.072*0.737 (2)
H17B0.36070.66980.76520.072*0.737 (2)
C18A0.3765 (2)0.4769 (4)0.7577 (2)0.0781 (10)0.737 (2)
H18A0.43100.47200.81070.117*0.737 (2)
H18B0.37180.41530.70240.117*0.737 (2)
H18C0.33590.45860.79010.117*0.737 (2)
C19A0.2816 (2)0.7424 (3)0.5574 (3)0.0638 (9)0.737 (2)
H19A0.28160.81410.60390.077*0.737 (2)
H19B0.33200.74750.54030.077*0.737 (2)
C20A0.2099 (3)0.7533 (5)0.4591 (4)0.1084 (14)0.737 (2)
H20A0.21350.83200.42330.163*0.737 (2)
H20B0.16000.75340.47600.163*0.737 (2)
H20C0.20910.68170.41340.163*0.737 (2)
N6B0.28886 (16)0.5796 (9)0.6304 (5)0.0508 (7)0.263 (2)
H6BA0.29350.52490.57950.061*0.263 (2)
C17B0.3394 (5)0.5389 (10)0.7432 (6)0.0598 (8)0.263 (2)
H17C0.34200.60740.79360.072*0.263 (2)
H17D0.31590.46280.76380.072*0.263 (2)
C18B0.4219 (5)0.5117 (11)0.7381 (7)0.0781 (10)0.263 (2)
H18D0.45520.46900.80230.117*0.263 (2)
H18E0.44800.59110.73070.117*0.263 (2)
H18F0.41630.45750.67780.117*0.263 (2)
C19B0.2941 (7)0.7145 (10)0.6051 (8)0.0638 (9)0.263 (2)
H19C0.35160.73690.61840.077*0.263 (2)
H19D0.27430.76690.65140.077*0.263 (2)
C20B0.2441 (10)0.7433 (17)0.4914 (12)0.1084 (14)0.263 (2)
H20D0.26310.82220.47050.163*0.263 (2)
H20E0.18670.75180.48400.163*0.263 (2)
H20F0.25020.67450.44680.163*0.263 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0372 (6)0.0335 (6)0.0746 (8)0.0036 (5)0.0323 (6)0.0024 (6)
O20.0355 (6)0.0302 (6)0.0627 (7)0.0057 (5)0.0241 (5)0.0005 (5)
O30.0436 (6)0.0261 (6)0.0720 (8)0.0025 (5)0.0322 (6)0.0053 (6)
O40.0579 (8)0.0797 (10)0.0482 (7)0.0027 (7)0.0235 (6)0.0003 (7)
O50.0564 (8)0.0960 (12)0.0855 (10)0.0309 (8)0.0208 (8)0.0313 (9)
O60.0544 (8)0.0975 (12)0.1116 (12)0.0154 (9)0.0535 (8)0.0263 (10)
O70.1076 (11)0.0718 (11)0.1226 (12)0.0225 (9)0.0878 (10)0.0006 (10)
O80.0922 (11)0.0574 (9)0.0622 (9)0.0063 (8)0.0150 (8)0.0182 (8)
O90.0671 (9)0.0756 (10)0.0556 (8)0.0225 (8)0.0096 (7)0.0040 (7)
N10.0354 (7)0.0232 (7)0.0567 (8)0.0000 (6)0.0248 (6)0.0023 (6)
N20.0313 (7)0.0268 (7)0.0563 (8)0.0036 (6)0.0236 (6)0.0000 (6)
N30.0389 (8)0.0511 (10)0.0536 (9)0.0006 (7)0.0138 (7)0.0033 (8)
N40.0679 (11)0.0595 (11)0.0883 (12)0.0223 (9)0.0566 (9)0.0235 (10)
N50.0605 (10)0.0497 (10)0.0437 (8)0.0040 (8)0.0213 (7)0.0023 (8)
C10.0316 (8)0.0305 (9)0.0387 (8)0.0003 (7)0.0180 (6)0.0021 (7)
C20.0300 (8)0.0283 (8)0.0409 (8)0.0002 (7)0.0175 (6)0.0010 (7)
C30.0328 (8)0.0292 (9)0.0415 (8)0.0015 (7)0.0179 (7)0.0001 (7)
C40.0341 (8)0.0286 (9)0.0435 (9)0.0013 (7)0.0201 (7)0.0019 (7)
C50.0363 (8)0.0230 (8)0.0451 (9)0.0019 (7)0.0221 (7)0.0055 (7)
C60.0358 (9)0.0333 (9)0.0485 (9)0.0016 (7)0.0208 (7)0.0025 (7)
C70.0354 (9)0.0438 (11)0.0681 (12)0.0048 (8)0.0250 (8)0.0088 (9)
C80.0490 (10)0.0422 (11)0.0682 (11)0.0136 (8)0.0406 (9)0.0126 (9)
C90.0634 (11)0.0361 (10)0.0535 (10)0.0092 (9)0.0371 (9)0.0032 (8)
C100.0439 (9)0.0325 (9)0.0444 (9)0.0031 (8)0.0218 (7)0.0027 (7)
C110.1104 (17)0.0874 (18)0.1162 (19)0.0050 (15)0.0782 (16)0.0365 (15)
C120.129 (2)0.108 (2)0.132 (2)0.0100 (19)0.0998 (18)0.0271 (18)
C130.0945 (16)0.0876 (19)0.120 (2)0.0151 (16)0.0767 (15)0.0126 (16)
C140.0768 (15)0.0693 (16)0.123 (2)0.0049 (13)0.0556 (15)0.0040 (15)
C150.0652 (13)0.0612 (14)0.0858 (14)0.0126 (11)0.0423 (11)0.0077 (12)
C160.0614 (12)0.0582 (13)0.0528 (11)0.0163 (10)0.0274 (9)0.0032 (10)
N6A0.0481 (9)0.0417 (18)0.0603 (11)0.0222 (9)0.0158 (8)0.0099 (11)
C17A0.0508 (15)0.066 (2)0.0615 (16)0.0104 (14)0.0186 (12)0.0075 (14)
C18A0.083 (3)0.088 (2)0.0538 (17)0.006 (2)0.0123 (16)0.0138 (16)
C19A0.0846 (17)0.0416 (17)0.089 (3)0.0056 (15)0.0606 (19)0.0075 (17)
C20A0.116 (4)0.103 (3)0.104 (3)0.038 (3)0.035 (3)0.049 (2)
N6B0.0481 (9)0.0417 (18)0.0603 (11)0.0222 (9)0.0158 (8)0.0099 (11)
C17B0.0508 (15)0.066 (2)0.0615 (16)0.0104 (14)0.0186 (12)0.0075 (14)
C18B0.083 (3)0.088 (2)0.0538 (17)0.006 (2)0.0123 (16)0.0138 (16)
C19B0.0846 (17)0.0416 (17)0.089 (3)0.0056 (15)0.0606 (19)0.0075 (17)
C20B0.116 (4)0.103 (3)0.104 (3)0.038 (3)0.035 (3)0.049 (2)
Geometric parameters (Å, º) top
O1—C41.2273 (18)C14—C151.376 (3)
O2—C11.2556 (18)C14—H140.9300
O3—C31.2420 (19)C15—C161.353 (3)
O4—N31.2104 (19)C15—H150.9300
O5—N31.2137 (19)C16—N6B1.4915 (17)
O6—N41.217 (2)C16—N6A1.4921 (16)
O7—N41.214 (2)N6A—C19A1.521 (4)
O8—N51.215 (2)N6A—C17A1.528 (3)
O9—N51.210 (2)N6A—H6AA0.9100
N1—C41.357 (2)C17A—C18A1.491 (4)
N1—C11.3804 (19)C17A—H17A0.9700
N1—H1A0.8600C17A—H17B0.9700
N2—C41.358 (2)C18A—H18A0.9600
N2—C31.388 (2)C18A—H18B0.9600
N2—H2A0.8600C18A—H18C0.9600
N3—C61.473 (2)C19A—C20A1.462 (5)
N4—C81.467 (2)C19A—H19A0.9700
N5—C101.472 (2)C19A—H19B0.9700
C1—C21.395 (2)C20A—H20A0.9600
C2—C31.406 (2)C20A—H20B0.9600
C2—C51.457 (2)C20A—H20C0.9600
C5—C61.402 (2)N6B—C19B1.452 (11)
C5—C101.404 (2)N6B—C17B1.516 (10)
C6—C71.375 (2)N6B—H6BA0.9100
C7—C81.368 (3)C17B—C18B1.471 (11)
C7—H70.9300C17B—H17C0.9700
C8—C91.371 (3)C17B—H17D0.9700
C9—C101.376 (2)C18B—H18D0.9600
C9—H90.9300C18B—H18E0.9600
C11—C161.367 (3)C18B—H18F0.9600
C11—C121.377 (4)C19B—C20B1.493 (13)
C11—H110.9300C19B—H19C0.9700
C12—C131.352 (4)C19B—H19D0.9700
C12—H120.9300C20B—H20D0.9600
C13—C141.354 (4)C20B—H20E0.9600
C13—H130.9300C20B—H20F0.9600
C4—N1—C1125.32 (13)C16—C15—C14120.2 (2)
C4—N1—H1A117.3C16—C15—H15119.9
C1—N1—H1A117.3C14—C15—H15119.9
C4—N2—C3125.07 (13)C15—C16—C11120.07 (19)
C4—N2—H2A117.5C15—C16—N6B112.1 (4)
C3—N2—H2A117.5C11—C16—N6B126.9 (4)
O4—N3—O5124.05 (17)C15—C16—N6A121.40 (18)
O4—N3—C6118.80 (14)C11—C16—N6A118.3 (2)
O5—N3—C6117.11 (16)N6B—C16—N6A16.7 (3)
O7—N4—O6124.83 (18)C16—N6A—C19A117.10 (19)
O7—N4—C8117.53 (18)C16—N6A—C17A116.53 (19)
O6—N4—C8117.64 (19)C19A—N6A—C17A108.1 (2)
O9—N5—O8124.43 (16)C16—N6A—H6AA104.5
O9—N5—C10118.58 (15)C19A—N6A—H6AA104.5
O8—N5—C10116.93 (16)C17A—N6A—H6AA104.5
O2—C1—N1117.73 (14)C18A—C17A—N6A111.6 (2)
O2—C1—C2125.62 (14)C18A—C17A—H17A109.3
N1—C1—C2116.63 (13)N6A—C17A—H17A109.3
C1—C2—C3120.99 (14)C18A—C17A—H17B109.3
C1—C2—C5118.89 (13)N6A—C17A—H17B109.3
C3—C2—C5120.04 (14)H17A—C17A—H17B108.0
O3—C3—N2118.88 (14)C20A—C19A—N6A112.1 (3)
O3—C3—C2124.89 (14)C20A—C19A—H19A109.2
N2—C3—C2116.22 (14)N6A—C19A—H19A109.2
O1—C4—N1122.47 (15)C20A—C19A—H19B109.2
O1—C4—N2122.20 (14)N6A—C19A—H19B109.2
N1—C4—N2115.33 (13)H19A—C19A—H19B107.9
C6—C5—C10113.57 (14)C19B—N6B—C1697.3 (6)
C6—C5—C2123.50 (14)C19B—N6B—C17B116.1 (7)
C10—C5—C2122.79 (14)C16—N6B—C17B100.7 (4)
C7—C6—C5124.14 (16)C19B—N6B—H6BA113.6
C7—C6—N3115.60 (14)C16—N6B—H6BA113.6
C5—C6—N3120.24 (14)C17B—N6B—H6BA113.6
C8—C7—C6118.10 (16)C18B—C17B—N6B103.7 (6)
C8—C7—H7120.9C18B—C17B—H17C111.0
C6—C7—H7120.9N6B—C17B—H17C111.0
C7—C8—C9121.94 (16)C18B—C17B—H17D111.0
C7—C8—N4119.10 (17)N6B—C17B—H17D111.0
C9—C8—N4118.97 (18)H17C—C17B—H17D109.0
C8—C9—C10117.99 (17)C17B—C18B—H18D109.5
C8—C9—H9121.0C17B—C18B—H18E109.5
C10—C9—H9121.0H18D—C18B—H18E109.5
C9—C10—C5124.14 (16)C17B—C18B—H18F109.5
C9—C10—N5115.01 (15)H18D—C18B—H18F109.5
C5—C10—N5120.69 (15)H18E—C18B—H18F109.5
C16—C11—C12118.6 (3)N6B—C19B—C20B111.7 (10)
C16—C11—H11120.7N6B—C19B—H19C109.3
C12—C11—H11120.7C20B—C19B—H19C109.3
C13—C12—C11121.6 (2)N6B—C19B—H19D109.3
C13—C12—H12119.2C20B—C19B—H19D109.3
C11—C12—H12119.2H19C—C19B—H19D107.9
C12—C13—C14119.0 (2)C19B—C20B—H20D109.5
C12—C13—H13120.5C19B—C20B—H20E109.5
C14—C13—H13120.5H20D—C20B—H20E109.5
C13—C14—C15120.4 (3)C19B—C20B—H20F109.5
C13—C14—H14119.8H20D—C20B—H20F109.5
C15—C14—H14119.8H20E—C20B—H20F109.5
C4—N1—C1—O2178.27 (14)C8—C9—C10—N5173.85 (15)
C4—N1—C1—C23.5 (2)C6—C5—C10—C91.0 (2)
O2—C1—C2—C3175.83 (15)C2—C5—C10—C9174.90 (16)
N1—C1—C2—C36.1 (2)C6—C5—C10—N5176.29 (15)
O2—C1—C2—C57.4 (2)C2—C5—C10—N50.4 (2)
N1—C1—C2—C5170.69 (13)O9—N5—C10—C9130.27 (18)
C4—N2—C3—O3177.23 (15)O8—N5—C10—C946.9 (2)
C4—N2—C3—C23.7 (2)O9—N5—C10—C545.5 (2)
C1—C2—C3—O3176.19 (15)O8—N5—C10—C5137.36 (17)
C5—C2—C3—O37.0 (2)C16—C11—C12—C130.7 (5)
C1—C2—C3—N22.8 (2)C11—C12—C13—C142.4 (5)
C5—C2—C3—N2173.94 (13)C12—C13—C14—C151.6 (4)
C1—N1—C4—O1177.69 (15)C13—C14—C15—C160.8 (4)
C1—N1—C4—N22.4 (2)C14—C15—C16—C112.5 (3)
C3—N2—C4—O1173.89 (15)C14—C15—C16—N6B167.2 (3)
C3—N2—C4—N16.2 (2)C14—C15—C16—N6A177.3 (2)
C1—C2—C5—C653.8 (2)C12—C11—C16—C151.7 (4)
C3—C2—C5—C6129.40 (17)C12—C11—C16—N6B166.3 (4)
C1—C2—C5—C10121.69 (17)C12—C11—C16—N6A176.6 (2)
C3—C2—C5—C1055.2 (2)C15—C16—N6A—C19A117.0 (3)
C10—C5—C6—C73.6 (2)C11—C16—N6A—C19A57.9 (3)
C2—C5—C6—C7172.22 (16)N6B—C16—N6A—C19A176.7 (13)
C10—C5—C6—N3174.67 (14)C15—C16—N6A—C17A112.9 (3)
C2—C5—C6—N39.5 (2)C11—C16—N6A—C17A72.3 (3)
O4—N3—C6—C7142.67 (17)N6B—C16—N6A—C17A53.1 (11)
O5—N3—C6—C735.2 (2)C16—N6A—C17A—C18A59.0 (3)
O4—N3—C6—C535.8 (2)C19A—N6A—C17A—C18A166.7 (3)
O5—N3—C6—C5146.41 (17)C16—N6A—C19A—C20A51.4 (4)
C5—C6—C7—C83.4 (3)C17A—N6A—C19A—C20A174.7 (3)
N3—C6—C7—C8174.92 (16)C15—C16—N6B—C19B140.7 (5)
C6—C7—C8—C90.4 (3)C11—C16—N6B—C19B50.4 (6)
C6—C7—C8—N4179.68 (16)N6A—C16—N6B—C19B13.4 (10)
O7—N4—C8—C7158.40 (18)C15—C16—N6B—C17B100.9 (6)
O6—N4—C8—C721.1 (3)C11—C16—N6B—C17B68.0 (7)
O7—N4—C8—C921.7 (3)N6A—C16—N6B—C17B131.8 (15)
O6—N4—C8—C9158.82 (18)C19B—N6B—C17B—C18B85.5 (9)
C7—C8—C9—C102.0 (3)C16—N6B—C17B—C18B170.8 (7)
N4—C8—C9—C10177.89 (15)C16—N6B—C19B—C20B75.9 (11)
C8—C9—C10—C51.7 (3)C17B—N6B—C19B—C20B178.4 (10)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O1i0.862.012.8451 (18)162
N2—H2A···O3ii0.861.982.8230 (16)167
N6A—H6AA···O20.911.882.790 (3)175
N6B—H6BA···O20.911.712.617 (8)174
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1, y, z+1.

Experimental details

Crystal data
Chemical formulaC10H16N+·C10H4N5O9
Mr488.42
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)17.1903 (7), 10.3925 (5), 13.3613 (5)
β (°) 110.272 (2)
V3)2239.14 (16)
Z4
Radiation typeMo Kα
µ (mm1)0.12
Crystal size (mm)0.30 × 0.20 × 0.20
Data collection
DiffractometerBruker Kappa APEXII CCD
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2001)
Tmin, Tmax0.923, 0.962
No. of measured, independent and
observed [I > 2σ(I)] reflections
3550, 3550, 2763
Rint0.000
θmax (°)24.1
(sin θ/λ)max1)0.575
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.105, 1.03
No. of reflections3550
No. of parameters337
No. of restraints9
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.20, 0.17

Computer programs: APEX2 (Bruker, 2004), APEX2 and SAINT (Bruker, 2004), SAINT and XPREP (Bruker, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and Mercury (Macrae et al., 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O1i0.862.012.8451 (18)162.1
N2—H2A···O3ii0.861.982.8230 (16)166.7
N6A—H6AA···O20.911.882.790 (3)174.7
N6B—H6BA···O20.911.712.617 (8)173.8
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1, y, z+1.
 

Acknowledgements

The authors are thankful to the SAIF, IIT Madras, for the data collection.

References

First citationBruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBuvaneswari, M. & Kalaivani, D. (2011). Acta Cryst. E67, o1433–o1434.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationKalaivani, D. & Buvaneswari, M. (2010). Recent Advances in Clinical Medicine, pp. 255–260. UK: WSEAS publication.  Google Scholar
First citationKalaivani, D. & Malarvizhi, R. (2009). Acta Cryst. E65, o2548.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKalaivani, D., Malarvizhi, R. & Subbalakshmi, R. (2008). Med. Chem. Res. 17, 369–373.  Web of Science CrossRef CAS Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationRadha, N., Dhoulathbegum, S. & Sahayamary, J. (1987). Indian J. Chem. Sect. A, 26, 1006–1008.  Google Scholar
First citationRizk, M. S., Issa, Y. M., Ahmed, M. A. & Shaaban, S. M. (1993). J. Mater. Sci. 4, 109–112.  CAS Google Scholar
First citationSheldrick, G. M. (2001). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds