Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
The title compound, C17H10N2O4, consists of two phthalimide units connected by a methylene bridge. The N—C—N bond angle is 110.64 (12)°. In the crystal structure, the dihedral angle between the two phthalimide units in one mol­ecule is 88.96 (2)°. The crystal packing is stabilized by the π–π overlap of neighboring phthalimide units, with closest interplanar packing distances of 3.470 (1) and 3.626 (7) Å, and by weak C—H...O inter­actions.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536807050738/bv2068sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536807050738/bv2068Isup2.hkl
Contains datablock I

CCDC reference: 608029

Key indicators

  • Single-crystal X-ray study
  • T = 298 K
  • Mean [sigma](C-C) = 0.002 Å
  • R factor = 0.045
  • wR factor = 0.124
  • Data-to-parameter ratio = 12.8

checkCIF/PLATON results

No syntax errors found



Alert level C PLAT029_ALERT_3_C _diffrn_measured_fraction_theta_full Low ....... 0.98 PLAT063_ALERT_3_C Crystal Probably too Large for Beam Size ....... 0.80 mm PLAT180_ALERT_3_C Check Cell Rounding: # of Values Ending with 0 = 4
0 ALERT level A = In general: serious problem 0 ALERT level B = Potentially serious problem 3 ALERT level C = Check and explain 0 ALERT level G = General alerts; check 0 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 0 ALERT type 2 Indicator that the structure model may be wrong or deficient 3 ALERT type 3 Indicator that the structure quality may be low 0 ALERT type 4 Improvement, methodology, query or suggestion 0 ALERT type 5 Informative message, check

Comment top

N-substituted phthalimides possess important biological activity (Orzeszko et al., 2000). The title compound (I) featuring two phthlimide moieties was synthesized by the reaction of phthalimide with polyformaldehyde in concentrated sulfuric acid. The molecular structure of (I) is shown in Fig. 1. The dihedral angle between the two phthalimides planes is 91.876°. In the crystal structure of (I), the molecules pack in columns through π-π interactions between the phthalimide moieties with distances of 3.470 (1) Å and 3.626 (7) Å, and slip distances of 1.47 Å and 1.62 Å, respectivly. There are weak C—H···O interactions between these columns (Table 1).

Related literature top

For related literature, see: Orzeszko et al. (2000).

Experimental top

Under N2 atmosphere, cold water bath and stirring, phthalimide (8.8 g) was dissolved in concentrated sulfuric acid (50 ml) followed by the careful addition polyformaldehyde (0.5 g). After the solid disappeared, the solution was warmed to 323 K and stirred for 10 h, then cooled to room temperature, and poured into ice-water with vigorous stirring. The filter cake was washed to be neutral and then dried. The product was purified by chromatography on a silica gel column with alcohol-hexane (V/V=3/7) as eluent. Single crystals of (I) were obtained by slow evaporation from its dichloroethene solution at room temperature.

IR(KBr, ν, cm-1): 3115,3025 (Ar—H), 2968 (C—H), 1731(C=O), 1710 (C=O),1464, 1431, 950, 734. 1H NMR (CDCl3, δ, p.p.m.): 7.860–7.877 (m, 4H), 7.721–7.738(m, 4H), 5.459 (s, 2H).

Refinement top

The H atoms were located in an electron-density difference map and refined isotropically.

Structure description top

N-substituted phthalimides possess important biological activity (Orzeszko et al., 2000). The title compound (I) featuring two phthlimide moieties was synthesized by the reaction of phthalimide with polyformaldehyde in concentrated sulfuric acid. The molecular structure of (I) is shown in Fig. 1. The dihedral angle between the two phthalimides planes is 91.876°. In the crystal structure of (I), the molecules pack in columns through π-π interactions between the phthalimide moieties with distances of 3.470 (1) Å and 3.626 (7) Å, and slip distances of 1.47 Å and 1.62 Å, respectivly. There are weak C—H···O interactions between these columns (Table 1).

For related literature, see: Orzeszko et al. (2000).

Computing details top

Data collection: RAPID-AUTO (Rigaku, 2006); cell refinement: RAPID-AUTO (Rigaku, 2006); data reduction: RAPID-AUTO (Rigaku, 2006); program(s) used to solve structure: SHELXS97 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEX (McArdle, 1995); software used to prepare material for publication: SHELXL97 (Sheldrick,1997).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), showing the atomic numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.
2,2'-Methylenebis(isoindoline-1,3-dione) top
Crystal data top
C17H10N2O4Z = 2
Mr = 306.27F(000) = 316
Triclinic, P1Dx = 1.428 Mg m3
Hall symbol: -P 1Melting point = 501.6–502.1 K
a = 7.6660 (9) ÅMo Kα radiation, λ = 0.71069 Å
b = 9.5810 (8) ÅCell parameters from 2784 reflections
c = 10.2780 (6) Åθ = 5.2–54.6°
α = 104.325 (3)°µ = 0.10 mm1
β = 99.768 (4)°T = 298 K
γ = 96.030 (3)°Prism, colourless
V = 712.23 (11) Å30.80 × 0.21 × 0.21 mm
Data collection top
Rigaku R-AXIS RAPID imaging plate system
diffractometer
2604 reflections with I > 2σ(I)
Radiation source: Rigaku rotating anode generatorRint = 0.026
Graphite Monochromator monochromatorθmax = 27.5°, θmin = 2.2°
Detector resolution: 14.6306 pixels mm-1h = 99
ω scansk = 012
6295 measured reflectionsl = 1312
3181 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.046Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.124All H-atom parameters refined
S = 1.05 w = 1/[σ2(Fo2) + (0.0625P)2 + 0.1105P]
where P = (Fo2 + 2Fc2)/3
3181 reflections(Δ/σ)max = 0.003
248 parametersΔρmax = 0.14 e Å3
0 restraintsΔρmin = 0.24 e Å3
Crystal data top
C17H10N2O4γ = 96.030 (3)°
Mr = 306.27V = 712.23 (11) Å3
Triclinic, P1Z = 2
a = 7.6660 (9) ÅMo Kα radiation
b = 9.5810 (8) ŵ = 0.10 mm1
c = 10.2780 (6) ÅT = 298 K
α = 104.325 (3)°0.80 × 0.21 × 0.21 mm
β = 99.768 (4)°
Data collection top
Rigaku R-AXIS RAPID imaging plate system
diffractometer
2604 reflections with I > 2σ(I)
6295 measured reflectionsRint = 0.026
3181 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0460 restraints
wR(F2) = 0.124All H-atom parameters refined
S = 1.05Δρmax = 0.14 e Å3
3181 reflectionsΔρmin = 0.24 e Å3
248 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.22177 (16)0.16328 (12)0.73250 (11)0.0486 (3)
N20.11889 (15)0.29986 (12)0.57720 (11)0.0485 (3)
O10.2051 (2)0.28638 (15)0.95249 (12)0.0804 (4)
O20.30930 (14)0.01722 (12)0.54975 (9)0.0583 (3)
O30.02017 (17)0.14751 (12)0.35746 (11)0.0655 (3)
O40.24441 (19)0.49922 (13)0.75855 (12)0.0765 (4)
H10.557 (3)0.256 (2)1.104 (2)0.084 (6)*
H20.833 (3)0.151 (2)1.097 (2)0.104 (7)*
H30.877 (3)0.000 (2)0.896 (2)0.091 (6)*
H40.662 (2)0.039 (2)0.683 (2)0.073 (5)*
H50.011 (2)0.1138 (17)0.5916 (16)0.056 (4)*
H60.001 (2)0.2565 (16)0.7257 (16)0.051 (4)*
H70.374 (3)0.715 (2)0.615 (2)0.089 (6)*
H80.395 (3)0.753 (2)0.400 (2)0.091 (6)*
H90.300 (3)0.573 (2)0.198 (2)0.088 (6)*
H100.153 (3)0.339 (2)0.191 (2)0.085 (6)*
C10.4607 (2)0.16588 (16)0.90265 (14)0.0541 (4)
C20.5866 (3)0.1948 (2)1.02293 (17)0.0709 (5)
C30.7425 (3)0.1341 (2)1.0166 (2)0.0809 (6)
C40.7714 (3)0.0484 (2)0.8956 (2)0.0766 (5)
C50.6438 (2)0.0193 (2)0.77442 (17)0.0626 (4)
C60.49014 (19)0.08017 (15)0.78128 (13)0.0497 (3)
C70.2845 (2)0.21708 (16)0.87470 (14)0.0559 (4)
C80.33557 (18)0.07717 (14)0.67038 (13)0.0465 (3)
C90.0657 (2)0.20282 (16)0.65709 (15)0.0508 (3)
C100.09578 (19)0.26223 (15)0.43474 (14)0.0495 (3)
C110.2083 (2)0.44257 (15)0.63763 (15)0.0522 (3)
C120.24512 (19)0.50100 (15)0.52299 (15)0.0520 (3)
C130.18072 (19)0.39313 (16)0.40180 (15)0.0512 (3)
C140.1987 (2)0.4151 (2)0.27754 (18)0.0660 (4)
C150.2840 (3)0.5515 (2)0.2794 (2)0.0780 (5)
C160.3456 (3)0.6596 (2)0.4003 (2)0.0762 (5)
C170.3282 (2)0.63641 (18)0.5248 (2)0.0666 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0567 (6)0.0478 (6)0.0386 (5)0.0036 (5)0.0095 (5)0.0085 (5)
N20.0555 (6)0.0429 (6)0.0433 (6)0.0021 (5)0.0080 (5)0.0086 (5)
O10.1052 (10)0.0882 (9)0.0477 (6)0.0289 (8)0.0253 (6)0.0058 (6)
O20.0602 (6)0.0692 (7)0.0375 (5)0.0045 (5)0.0081 (4)0.0030 (4)
O30.0829 (8)0.0533 (6)0.0487 (6)0.0064 (5)0.0062 (5)0.0048 (5)
O40.1027 (10)0.0600 (7)0.0521 (6)0.0079 (6)0.0126 (6)0.0015 (5)
C10.0666 (9)0.0507 (8)0.0398 (6)0.0039 (6)0.0053 (6)0.0116 (5)
C20.0866 (12)0.0694 (11)0.0434 (8)0.0049 (9)0.0025 (8)0.0085 (7)
C30.0744 (12)0.0933 (14)0.0611 (10)0.0078 (10)0.0166 (9)0.0241 (10)
C40.0614 (10)0.0969 (14)0.0711 (11)0.0071 (9)0.0022 (9)0.0315 (10)
C50.0600 (9)0.0741 (10)0.0542 (9)0.0072 (7)0.0099 (7)0.0210 (8)
C60.0543 (7)0.0512 (7)0.0410 (7)0.0017 (6)0.0075 (6)0.0136 (5)
C70.0742 (10)0.0518 (8)0.0384 (7)0.0030 (7)0.0134 (7)0.0078 (6)
C80.0519 (7)0.0458 (7)0.0389 (6)0.0031 (5)0.0102 (6)0.0101 (5)
C90.0533 (8)0.0502 (8)0.0485 (7)0.0041 (6)0.0126 (6)0.0129 (6)
C100.0516 (7)0.0490 (7)0.0453 (7)0.0057 (6)0.0089 (6)0.0092 (6)
C110.0563 (8)0.0433 (7)0.0522 (8)0.0050 (6)0.0093 (6)0.0062 (6)
C120.0499 (7)0.0465 (7)0.0599 (8)0.0085 (6)0.0119 (6)0.0142 (6)
C130.0498 (7)0.0531 (8)0.0527 (8)0.0089 (6)0.0119 (6)0.0167 (6)
C140.0701 (10)0.0752 (11)0.0583 (9)0.0095 (8)0.0183 (8)0.0255 (8)
C150.0787 (12)0.0930 (14)0.0835 (13)0.0173 (10)0.0309 (11)0.0513 (12)
C160.0712 (11)0.0650 (11)0.1051 (15)0.0064 (8)0.0282 (11)0.0411 (11)
C170.0631 (9)0.0516 (9)0.0849 (12)0.0021 (7)0.0155 (9)0.0206 (8)
Geometric parameters (Å, º) top
N1—C81.3889 (18)C4—H30.97 (2)
N1—C71.4035 (17)C5—C61.373 (2)
N1—C91.4496 (19)C5—H41.008 (19)
N2—C101.3938 (17)C6—C81.491 (2)
N2—C111.4011 (18)C9—H51.001 (16)
N2—C91.4549 (18)C9—H60.999 (16)
O1—C71.1991 (19)C10—C131.492 (2)
O2—C81.2025 (16)C11—C121.479 (2)
O3—C101.2053 (17)C12—C171.378 (2)
O4—C111.1974 (18)C12—C131.382 (2)
C1—C21.381 (2)C13—C141.372 (2)
C1—C61.382 (2)C14—C151.393 (3)
C1—C71.491 (2)C14—H100.98 (2)
C2—C31.387 (3)C15—C161.379 (3)
C2—H10.97 (2)C15—H90.93 (2)
C3—C41.378 (3)C16—C171.377 (3)
C3—H20.95 (2)C16—H80.93 (2)
C4—C51.394 (2)C17—H71.01 (2)
C8—N1—C7111.95 (12)N1—C9—N2110.66 (11)
C8—N1—C9123.56 (11)N1—C9—H5110.2 (9)
C7—N1—C9124.28 (12)N2—C9—H5107.6 (9)
C10—N2—C11112.04 (12)N1—C9—H6107.4 (9)
C10—N2—C9125.16 (11)N2—C9—H6108.1 (9)
C11—N2—C9122.74 (12)H5—C9—H6112.8 (13)
C2—C1—C6120.95 (16)O3—C10—N2125.80 (13)
C2—C1—C7130.36 (15)O3—C10—C13128.80 (13)
C6—C1—C7108.67 (12)N2—C10—C13105.39 (11)
C1—C2—C3117.31 (17)O4—C11—N2124.40 (14)
C1—C2—H1116.6 (12)O4—C11—C12129.76 (14)
C3—C2—H1126.1 (12)N2—C11—C12105.85 (12)
C4—C3—C2121.65 (17)C17—C12—C13121.72 (15)
C4—C3—H2117.8 (14)C17—C12—C11129.99 (14)
C2—C3—H2120.5 (14)C13—C12—C11108.29 (12)
C3—C4—C5120.85 (19)C14—C13—C12121.53 (15)
C3—C4—H3119.8 (13)C14—C13—C10130.06 (14)
C5—C4—H3119.1 (13)C12—C13—C10108.41 (13)
C6—C5—C4117.20 (17)C13—C14—C15116.79 (18)
C6—C5—H4119.5 (11)C13—C14—H10121.5 (12)
C4—C5—H4123.2 (11)C15—C14—H10121.7 (12)
C5—C6—C1122.04 (14)C16—C15—C14121.50 (18)
C5—C6—C8130.12 (13)C16—C15—H9117.8 (13)
C1—C6—C8107.77 (13)C14—C15—H9120.7 (13)
O1—C7—N1124.82 (16)C17—C16—C15121.38 (18)
O1—C7—C1129.90 (14)C17—C16—H8117.5 (14)
N1—C7—C1105.26 (12)C15—C16—H8121.0 (13)
O2—C8—N1124.37 (13)C16—C17—C12117.07 (17)
O2—C8—C6129.37 (14)C16—C17—H7122.1 (12)
N1—C8—C6106.24 (11)C12—C17—H7120.8 (12)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C14—H10···O1i0.98 (2)2.49 (2)3.273 (2)136.3 (16)
C9—H5···O2ii1.001 (16)2.508 (16)3.4152 (18)150.6 (12)
C5—H4···O2iii1.008 (19)2.50 (2)3.3480 (19)141.6 (14)
C2—H1···O4iv0.97 (2)2.58 (2)3.205 (2)121.9 (15)
Symmetry codes: (i) x, y, z1; (ii) x, y, z+1; (iii) x+1, y, z+1; (iv) x+1, y+1, z+2.

Experimental details

Crystal data
Chemical formulaC17H10N2O4
Mr306.27
Crystal system, space groupTriclinic, P1
Temperature (K)298
a, b, c (Å)7.6660 (9), 9.5810 (8), 10.2780 (6)
α, β, γ (°)104.325 (3), 99.768 (4), 96.030 (3)
V3)712.23 (11)
Z2
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.80 × 0.21 × 0.21
Data collection
DiffractometerRigaku R-AXIS RAPID imaging plate system
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
6295, 3181, 2604
Rint0.026
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.046, 0.124, 1.05
No. of reflections3181
No. of parameters248
H-atom treatmentAll H-atom parameters refined
Δρmax, Δρmin (e Å3)0.14, 0.24

Computer programs: RAPID-AUTO (Rigaku, 2006), SHELXS97 (Sheldrick, 1990), SHELXL97 (Sheldrick, 1997), ORTEX (McArdle, 1995), SHELXL97 (Sheldrick,1997).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C14—H10···O1i0.98 (2)2.49 (2)3.273 (2)136.3 (16)
C9—H5···O2ii1.001 (16)2.508 (16)3.4152 (18)150.6 (12)
C5—H4···O2iii1.008 (19)2.50 (2)3.3480 (19)141.6 (14)
C2—H1···O4iv0.97 (2)2.58 (2)3.205 (2)121.9 (15)
Symmetry codes: (i) x, y, z1; (ii) x, y, z+1; (iii) x+1, y, z+1; (iv) x+1, y+1, z+2.
 

Subscribe to Acta Crystallographica Section E: Crystallographic Communications

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds