Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
In the mol­ecule of the title compound, C19H18N6O10, the 2,8-dimeth­oxy-4,10-dimethyl-1,3,7,9-tetra­nitro analogue of Tröger's base, the diazo­cine bridge imparts a twist such that the two aryl rings are offset with respect to one another. The hinge angle of the molecule, measured as the dihedral angle between the two benzene rings, is 103.64 (5)°.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536807050945/bv2074sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536807050945/bv2074Isup2.hkl
Contains datablock I

CCDC reference: 667413

Key indicators

  • Single-crystal X-ray study
  • T = 150 K
  • Mean [sigma](C-C) = 0.002 Å
  • R factor = 0.031
  • wR factor = 0.087
  • Data-to-parameter ratio = 9.2

checkCIF/PLATON results

No syntax errors found



Alert level B PLAT430_ALERT_2_B Short Inter D...A Contact O2 .. O5 .. 2.80 Ang.
Alert level G REFLT03_ALERT_4_G Please check that the estimate of the number of Friedel pairs is correct. If it is not, please give the correct count in the _publ_section_exptl_refinement section of the submitted CIF. From the CIF: _diffrn_reflns_theta_max 28.37 From the CIF: _reflns_number_total 2951 Count of symmetry unique reflns 2993 Completeness (_total/calc) 98.60% TEST3: Check Friedels for noncentro structure Estimate of Friedel pairs measured 0 Fraction of Friedel pairs measured 0.000 Are heavy atom types Z>Si present no
0 ALERT level A = In general: serious problem 1 ALERT level B = Potentially serious problem 0 ALERT level C = Check and explain 1 ALERT level G = General alerts; check 0 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 1 ALERT type 2 Indicator that the structure model may be wrong or deficient 0 ALERT type 3 Indicator that the structure quality may be low 1 ALERT type 4 Improvement, methodology, query or suggestion 0 ALERT type 5 Informative message, check

Comment top

For over 100 years since the first synthesis of Tröger's base it was believed that analogues bearing electron-withdrawing groups could not be prepared in good yields, if at all. This belief was dispelled with the first synthesis of dihalogenated analogues (Jensen & Wärnmark, 2001), tetrabromo (Faroughi et al., 2006) and dinitro analogues (Mederski et al., 2003; Li et al., 2005; Bhuiyan et al., 2007). Compound (I) is the first example of a tetranitro Tröger's base analogue and was prepared in racemic form by reacting 4-methoxy-2-methyl-3,5-dinitroaniline with diglycolic acid in polyphosphoric acid (PPA) as shown in Fig. 2. The molecular structure of (I) is shown in Fig. 1. It is interesting to note that in addition to (I), there are two other reports of simple dibenzo Tröger's base analogues with dihedral angles greater than 100° that bear substituents in the 2,4,8- and 10-positions (Sucholeiki et al., 1988; Faroughi et al., 2006), at the upper end of the the range of 82° (Solano et al., 2005) to 108° (Faroughi et al., 2006), that are the lower and upper limits, respectively, that have been measured for for over twenty simple dibenzo Tröger's base analogues. These results would tend to suggest that the placement of substituents in these positions may lead to an increase in the cavity size of the Tröger's base systems, at least in the crystalline state.

Although the compound was prepared in racemic form, the crystal chosen for analysis crystallized in enantiopure form, however the absolute configuration of the structure has not been established by X-ray methods. This appears to be the fourth example of conglomerate crystallization among Tröger's base systems (Kostyanovsky et al., 2003; Sergeyev et al., 2005; Lenev et al., 2006).

We were interested in preparing a range of nitro-substituted Tröger's base compounds as precursors for supramolecular recognition elements.

Related literature top

For related literature on mononitro-substituted Tröger's base analogues, see: Webb & Wilcox (1990); Pardo et al., (1996). For dinitro-substituted Tröger's base analogues, see: Mederski et al. (2003); Li et al. (2005); Bhuiyan et al. (2007).

For related literature, see: Faroughi et al. (2006); Jensen & Wärnmark (2001); Kostyanovsky et al. (2003); Lenev et al. (2006); Mederski et al. (2003); Sergeyev et al. (2005); Solano et al. (2005); Sucholeiki et al. (1988).

Experimental top

Synthetic details will be reported elsewhere. Crystals of (I) were obtained by slow evaporation of a dichloromethane solution.

Structure description top

For over 100 years since the first synthesis of Tröger's base it was believed that analogues bearing electron-withdrawing groups could not be prepared in good yields, if at all. This belief was dispelled with the first synthesis of dihalogenated analogues (Jensen & Wärnmark, 2001), tetrabromo (Faroughi et al., 2006) and dinitro analogues (Mederski et al., 2003; Li et al., 2005; Bhuiyan et al., 2007). Compound (I) is the first example of a tetranitro Tröger's base analogue and was prepared in racemic form by reacting 4-methoxy-2-methyl-3,5-dinitroaniline with diglycolic acid in polyphosphoric acid (PPA) as shown in Fig. 2. The molecular structure of (I) is shown in Fig. 1. It is interesting to note that in addition to (I), there are two other reports of simple dibenzo Tröger's base analogues with dihedral angles greater than 100° that bear substituents in the 2,4,8- and 10-positions (Sucholeiki et al., 1988; Faroughi et al., 2006), at the upper end of the the range of 82° (Solano et al., 2005) to 108° (Faroughi et al., 2006), that are the lower and upper limits, respectively, that have been measured for for over twenty simple dibenzo Tröger's base analogues. These results would tend to suggest that the placement of substituents in these positions may lead to an increase in the cavity size of the Tröger's base systems, at least in the crystalline state.

Although the compound was prepared in racemic form, the crystal chosen for analysis crystallized in enantiopure form, however the absolute configuration of the structure has not been established by X-ray methods. This appears to be the fourth example of conglomerate crystallization among Tröger's base systems (Kostyanovsky et al., 2003; Sergeyev et al., 2005; Lenev et al., 2006).

We were interested in preparing a range of nitro-substituted Tröger's base compounds as precursors for supramolecular recognition elements.

For related literature on mononitro-substituted Tröger's base analogues, see: Webb & Wilcox (1990); Pardo et al., (1996). For dinitro-substituted Tröger's base analogues, see: Mederski et al. (2003); Li et al. (2005); Bhuiyan et al. (2007).

For related literature, see: Faroughi et al. (2006); Jensen & Wärnmark (2001); Kostyanovsky et al. (2003); Lenev et al. (2006); Mederski et al. (2003); Sergeyev et al. (2005); Solano et al. (2005); Sucholeiki et al. (1988).

Computing details top

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 2003); data reduction: SAINT (Bruker, 2003); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 2003); software used to prepare material for publication: modiCIFer (Guzei, 2005).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. The preparation of (I).
2,8-Dimethoxy-4,10-dimethyl-1,3,7,9-tetranitro-6H,12H- 5,11-methanodibenzo[b,f][1,5]diazocine top
Crystal data top
C19H18N6O10Dx = 1.557 Mg m3
Mr = 490.39Melting point: 509 K
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 6736 reflections
a = 8.629 (2) Åθ = 2.4–28.3°
b = 9.155 (2) ŵ = 0.13 mm1
c = 26.484 (5) ÅT = 150 K
V = 2092.2 (8) Å3Plate, pale yellow
Z = 40.50 × 0.47 × 0.20 mm
F(000) = 1016
Data collection top
Bruker CCD-1000 area-detector
diffractometer
2951 independent reflections
Radiation source: fine-focus sealed tube2796 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.024
ω scansθmax = 28.4°, θmin = 1.5°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1111
Tmin = 0.913, Tmax = 0.975k = 1211
20912 measured reflectionsl = 3535
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.031Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.087H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0569P)2 + 0.4264P]
where P = (Fo2 + 2Fc2)/3
2951 reflections(Δ/σ)max < 0.001
320 parametersΔρmax = 0.33 e Å3
0 restraintsΔρmin = 0.25 e Å3
Crystal data top
C19H18N6O10V = 2092.2 (8) Å3
Mr = 490.39Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 8.629 (2) ŵ = 0.13 mm1
b = 9.155 (2) ÅT = 150 K
c = 26.484 (5) Å0.50 × 0.47 × 0.20 mm
Data collection top
Bruker CCD-1000 area-detector
diffractometer
2951 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2796 reflections with I > 2σ(I)
Tmin = 0.913, Tmax = 0.975Rint = 0.024
20912 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0310 restraints
wR(F2) = 0.087H-atom parameters constrained
S = 1.04Δρmax = 0.33 e Å3
2951 reflectionsΔρmin = 0.25 e Å3
320 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.24794 (17)0.33842 (19)0.07709 (8)0.0502 (5)
O20.08837 (18)0.48777 (15)0.04288 (6)0.0389 (4)
O30.16534 (14)0.11061 (15)0.01060 (4)0.0271 (3)
O40.0242 (2)0.11653 (17)0.02943 (5)0.0412 (4)
O50.0452 (3)0.23330 (16)0.04133 (7)0.0519 (4)
O60.03451 (19)0.5055 (2)0.31937 (6)0.0516 (5)
O70.1945 (2)0.5605 (2)0.34557 (6)0.0503 (4)
O80.16799 (16)0.21859 (15)0.34025 (4)0.0293 (3)
O90.42213 (18)0.03735 (17)0.25715 (6)0.0405 (4)
O100.1932 (2)0.04848 (15)0.29035 (6)0.0390 (3)
N10.12096 (16)0.36974 (16)0.06071 (5)0.0229 (3)
N20.04626 (19)0.12154 (16)0.01626 (6)0.0293 (3)
N30.30705 (16)0.42473 (15)0.14649 (5)0.0204 (3)
N40.38756 (16)0.18709 (16)0.11780 (5)0.0205 (3)
N50.10563 (19)0.49762 (18)0.31727 (5)0.0289 (3)
N60.29756 (19)0.01726 (17)0.26895 (5)0.0267 (3)
C10.00005 (17)0.25689 (17)0.06230 (6)0.0192 (3)
C20.03352 (19)0.12601 (18)0.03837 (6)0.0210 (3)
C30.2842 (2)0.0221 (3)0.03419 (7)0.0362 (4)
H3A0.23840.06950.04620.054*
H3B0.36570.00050.00950.054*
H3C0.32880.07540.06280.054*
C40.0768 (2)0.01678 (18)0.04267 (6)0.0217 (3)
C50.21390 (19)0.03065 (17)0.06985 (6)0.0202 (3)
C60.3289 (2)0.09185 (19)0.07389 (7)0.0274 (3)
H6A0.29390.16170.09950.041*
H6B0.43020.05250.08360.041*
H6C0.33760.14140.04120.041*
C70.24331 (18)0.16794 (17)0.09196 (5)0.0180 (3)
C80.13757 (18)0.28300 (17)0.08822 (5)0.0181 (3)
C90.17197 (19)0.43057 (17)0.11245 (6)0.0205 (3)
H9A0.19170.50340.08560.025*
H9B0.08000.46310.13180.025*
C100.42902 (19)0.34144 (19)0.12147 (6)0.0232 (3)
H10A0.52680.35140.14070.028*
H10B0.44630.38130.08720.028*
C110.38882 (19)0.12370 (18)0.16884 (6)0.0217 (3)
H11A0.49750.10730.17940.026*
H11B0.33610.02770.16800.026*
C120.30895 (18)0.22120 (17)0.20748 (6)0.0199 (3)
C130.27142 (18)0.36599 (17)0.19513 (6)0.0189 (3)
C140.20377 (19)0.46122 (18)0.23053 (6)0.0204 (3)
C150.1778 (2)0.61959 (19)0.21860 (6)0.0273 (3)
H15A0.08930.62920.19570.041*
H15B0.27070.65990.20250.041*
H15C0.15660.67320.24990.041*
C160.17340 (19)0.40371 (19)0.27790 (6)0.0221 (3)
C170.20533 (19)0.26139 (18)0.29235 (6)0.0223 (3)
C180.2990 (3)0.1949 (2)0.37300 (6)0.0335 (4)
H18A0.36330.11590.35940.050*
H18B0.26230.16790.40680.050*
H18C0.36050.28470.37510.050*
C190.27199 (19)0.17181 (18)0.25601 (6)0.0216 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0255 (7)0.0472 (9)0.0781 (12)0.0093 (7)0.0215 (7)0.0217 (9)
O20.0358 (7)0.0257 (6)0.0553 (9)0.0065 (6)0.0150 (7)0.0123 (6)
O30.0214 (5)0.0388 (7)0.0213 (5)0.0075 (5)0.0039 (4)0.0033 (5)
O40.0496 (8)0.0450 (8)0.0290 (6)0.0131 (8)0.0026 (6)0.0152 (6)
O50.0773 (12)0.0237 (6)0.0548 (9)0.0119 (8)0.0092 (10)0.0007 (6)
O60.0351 (8)0.0801 (13)0.0394 (8)0.0226 (9)0.0029 (7)0.0153 (9)
O70.0524 (9)0.0621 (10)0.0363 (7)0.0002 (9)0.0028 (7)0.0274 (7)
O80.0311 (7)0.0394 (7)0.0174 (5)0.0006 (6)0.0004 (5)0.0032 (5)
O90.0401 (8)0.0389 (7)0.0426 (8)0.0175 (7)0.0053 (6)0.0050 (7)
O100.0501 (9)0.0298 (7)0.0371 (7)0.0035 (7)0.0030 (7)0.0049 (6)
N10.0191 (6)0.0267 (7)0.0229 (6)0.0022 (6)0.0006 (5)0.0020 (5)
N20.0309 (7)0.0242 (7)0.0329 (7)0.0076 (6)0.0027 (6)0.0084 (6)
N30.0205 (6)0.0222 (6)0.0187 (6)0.0035 (5)0.0011 (5)0.0020 (5)
N40.0160 (6)0.0244 (6)0.0211 (6)0.0001 (5)0.0001 (5)0.0031 (5)
N50.0331 (8)0.0341 (8)0.0196 (6)0.0090 (7)0.0013 (6)0.0031 (6)
N60.0333 (8)0.0261 (7)0.0209 (6)0.0035 (6)0.0078 (6)0.0011 (5)
C10.0176 (7)0.0212 (7)0.0187 (6)0.0011 (6)0.0023 (5)0.0020 (5)
C20.0201 (7)0.0260 (7)0.0167 (6)0.0049 (6)0.0004 (6)0.0008 (6)
C30.0268 (9)0.0514 (12)0.0302 (9)0.0165 (9)0.0057 (7)0.0059 (9)
C40.0245 (8)0.0199 (7)0.0207 (7)0.0043 (6)0.0026 (6)0.0032 (6)
C50.0213 (7)0.0200 (7)0.0192 (6)0.0005 (6)0.0038 (6)0.0011 (6)
C60.0284 (8)0.0227 (7)0.0310 (8)0.0053 (7)0.0030 (7)0.0027 (6)
C70.0173 (7)0.0206 (7)0.0163 (6)0.0006 (6)0.0025 (5)0.0017 (5)
C80.0184 (7)0.0202 (7)0.0157 (6)0.0026 (6)0.0036 (5)0.0007 (5)
C90.0232 (7)0.0193 (7)0.0189 (6)0.0003 (6)0.0005 (6)0.0004 (5)
C100.0182 (7)0.0290 (8)0.0226 (7)0.0057 (6)0.0027 (6)0.0046 (6)
C110.0192 (7)0.0251 (7)0.0209 (7)0.0048 (6)0.0011 (6)0.0027 (6)
C120.0170 (6)0.0230 (7)0.0198 (6)0.0008 (6)0.0017 (6)0.0023 (6)
C130.0165 (6)0.0217 (7)0.0185 (6)0.0026 (6)0.0011 (5)0.0021 (5)
C140.0185 (7)0.0222 (7)0.0204 (7)0.0006 (6)0.0016 (6)0.0032 (6)
C150.0355 (9)0.0218 (7)0.0245 (7)0.0031 (7)0.0004 (7)0.0027 (6)
C160.0201 (7)0.0282 (8)0.0180 (7)0.0024 (6)0.0014 (6)0.0053 (6)
C170.0212 (7)0.0288 (8)0.0168 (6)0.0001 (7)0.0021 (6)0.0000 (6)
C180.0414 (10)0.0366 (10)0.0227 (8)0.0015 (9)0.0101 (7)0.0019 (7)
C190.0207 (7)0.0240 (7)0.0201 (7)0.0011 (6)0.0039 (6)0.0004 (6)
Geometric parameters (Å, º) top
O1—N11.213 (2)C4—C51.391 (2)
O2—N11.212 (2)C5—C71.410 (2)
O3—C21.3618 (19)C5—C61.501 (2)
O3—C31.449 (2)C6—H6A0.9800
O4—N21.226 (2)C6—H6B0.9800
O5—N21.220 (2)C6—H6C0.9800
O6—N51.213 (2)C7—C81.397 (2)
O7—N51.217 (2)C8—C91.525 (2)
O8—C171.366 (2)C9—H9A0.9900
O8—C181.441 (2)C9—H9B0.9900
O9—N61.226 (2)C10—H10A0.9900
O10—N61.223 (2)C10—H10B0.9900
N1—C11.469 (2)C11—C121.523 (2)
N2—C41.470 (2)C11—H11A0.9900
N3—C131.4295 (19)C11—H11B0.9900
N3—C101.459 (2)C12—C191.399 (2)
N3—C91.475 (2)C12—C131.403 (2)
N4—C71.431 (2)C13—C141.407 (2)
N4—C101.461 (2)C14—C161.386 (2)
N4—C111.471 (2)C14—C151.501 (2)
N5—C161.472 (2)C15—H15A0.9800
N6—C191.473 (2)C15—H15B0.9800
C1—C21.386 (2)C15—H15C0.9800
C1—C81.392 (2)C16—C171.386 (2)
C2—C41.385 (2)C17—C191.389 (2)
C3—H3A0.9800C18—H18A0.9800
C3—H3B0.9800C18—H18B0.9800
C3—H3C0.9800C18—H18C0.9800
C2—O3—C3114.59 (13)C7—C8—C9120.73 (14)
C17—O8—C18114.64 (14)N3—C9—C8112.28 (13)
O2—N1—O1124.03 (16)N3—C9—H9A109.1
O2—N1—C1118.24 (14)C8—C9—H9A109.1
O1—N1—C1117.72 (14)N3—C9—H9B109.1
O5—N2—O4124.57 (16)C8—C9—H9B109.1
O5—N2—C4117.72 (15)H9A—C9—H9B107.9
O4—N2—C4117.71 (15)N3—C10—N4111.05 (13)
C13—N3—C10111.58 (13)N3—C10—H10A109.4
C13—N3—C9113.24 (12)N4—C10—H10A109.4
C10—N3—C9108.16 (12)N3—C10—H10B109.4
C7—N4—C10111.31 (13)N4—C10—H10B109.4
C7—N4—C11113.42 (13)H10A—C10—H10B108.0
C10—N4—C11108.57 (13)N4—C11—C12112.52 (13)
O6—N5—O7124.88 (18)N4—C11—H11A109.1
O6—N5—C16117.60 (17)C12—C11—H11A109.1
O7—N5—C16117.52 (16)N4—C11—H11B109.1
O10—N6—O9124.29 (16)C12—C11—H11B109.1
O10—N6—C19118.07 (16)H11A—C11—H11B107.8
O9—N6—C19117.63 (16)C19—C12—C13117.83 (15)
C2—C1—C8123.48 (15)C19—C12—C11122.07 (15)
C2—C1—N1116.55 (14)C13—C12—C11120.10 (14)
C8—C1—N1119.94 (14)C12—C13—C14121.72 (14)
O3—C2—C4122.92 (15)C12—C13—N3121.06 (14)
O3—C2—C1120.70 (15)C14—C13—N3117.17 (14)
C4—C2—C1116.32 (15)C16—C14—C13116.51 (15)
O3—C3—H3A109.5C16—C14—C15121.97 (15)
O3—C3—H3B109.5C13—C14—C15121.35 (15)
H3A—C3—H3B109.5C14—C15—H15A109.5
O3—C3—H3C109.5C14—C15—H15B109.5
H3A—C3—H3C109.5H15A—C15—H15B109.5
H3B—C3—H3C109.5C14—C15—H15C109.5
C2—C4—C5124.14 (15)H15A—C15—H15C109.5
C2—C4—N2117.37 (15)H15B—C15—H15C109.5
C5—C4—N2118.49 (15)C14—C16—C17124.73 (15)
C4—C5—C7116.71 (14)C14—C16—N5119.63 (15)
C4—C5—C6122.07 (15)C17—C16—N5115.62 (14)
C7—C5—C6121.17 (15)O8—C17—C16118.64 (15)
C5—C6—H6A109.5O8—C17—C19124.86 (16)
C5—C6—H6B109.5C16—C17—C19116.49 (15)
H6A—C6—H6B109.5O8—C18—H18A109.5
C5—C6—H6C109.5O8—C18—H18B109.5
H6A—C6—H6C109.5H18A—C18—H18B109.5
H6B—C6—H6C109.5O8—C18—H18C109.5
C8—C7—C5121.68 (14)H18A—C18—H18C109.5
C8—C7—N4120.63 (14)H18B—C18—H18C109.5
C5—C7—N4117.67 (14)C17—C19—C12122.68 (15)
C1—C8—C7117.55 (14)C17—C19—N6117.90 (15)
C1—C8—C9121.71 (14)C12—C19—N6119.36 (15)
O2—N1—C1—C2123.01 (17)C7—N4—C10—N356.74 (17)
O1—N1—C1—C256.5 (2)C11—N4—C10—N368.78 (16)
O2—N1—C1—C858.8 (2)C7—N4—C11—C1279.62 (16)
O1—N1—C1—C8121.7 (2)C10—N4—C11—C1244.66 (17)
C3—O3—C2—C476.4 (2)N4—C11—C12—C19168.27 (14)
C3—O3—C2—C1106.45 (19)N4—C11—C12—C1312.4 (2)
C8—C1—C2—O3175.31 (14)C19—C12—C13—C142.2 (2)
N1—C1—C2—O36.6 (2)C11—C12—C13—C14177.18 (14)
C8—C1—C2—C42.0 (2)C19—C12—C13—N3179.33 (14)
N1—C1—C2—C4176.08 (13)C11—C12—C13—N30.0 (2)
O3—C2—C4—C5178.54 (15)C10—N3—C13—C1220.9 (2)
C1—C2—C4—C51.3 (2)C9—N3—C13—C12101.40 (17)
O3—C2—C4—N20.9 (2)C10—N3—C13—C14156.36 (14)
C1—C2—C4—N2178.10 (14)C9—N3—C13—C1481.33 (17)
O5—N2—C4—C2123.3 (2)C12—C13—C14—C161.2 (2)
O4—N2—C4—C257.0 (2)N3—C13—C14—C16178.47 (14)
O5—N2—C4—C557.3 (2)C12—C13—C14—C15174.14 (15)
O4—N2—C4—C5122.48 (18)N3—C13—C14—C153.1 (2)
C2—C4—C5—C73.3 (2)C13—C14—C16—C170.2 (2)
N2—C4—C5—C7176.13 (14)C15—C14—C16—C17175.08 (16)
C2—C4—C5—C6179.20 (15)C13—C14—C16—N5178.75 (15)
N2—C4—C5—C61.4 (2)C15—C14—C16—N53.4 (3)
C4—C5—C7—C82.1 (2)O6—N5—C16—C1488.4 (2)
C6—C5—C7—C8179.65 (14)O7—N5—C16—C1492.3 (2)
C4—C5—C7—N4176.71 (14)O6—N5—C16—C1793.0 (2)
C6—C5—C7—N40.9 (2)O7—N5—C16—C1786.4 (2)
C10—N4—C7—C820.73 (19)C18—O8—C17—C16109.32 (18)
C11—N4—C7—C8102.05 (17)C18—O8—C17—C1971.6 (2)
C10—N4—C7—C5158.08 (14)C14—C16—C17—O8179.42 (15)
C11—N4—C7—C579.14 (16)N5—C16—C17—O82.0 (2)
C2—C1—C8—C73.0 (2)C14—C16—C17—C190.3 (2)
N1—C1—C8—C7174.98 (13)N5—C16—C17—C19178.84 (15)
C2—C1—C8—C9177.82 (14)O8—C17—C19—C12179.61 (15)
N1—C1—C8—C94.1 (2)C16—C17—C19—C121.3 (2)
C5—C7—C8—C10.9 (2)O8—C17—C19—N63.2 (2)
N4—C7—C8—C1179.63 (13)C16—C17—C19—N6175.87 (15)
C5—C7—C8—C9179.99 (13)C13—C12—C19—C172.3 (2)
N4—C7—C8—C91.2 (2)C11—C12—C19—C17177.10 (15)
C13—N3—C9—C880.15 (16)C13—C12—C19—N6174.90 (14)
C10—N3—C9—C844.05 (17)C11—C12—C19—N65.7 (2)
C1—C8—C9—N3168.06 (13)O10—N6—C19—C1744.5 (2)
C7—C8—C9—N311.0 (2)O9—N6—C19—C17136.02 (17)
C13—N3—C10—N455.74 (17)O10—N6—C19—C12132.75 (17)
C9—N3—C10—N469.45 (17)O9—N6—C19—C1246.7 (2)

Experimental details

Crystal data
Chemical formulaC19H18N6O10
Mr490.39
Crystal system, space groupOrthorhombic, P212121
Temperature (K)150
a, b, c (Å)8.629 (2), 9.155 (2), 26.484 (5)
V3)2092.2 (8)
Z4
Radiation typeMo Kα
µ (mm1)0.13
Crystal size (mm)0.50 × 0.47 × 0.20
Data collection
DiffractometerBruker CCD-1000 area-detector
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.913, 0.975
No. of measured, independent and
observed [I > 2σ(I)] reflections
20912, 2951, 2796
Rint0.024
(sin θ/λ)max1)0.669
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.031, 0.087, 1.04
No. of reflections2951
No. of parameters320
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.33, 0.25

Computer programs: SMART (Bruker, 1998), SAINT (Bruker, 2003), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), SHELXTL (Bruker, 2003), modiCIFer (Guzei, 2005).

 

Subscribe to Acta Crystallographica Section E: Crystallographic Communications

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds