Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
In the title compound, C18H29BrN4, both piperazine rings assume a chair conformation. Weak inter­molecular C—H...Br inter­actions result in dimeric associations in the crystal structure. There are no further inter­actions between neighbouring dimer units.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536807049781/bv2075sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536807049781/bv2075Isup2.hkl
Contains datablock I

CCDC reference: 667360

Key indicators

  • Single-crystal X-ray study
  • T = 297 K
  • Mean [sigma](C-C) = 0.006 Å
  • R factor = 0.055
  • wR factor = 0.109
  • Data-to-parameter ratio = 16.0

checkCIF/PLATON results

No syntax errors found



Alert level C PLAT125_ALERT_4_C No _symmetry_space_group_name_Hall Given ....... ? PLAT154_ALERT_1_C The su's on the Cell Angles are Equal (x 10000) 100 Deg. PLAT180_ALERT_3_C Check Cell Rounding: # of Values Ending with 0 = 3 PLAT480_ALERT_4_C Long H...A H-Bond Reported H16A .. BR1 .. 3.14 Ang.
0 ALERT level A = In general: serious problem 0 ALERT level B = Potentially serious problem 4 ALERT level C = Check and explain 0 ALERT level G = General alerts; check 1 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 0 ALERT type 2 Indicator that the structure model may be wrong or deficient 1 ALERT type 3 Indicator that the structure quality may be low 2 ALERT type 4 Improvement, methodology, query or suggestion 0 ALERT type 5 Informative message, check

Comment top

The interest in piperazine derivatives is due to their use in medicinal chemistry (Rao & Subrahmanyam, 2002; Gao et al., 2005; Watkins et al., 2007) and as host–guest systems (Guo, 2004). Piperazine derivatives are also important precursors for the synthesis of new hypervalent organometallic compounds containing intramolecular metal-nitrogen interactions (Kulcsar et al., 2007). In order to further develop our previous work on hypervalent organoselenium derivatives containing the one pendant arm derivative, 2-[MeN(CH2CH2)NCH2]C6H4, we synthesized the title compound and report here its crystal structure.

The molecular structure of the title compound with its atomic numbering scheme is depicted in Figure 1. The C—N bond distances [range 1.433 (5) - 1.462 (5) Å] in the piperazinyl rings are consistent with the values found in related systems (Velmurugan et al., 1994; Shanmuga Sundara Raj et al., 1994; Bharathi et al., 2006). Both piperazinyl rings exhibit normal chair conformation with the torsion angles in the range ±56.1 (4)–58.4 (4)°.

A dimer association (Fig. 2) is formed through a soft hydrogen-bonding interaction Br···H [Br1···H16Ai = 3.1385 (6); C1—Br1···H16Ai = 115.7 (1)°; symmetry code: (i) -x + 2, -y + 2, -z + 1], resulting in a 12-membered ring described by the graph-set descriptor R22(9) (Bernstein et al., 1995).

Related literature top

For related literature, see: Rao & Subrahmanyam (2002); Gao et al. (2005); Watkins et al. (2007); Guo (2004); Kulcsar et al. (2007); Velmurugan et al. (1994); Shanmuga Sundara Raj et al. (1994); Bharathi et al. (2006); Bernstein et al. (1995).

Experimental top

A solution of N-methylpiperazine (5.83 g, 58 mmol) in benzene (100 ml) was added dropwise to a solution of 1-bromo-2,6-bis(bromomethyl)benzene (5.0 g, 14.5 mmol) in benzene (80 ml) and the reaction mixture was stirred at reflux for 8 h. After cooling to room temperature the N- methylpiperazinium bromide was filtered off and the solvent was evaporated at reduced pressure to give a pale yellow, viscous oil. The reaction product was purified by crystallization from a saturated hexane solution, giving the title compound as a white crystalline solid (4.0126 g, Yield: 72%). Suitable crystals for single-crystal X-ray diffraction were obtained from a warm saturated hexane solution on cooling. 1H NMR (CDCl3, 300 MHz): δ (p.p.m.) 2.28 (s, 6H, CH3-N—CH2—CH2—N); 2.45 (br s, 8H, CH3—N—CH2-CH2—N); 2.56 (br s, 8H, CH3—N—CH2—CH2-N); 3.61 (s, 4H, –CH2-C6H3); 7.22 (m, 1H, C6H3, H-4), 7.35 (d, 2H, C6H3, H-3,5, 3JHH = 7.51 Hz).13C NMR (CDCl3, 75.47 MHz): δ (p.p.m.) 46.06 (s, CH3-N—CH2—CH2—N); 53.19 (s, CH3—N—CH2-CH2—N); 55.2 (s, CH3—N—CH2-CH2—N); 62.34 (s, -CH2-C6H3); 126.49 (s, C-4); 126.70 (s, C-1); 128.98 (s, C-3,5); 138.13 (s, C-2,6).

Refinement top

All hydrogen atoms were placed in calculated positions using a riding model, with C—H = 0.93–0.97 Å and with Uiso= 1.5Ueq (C) for methyl H and Uiso= 1.2Ueq (C) for aryl H.

Structure description top

The interest in piperazine derivatives is due to their use in medicinal chemistry (Rao & Subrahmanyam, 2002; Gao et al., 2005; Watkins et al., 2007) and as host–guest systems (Guo, 2004). Piperazine derivatives are also important precursors for the synthesis of new hypervalent organometallic compounds containing intramolecular metal-nitrogen interactions (Kulcsar et al., 2007). In order to further develop our previous work on hypervalent organoselenium derivatives containing the one pendant arm derivative, 2-[MeN(CH2CH2)NCH2]C6H4, we synthesized the title compound and report here its crystal structure.

The molecular structure of the title compound with its atomic numbering scheme is depicted in Figure 1. The C—N bond distances [range 1.433 (5) - 1.462 (5) Å] in the piperazinyl rings are consistent with the values found in related systems (Velmurugan et al., 1994; Shanmuga Sundara Raj et al., 1994; Bharathi et al., 2006). Both piperazinyl rings exhibit normal chair conformation with the torsion angles in the range ±56.1 (4)–58.4 (4)°.

A dimer association (Fig. 2) is formed through a soft hydrogen-bonding interaction Br···H [Br1···H16Ai = 3.1385 (6); C1—Br1···H16Ai = 115.7 (1)°; symmetry code: (i) -x + 2, -y + 2, -z + 1], resulting in a 12-membered ring described by the graph-set descriptor R22(9) (Bernstein et al., 1995).

For related literature, see: Rao & Subrahmanyam (2002); Gao et al. (2005); Watkins et al. (2007); Guo (2004); Kulcsar et al. (2007); Velmurugan et al. (1994); Shanmuga Sundara Raj et al. (1994); Bharathi et al. (2006); Bernstein et al. (1995).

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SAINT-Plus (Bruker, 2000); data reduction: SAINT-Plus (Bruker, 2000); program(s) used to solve structure: SHELXTL (Bruker, 2001); program(s) used to refine structure: SHELXTL (Bruker, 2001); molecular graphics: DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2007).

Figures top
[Figure 1] Fig. 1. : A view of the title compound showing the atom-numbering scheme at 30% probability thermal ellipsoids. H atoms are drawn as spheres of arbitrary radii.
[Figure 2] Fig. 2. : A view of the dimer formation in the title compound. H atoms not involved in hydrogen-bonding contacts have been omitted for clarity.
1-Bromo-2,6-bis(4-methylpiperazin-1-ylmethyl)benzene top
Crystal data top
C18H29BrN4Z = 2
Mr = 381.36F(000) = 400
Triclinic, P1Dx = 1.320 Mg m3
a = 6.0449 (5) ÅMo Kα radiation, λ = 0.71073 Å
b = 12.7217 (10) ÅCell parameters from 4367 reflections
c = 13.6242 (11) Åθ = 2.8–26.8°
α = 68.414 (1)°µ = 2.15 mm1
β = 81.952 (1)°T = 297 K
γ = 81.507 (1)°Block, colourless
V = 959.37 (13) Å30.35 × 0.22 × 0.11 mm
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
3359 independent reflections
Radiation source: fine-focus sealed tube2832 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.034
φ and ω scansθmax = 25.0°, θmin = 1.7°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 77
Tmin = 0.520, Tmax = 0.798k = 1515
9255 measured reflectionsl = 1616
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.055Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.109H-atom parameters constrained
S = 1.17 w = 1/[σ2(Fo2) + (0.0328P)2 + 0.7407P]
where P = (Fo2 + 2Fc2)/3
3359 reflections(Δ/σ)max = 0.001
210 parametersΔρmax = 0.60 e Å3
0 restraintsΔρmin = 0.41 e Å3
Crystal data top
C18H29BrN4γ = 81.507 (1)°
Mr = 381.36V = 959.37 (13) Å3
Triclinic, P1Z = 2
a = 6.0449 (5) ÅMo Kα radiation
b = 12.7217 (10) ŵ = 2.15 mm1
c = 13.6242 (11) ÅT = 297 K
α = 68.414 (1)°0.35 × 0.22 × 0.11 mm
β = 81.952 (1)°
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
3359 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2832 reflections with I > 2σ(I)
Tmin = 0.520, Tmax = 0.798Rint = 0.034
9255 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0550 restraints
wR(F2) = 0.109H-atom parameters constrained
S = 1.17Δρmax = 0.60 e Å3
3359 reflectionsΔρmin = 0.41 e Å3
210 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.57925 (8)0.82020 (4)0.69557 (4)0.06516 (19)
C10.6370 (6)0.7069 (3)0.6309 (3)0.0417 (9)
C20.5553 (6)0.6019 (3)0.6844 (3)0.0410 (8)
C30.6004 (6)0.5231 (3)0.6346 (3)0.0425 (9)
H30.54820.45200.66780.051*
C40.7206 (6)0.5474 (3)0.5370 (3)0.0435 (9)
H40.74900.49280.50520.052*
C50.7993 (6)0.6520 (3)0.4861 (3)0.0441 (9)
H50.88020.66760.41990.053*
C60.7592 (6)0.7349 (3)0.5324 (3)0.0419 (8)
C70.4353 (7)0.5736 (3)0.7942 (3)0.0519 (10)
H7A0.54200.56810.84330.062*
H7B0.32070.63550.79480.062*
C80.8367 (7)0.8515 (3)0.4748 (3)0.0552 (10)
H8A0.70630.90590.45330.066*
H8B0.90770.87250.52350.066*
C90.1148 (7)0.4843 (3)0.7882 (3)0.0566 (10)
H9A0.13800.51050.71150.068*
H9B0.01580.54210.80800.068*
C100.0069 (7)0.3753 (4)0.8290 (3)0.0564 (10)
H10A0.13440.38740.79840.068*
H10B0.10410.31800.80780.068*
C110.1785 (6)0.3187 (3)0.9883 (3)0.0524 (10)
H11A0.27590.25930.97050.063*
H11B0.15190.29401.06490.063*
C120.2939 (6)0.4261 (3)0.9474 (3)0.0487 (9)
H12A0.20250.48390.97020.058*
H12B0.43730.41110.97680.058*
C131.2219 (7)0.8154 (4)0.4098 (3)0.0563 (10)
H13A1.22420.73650.45650.068*
H13B1.27040.85810.44750.068*
C141.3804 (7)0.8243 (4)0.3124 (3)0.0575 (11)
H14A1.53050.79340.33290.069*
H14B1.33410.78000.27560.069*
C151.1582 (7)0.9861 (3)0.2136 (3)0.0559 (10)
H15A1.11020.94460.17460.067*
H15B1.15791.06520.16750.067*
C160.9951 (7)0.9774 (3)0.3096 (3)0.0547 (10)
H16A1.03701.02290.34630.066*
H16B0.84551.00690.28770.066*
C170.1452 (8)0.2323 (4)0.9847 (4)0.0735 (13)
H17A0.04640.17150.97170.110*
H17B0.27920.24430.94990.110*
H17C0.18390.21291.05960.110*
C181.5396 (8)0.9510 (4)0.1482 (4)0.0763 (14)
H18A1.68760.92040.16920.114*
H18B1.54091.02960.10370.114*
H18C1.49300.90950.10970.114*
N10.3298 (5)0.4679 (3)0.8317 (2)0.0444 (7)
N20.0332 (5)0.3357 (3)0.9435 (3)0.0510 (8)
N30.9942 (5)0.8594 (2)0.3813 (2)0.0464 (8)
N41.3833 (5)0.9412 (3)0.2422 (2)0.0505 (8)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.0773 (3)0.0560 (3)0.0734 (3)0.0182 (2)0.0172 (2)0.0405 (2)
C10.040 (2)0.042 (2)0.051 (2)0.0026 (16)0.0053 (17)0.0267 (18)
C20.037 (2)0.045 (2)0.045 (2)0.0048 (16)0.0064 (16)0.0195 (17)
C30.046 (2)0.0359 (19)0.047 (2)0.0066 (16)0.0098 (18)0.0126 (17)
C40.046 (2)0.040 (2)0.050 (2)0.0010 (16)0.0089 (18)0.0218 (18)
C50.040 (2)0.050 (2)0.044 (2)0.0006 (17)0.0040 (17)0.0188 (18)
C60.041 (2)0.0334 (19)0.051 (2)0.0013 (16)0.0099 (17)0.0129 (17)
C70.055 (2)0.055 (2)0.051 (2)0.0150 (19)0.0016 (19)0.024 (2)
C80.059 (3)0.046 (2)0.063 (3)0.0093 (19)0.007 (2)0.025 (2)
C90.054 (3)0.058 (3)0.052 (2)0.007 (2)0.014 (2)0.009 (2)
C100.052 (2)0.060 (3)0.059 (3)0.010 (2)0.018 (2)0.018 (2)
C110.054 (2)0.055 (2)0.046 (2)0.0095 (19)0.0058 (19)0.0136 (19)
C120.048 (2)0.059 (2)0.042 (2)0.0106 (19)0.0045 (17)0.0201 (19)
C130.054 (3)0.058 (3)0.046 (2)0.005 (2)0.0064 (19)0.005 (2)
C140.045 (2)0.061 (3)0.059 (3)0.002 (2)0.009 (2)0.013 (2)
C150.067 (3)0.041 (2)0.052 (2)0.007 (2)0.011 (2)0.0047 (19)
C160.055 (2)0.040 (2)0.064 (3)0.0036 (18)0.005 (2)0.014 (2)
C170.063 (3)0.067 (3)0.087 (3)0.021 (2)0.002 (3)0.020 (3)
C180.077 (3)0.088 (4)0.062 (3)0.025 (3)0.012 (2)0.025 (3)
N10.0451 (18)0.0515 (19)0.0401 (17)0.0132 (15)0.0031 (14)0.0177 (15)
N20.0411 (18)0.0475 (19)0.061 (2)0.0094 (15)0.0032 (16)0.0135 (16)
N30.0443 (18)0.0372 (17)0.0519 (19)0.0045 (14)0.0015 (15)0.0100 (15)
N40.050 (2)0.056 (2)0.0449 (19)0.0153 (16)0.0003 (15)0.0155 (16)
Geometric parameters (Å, º) top
Br1—C11.918 (3)C11—H11A0.9700
C1—C61.386 (5)C11—H11B0.9700
C1—C21.392 (5)C12—N11.461 (4)
C2—C31.382 (5)C12—H12A0.9700
C2—C71.507 (5)C12—H12B0.9700
C3—C41.372 (5)C13—N31.456 (5)
C3—H30.9300C13—C141.503 (5)
C4—C51.377 (5)C13—H13A0.9700
C4—H40.9300C13—H13B0.9700
C5—C61.392 (5)C14—N41.443 (5)
C5—H50.9300C14—H14A0.9700
C6—C81.510 (5)C14—H14B0.9700
C7—N11.460 (5)C15—N41.444 (5)
C7—H7A0.9700C15—C161.504 (5)
C7—H7B0.9700C15—H15A0.9700
C8—N31.461 (5)C15—H15B0.9700
C8—H8A0.9700C16—N31.459 (4)
C8—H8B0.9700C16—H16A0.9700
C9—N11.459 (5)C16—H16B0.9700
C9—C101.502 (5)C17—N21.454 (5)
C9—H9A0.9700C17—H17A0.9600
C9—H9B0.9700C17—H17B0.9600
C10—N21.449 (5)C17—H17C0.9600
C10—H10A0.9700C18—N41.458 (5)
C10—H10B0.9700C18—H18A0.9600
C11—N21.447 (5)C18—H18B0.9600
C11—C121.509 (5)C18—H18C0.9600
C6—C1—C2123.6 (3)N1—C12—H12B109.5
C6—C1—Br1117.5 (3)C11—C12—H12B109.5
C2—C1—Br1118.9 (3)H12A—C12—H12B108.1
C3—C2—C1116.8 (3)N3—C13—C14110.6 (3)
C3—C2—C7121.7 (3)N3—C13—H13A109.5
C1—C2—C7121.3 (3)C14—C13—H13A109.5
C4—C3—C2121.4 (3)N3—C13—H13B109.5
C4—C3—H3119.3C14—C13—H13B109.5
C2—C3—H3119.3H13A—C13—H13B108.1
C3—C4—C5120.4 (3)N4—C14—C13110.7 (3)
C3—C4—H4119.8N4—C14—H14A109.5
C5—C4—H4119.8C13—C14—H14A109.5
C4—C5—C6120.8 (3)N4—C14—H14B109.5
C4—C5—H5119.6C13—C14—H14B109.5
C6—C5—H5119.6H14A—C14—H14B108.1
C1—C6—C5117.0 (3)N4—C15—C16111.7 (3)
C1—C6—C8122.0 (3)N4—C15—H15A109.3
C5—C6—C8121.0 (3)C16—C15—H15A109.3
N1—C7—C2114.0 (3)N4—C15—H15B109.3
N1—C7—H7A108.7C16—C15—H15B109.3
C2—C7—H7A108.7H15A—C15—H15B107.9
N1—C7—H7B108.7N3—C16—C15110.6 (3)
C2—C7—H7B108.7N3—C16—H16A109.5
H7A—C7—H7B107.6C15—C16—H16A109.5
N3—C8—C6114.0 (3)N3—C16—H16B109.5
N3—C8—H8A108.7C15—C16—H16B109.5
C6—C8—H8A108.7H16A—C16—H16B108.1
N3—C8—H8B108.7N2—C17—H17A109.5
C6—C8—H8B108.7N2—C17—H17B109.5
H8A—C8—H8B107.6H17A—C17—H17B109.5
N1—C9—C10110.7 (3)N2—C17—H17C109.5
N1—C9—H9A109.5H17A—C17—H17C109.5
C10—C9—H9A109.5H17B—C17—H17C109.5
N1—C9—H9B109.5N4—C18—H18A109.5
C10—C9—H9B109.5N4—C18—H18B109.5
H9A—C9—H9B108.1H18A—C18—H18B109.5
N2—C10—C9110.5 (3)N4—C18—H18C109.5
N2—C10—H10A109.6H18A—C18—H18C109.5
C9—C10—H10A109.6H18B—C18—H18C109.5
N2—C10—H10B109.6C9—N1—C7111.4 (3)
C9—C10—H10B109.6C9—N1—C12109.1 (3)
H10A—C10—H10B108.1C7—N1—C12109.6 (3)
N2—C11—C12111.6 (3)C11—N2—C10109.0 (3)
N2—C11—H11A109.3C11—N2—C17111.3 (3)
C12—C11—H11A109.3C10—N2—C17111.5 (3)
N2—C11—H11B109.3C13—N3—C16108.6 (3)
C12—C11—H11B109.3C13—N3—C8111.6 (3)
H11A—C11—H11B108.0C16—N3—C8110.3 (3)
N1—C12—C11110.8 (3)C14—N4—C15108.7 (3)
N1—C12—H12A109.5C14—N4—C18111.2 (3)
C11—C12—H12A109.5C15—N4—C18111.0 (3)
C6—C1—C2—C30.3 (5)N4—C15—C16—N358.1 (4)
Br1—C1—C2—C3179.8 (3)C10—C9—N1—C7179.1 (3)
C6—C1—C2—C7176.3 (3)C10—C9—N1—C1257.9 (4)
Br1—C1—C2—C73.6 (5)C2—C7—N1—C980.3 (4)
C1—C2—C3—C40.2 (5)C2—C7—N1—C12158.9 (3)
C7—C2—C3—C4176.4 (3)C11—C12—N1—C956.1 (4)
C2—C3—C4—C50.1 (5)C11—C12—N1—C7178.3 (3)
C3—C4—C5—C60.2 (5)C12—C11—N2—C1057.6 (4)
C2—C1—C6—C50.3 (5)C12—C11—N2—C17179.0 (3)
Br1—C1—C6—C5179.8 (3)C9—C10—N2—C1158.8 (4)
C2—C1—C6—C8177.4 (3)C9—C10—N2—C17177.9 (3)
Br1—C1—C6—C82.6 (5)C14—C13—N3—C1658.2 (4)
C4—C5—C6—C10.2 (5)C14—C13—N3—C8179.9 (3)
C4—C5—C6—C8177.4 (3)C15—C16—N3—C1356.9 (4)
C3—C2—C7—N112.9 (5)C15—C16—N3—C8179.6 (3)
C1—C2—C7—N1170.7 (3)C6—C8—N3—C1380.5 (4)
C1—C6—C8—N3170.2 (3)C6—C8—N3—C16158.6 (3)
C5—C6—C8—N312.8 (5)C13—C14—N4—C1558.5 (4)
N1—C9—C10—N260.2 (4)C13—C14—N4—C18179.1 (3)
N2—C11—C12—N157.1 (4)C16—C15—N4—C1457.8 (4)
N3—C13—C14—N460.2 (4)C16—C15—N4—C18179.6 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C16—H16A···Br1i0.973.143.877 (5)134
Symmetry code: (i) x+2, y+2, z+1.

Experimental details

Crystal data
Chemical formulaC18H29BrN4
Mr381.36
Crystal system, space groupTriclinic, P1
Temperature (K)297
a, b, c (Å)6.0449 (5), 12.7217 (10), 13.6242 (11)
α, β, γ (°)68.414 (1), 81.952 (1), 81.507 (1)
V3)959.37 (13)
Z2
Radiation typeMo Kα
µ (mm1)2.15
Crystal size (mm)0.35 × 0.22 × 0.11
Data collection
DiffractometerBruker SMART APEX CCD area-detector
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.520, 0.798
No. of measured, independent and
observed [I > 2σ(I)] reflections
9255, 3359, 2832
Rint0.034
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.055, 0.109, 1.17
No. of reflections3359
No. of parameters210
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.60, 0.41

Computer programs: SMART (Bruker, 2000), SAINT-Plus (Bruker, 2000), SHELXTL (Bruker, 2001), DIAMOND (Brandenburg, 2006), publCIF (Westrip, 2007).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C16—H16A···Br1i0.973.143.877 (5)134
Symmetry code: (i) x+2, y+2, z+1.
 

Subscribe to Acta Crystallographica Section E: Crystallographic Communications

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds