metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(Cyanido-κC)(2,2-di­phenyl­acetamido-κ2N,O)bis­­(η5-penta­methyl­cyclo­penta­dien­yl)zirconium(IV)

aLeibniz-Institut für Katalyse e. V. an der Universität Rostock, Albert-Einstein-Strasse 29A, 18059 Rostock, Germany
*Correspondence e-mail: lisanne.becker@catalysis.de

(Received 15 January 2014; accepted 16 January 2014; online 22 January 2014)

In the title compound, [Zr(C10H15)2(C14H12NO)(CN)], the ZrIV atom is coordinated by two penta­methyl­cyclo­penta­dienyl ligands, the amidate ligand via the N and O atoms, and an additional C≡N ligand. The four-membered metallacycle is nearly planar (r.m.s. deviation = 0.008 Å). In the crystal, the mol­ecules are connected into centrosymmetric dimers via pairs of N—H⋯N hydrogen bonds.

Related literature

For structures of mononuclear group 4 metallocene complexes with κ2-N,O chelating amidate ligands without additional coordination of its substituents, see: Arndt et al. (1996[Arndt, P., Lefeber, C., Kempe, R., Tillack, A. & Rosenthal, U. (1996). Chem. Ber. 129, 1281-1285.]); Gambarotta et al. (1985[Gambarotta, S., Strologo, S., Floriani, C., Chiesi-Villa, A. & Guastini, C. (1985). Inorg. Chem. 24, 654-660.]); Haehnel et al. (2013[Haehnel, M., Yim, J. C.-H., Schafer, L. L. & Rosenthal, U. (2013). Angew. Chem. Int. Ed. 52, 11415-11419.]); Ruck & Bergman (2004[Ruck, R. T. & Bergman, R. G. (2004). Angew. Chem. Int. Ed. 43, 5375-5377.]). For structures of group 4 metallocene complexes with κ2N,O-chelating OC(P)N(R) ligands, see: Segerer et al. (2000[Segerer, U., Sieler, J. & Hey-Hawkins, E. (2000). Organometallics, 19, 2445-2449.]); Frömel et al. (2013[Frömel, S., Kehr, G., Fröhlich, R., Daniliuc, C. G. & Erker, G. (2013). Dalton Trans. 42, 14531-14536.]). For a similar complex, see: Becker et al. (2013[Becker, L., Burlakov, V. V., Arndt, P., Spannenberg, A., Baumann, W., Jiao, H. & Rosenthal, U. (2013). Chem. Eur. J. 19, 4230-4237.]).

[Scheme 1]

Experimental

Crystal data
  • [Zr(C10H15)2(C14H12NO)(CN)]

  • Mr = 597.93

  • Monoclinic, P 21 /n

  • a = 11.8961 (3) Å

  • b = 12.0640 (3) Å

  • c = 21.2489 (5) Å

  • β = 97.036 (1)°

  • V = 3026.56 (13) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.39 mm−1

  • T = 150 K

  • 0.26 × 0.13 × 0.10 mm

Data collection
  • Bruker Kappa APEXII DUO diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2008[Bruker (2008). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.92, Tmax = 1.00

  • 82697 measured reflections

  • 6612 independent reflections

  • 5575 reflections with I > 2σ(I)

  • Rint = 0.047

Refinement
  • R[F2 > 2σ(F2)] = 0.033

  • wR(F2) = 0.085

  • S = 1.03

  • 6612 reflections

  • 370 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 1.11 e Å−3

  • Δρmin = −0.46 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H2⋯N2i 0.89 (3) 2.14 (3) 3.014 (3) 168 (3)
Symmetry code: (i) -x+1, -y, -z.

Data collection: APEX2 (Bruker, 2011[Bruker (2011). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

We studied the reactions of several nitriles with metallocene precursors as Cp*2M(η2-Me3SiC2SiMe3) (Cp* = η5– pentamethylcyclopentadienyl, M = Ti, Zr) to synthesize and characterize new strained metallacycles with heteroatoms. In the reaction with diphenylacetonitrile the complex Cp*2Zr(N=CH-CHPh2)(N=C=CPh2) (Becker et al. (2013)) was formed after 4 h at 358 K. However a longer reaction time of 24 h led to the cleavage of the Ph2CH—CN bond upon partial oxidation thus forming the title compound. The zirconium(IV) atom is coordinated by two pentamethylcyclopentadienyl ligands in a η5-fashion, as well as by the N– and O-atoms of the amidate and an additional CN ligand. The four-membered ring is almost planar (mean deviation from the best plane defined by Zr1, O1, C1, N1 = 0.008 Å). The bond lengths O1—C1 1.290 (3) and N1—C1 1.294 (3) Å suggest the resonance form with electronic delocalization within the OCN unit. The molecules are connected to centrosymmetric dimers via N—H···N hydrogen bonds.

Related literature top

For structures of mononuclear group 4 metallocene complexes with κ2-N,O chelating amidate ligands without additional coordination of its substituents, see: Arndt et al. (1996); Gambarotta et al. (1985); Haehnel et al. (2013); Ruck & Bergman (2004). For structures of group 4 metallocene complexes with κ2-N,O chelating OC(P)N(R) ligands see: Segerer et al. (2000); Frömel et al. (2013). For a similar complex, see: Becker et al. (2013).

Experimental top

To a stirred solution of Cp*2Zr(η2-Me3SiC2SiMe3) (0.266 g, 0.5 mmol) in 5 mL of toluene was added a solution of Ph2CH—CN (0.193 g, 1.0 mmol) in 10 mL of toluene. The solution was stirred for 2 h at room temperature and subsequently 24 h at 358 K till the color turned to orange. All volatiles were removed under vacuum and the residue was dissolved in n-hexane. After filtration the solution was allowed to stand at r. t.. Yellow crystals of the title compound were formed within 14 days. MS: m/z (CI): 596 [M]+ (3), 570 [M—CN]+ (1), 386 [Cp*2Zr(CN)]+ (1), 360 [Cp*2Zr]+ (1). IR: (ATR, cm-1): υ = 2900(w), 2133(vw), 1426 (m), 1259(s), 1019 (vs), 795(vs).

Refinement top

H1 and H2 could be found from the difference Fourier map and were refined freely. All other H atoms were placed in idealized positions with d(C—H) = 0.98 (CH3) and 0.95 Å (CH) and refined using a riding model with Uiso(H) fixed at 1.5 Ueq(C) for CH3 and 1.2 Ueq(C) for CH. In one of the both phenyl rings two distances (C5—C6 and C6—C7) were restrained to be equal (SADI).

Structure description top

We studied the reactions of several nitriles with metallocene precursors as Cp*2M(η2-Me3SiC2SiMe3) (Cp* = η5– pentamethylcyclopentadienyl, M = Ti, Zr) to synthesize and characterize new strained metallacycles with heteroatoms. In the reaction with diphenylacetonitrile the complex Cp*2Zr(N=CH-CHPh2)(N=C=CPh2) (Becker et al. (2013)) was formed after 4 h at 358 K. However a longer reaction time of 24 h led to the cleavage of the Ph2CH—CN bond upon partial oxidation thus forming the title compound. The zirconium(IV) atom is coordinated by two pentamethylcyclopentadienyl ligands in a η5-fashion, as well as by the N– and O-atoms of the amidate and an additional CN ligand. The four-membered ring is almost planar (mean deviation from the best plane defined by Zr1, O1, C1, N1 = 0.008 Å). The bond lengths O1—C1 1.290 (3) and N1—C1 1.294 (3) Å suggest the resonance form with electronic delocalization within the OCN unit. The molecules are connected to centrosymmetric dimers via N—H···N hydrogen bonds.

For structures of mononuclear group 4 metallocene complexes with κ2-N,O chelating amidate ligands without additional coordination of its substituents, see: Arndt et al. (1996); Gambarotta et al. (1985); Haehnel et al. (2013); Ruck & Bergman (2004). For structures of group 4 metallocene complexes with κ2-N,O chelating OC(P)N(R) ligands see: Segerer et al. (2000); Frömel et al. (2013). For a similar complex, see: Becker et al. (2013).

Computing details top

Data collection: APEX2 (Bruker, 2011); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with 30% displacement ellipsoids. Hydrogen atoms (except H1 and H2) are omitted for clarity.
(Cyanido-κC)(2,2-diphenylacetamido-κ2N,O)bis(η5-pentamethylcyclopentadienyl)zirconium(IV) top
Crystal data top
[Zr(C10H15)2(C14H12NO)(CN)]F(000) = 1256
Mr = 597.93Dx = 1.312 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 9874 reflections
a = 11.8961 (3) Åθ = 2.4–27.8°
b = 12.0640 (3) ŵ = 0.39 mm1
c = 21.2489 (5) ÅT = 150 K
β = 97.036 (1)°Prism, red
V = 3026.56 (13) Å30.26 × 0.13 × 0.10 mm
Z = 4
Data collection top
Bruker Kappa APEXII DUO
diffractometer
6612 independent reflections
Radiation source: fine-focus sealed tube5575 reflections with I > 2σ(I)
Curved graphite monochromatorRint = 0.047
Detector resolution: 8.3333 pixels mm-1θmax = 27.0°, θmin = 1.9°
φ and ω scansh = 1515
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
k = 1515
Tmin = 0.92, Tmax = 1.00l = 2726
82697 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.033Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.085H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.0376P)2 + 3.2391P]
where P = (Fo2 + 2Fc2)/3
6612 reflections(Δ/σ)max = 0.001
370 parametersΔρmax = 1.11 e Å3
1 restraintΔρmin = 0.46 e Å3
Crystal data top
[Zr(C10H15)2(C14H12NO)(CN)]V = 3026.56 (13) Å3
Mr = 597.93Z = 4
Monoclinic, P21/nMo Kα radiation
a = 11.8961 (3) ŵ = 0.39 mm1
b = 12.0640 (3) ÅT = 150 K
c = 21.2489 (5) Å0.26 × 0.13 × 0.10 mm
β = 97.036 (1)°
Data collection top
Bruker Kappa APEXII DUO
diffractometer
6612 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
5575 reflections with I > 2σ(I)
Tmin = 0.92, Tmax = 1.00Rint = 0.047
82697 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0331 restraint
wR(F2) = 0.085H atoms treated by a mixture of independent and constrained refinement
S = 1.03Δρmax = 1.11 e Å3
6612 reflectionsΔρmin = 0.46 e Å3
370 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N20.34293 (17)0.01561 (17)0.00689 (9)0.0328 (4)
C10.57641 (17)0.23133 (18)0.13538 (10)0.0249 (4)
C20.69873 (18)0.27295 (19)0.15050 (11)0.0287 (5)
C30.77338 (17)0.18091 (19)0.18260 (10)0.0263 (4)
C40.8135 (2)0.1921 (2)0.24651 (12)0.0380 (6)
H40.79860.25820.26830.046*
C50.8753 (2)0.1074 (2)0.27887 (12)0.0440 (7)
H50.90260.11600.32250.053*
C60.89672 (19)0.0113 (2)0.24769 (10)0.0385 (6)
H60.93760.04730.26990.046*
C70.85877 (19)0.0001 (2)0.18414 (11)0.0361 (5)
H70.87430.06600.16250.043*
C80.79802 (19)0.0848 (2)0.15157 (12)0.0327 (5)
H80.77310.07670.10760.039*
C90.74590 (17)0.32921 (19)0.09490 (11)0.0288 (5)
C100.7888 (2)0.4362 (2)0.10502 (14)0.0395 (6)
H100.78590.47080.14500.047*
C110.8354 (2)0.4929 (2)0.05789 (17)0.0500 (8)
H110.86490.56540.06580.060*
C120.8391 (2)0.4447 (2)0.00014 (15)0.0476 (7)
H120.87100.48350.03260.057*
C130.7963 (2)0.3402 (3)0.01104 (13)0.0462 (7)
H130.79820.30690.05140.055*
C140.7503 (2)0.2821 (2)0.03594 (12)0.0376 (6)
H140.72160.20940.02760.045*
C150.34628 (17)0.04561 (18)0.03489 (10)0.0251 (4)
C160.24386 (18)0.02069 (19)0.16252 (11)0.0302 (5)
C170.2474 (2)0.1093 (2)0.20580 (12)0.0366 (6)
C180.3598 (3)0.1224 (2)0.23301 (11)0.0432 (7)
C190.4268 (2)0.0400 (2)0.20780 (12)0.0367 (6)
C200.35450 (19)0.02379 (18)0.16495 (11)0.0294 (5)
C210.1403 (2)0.0292 (3)0.12447 (16)0.0520 (8)
H21A0.15960.05330.08310.078*
H21B0.08000.02650.11840.078*
H21C0.11430.09290.14730.078*
C220.1453 (3)0.1632 (3)0.22946 (17)0.0641 (10)
H22A0.13490.13290.27110.096*
H22B0.07760.14820.19950.096*
H22C0.15730.24350.23300.096*
C230.3975 (4)0.2020 (3)0.28566 (14)0.0799 (13)
H23A0.35710.27240.27790.120*
H23B0.47920.21480.28740.120*
H23C0.38090.17080.32610.120*
C240.5490 (2)0.0163 (3)0.22950 (18)0.0754 (13)
H24A0.55460.03850.26380.113*
H24B0.58700.08490.24490.113*
H24C0.58520.01300.19400.113*
C250.3906 (3)0.1274 (2)0.13436 (15)0.0571 (9)
H25A0.45700.11170.11270.086*
H25B0.32860.15420.10350.086*
H25C0.41000.18420.16690.086*
C260.34767 (17)0.36419 (18)0.06928 (10)0.0254 (4)
C270.31732 (19)0.29185 (19)0.01829 (10)0.0286 (5)
C280.2112 (2)0.24409 (19)0.02668 (12)0.0321 (5)
C290.17714 (18)0.28634 (19)0.08314 (12)0.0304 (5)
C300.26353 (19)0.35821 (18)0.11072 (11)0.0272 (5)
C310.4448 (2)0.4441 (2)0.07480 (14)0.0426 (6)
H31A0.50960.40990.05790.064*
H31B0.46620.46330.11950.064*
H31C0.42230.51140.05070.064*
C320.3803 (3)0.2783 (3)0.03833 (13)0.0503 (8)
H32A0.36110.33940.06800.075*
H32B0.35900.20770.05940.075*
H32C0.46200.27870.02450.075*
C330.1360 (3)0.1774 (2)0.02120 (16)0.0569 (9)
H33A0.09780.11960.00060.085*
H33B0.18190.14310.05120.085*
H33C0.07930.22620.04430.085*
C340.0582 (2)0.2786 (3)0.10029 (18)0.0566 (9)
H34A0.00690.32090.06960.085*
H34B0.05590.30900.14290.085*
H34C0.03440.20080.09950.085*
C350.2603 (3)0.4316 (2)0.16760 (13)0.0468 (7)
H35A0.33040.42240.19650.070*
H35B0.19540.41130.18950.070*
H35C0.25290.50910.15390.070*
O10.50256 (12)0.27068 (13)0.16907 (7)0.0267 (3)
N10.53651 (15)0.15917 (15)0.09345 (9)0.0255 (4)
Zr10.357855 (15)0.171301 (16)0.116794 (9)0.01859 (7)
H10.696 (2)0.334 (2)0.1837 (13)0.036 (7)*
H20.580 (2)0.125 (2)0.0680 (13)0.040 (8)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N20.0342 (10)0.0311 (10)0.0329 (11)0.0002 (8)0.0028 (8)0.0078 (9)
C10.0241 (10)0.0236 (10)0.0260 (11)0.0015 (8)0.0010 (8)0.0046 (9)
C20.0225 (10)0.0283 (12)0.0343 (12)0.0006 (9)0.0006 (9)0.0053 (10)
C30.0170 (9)0.0332 (12)0.0282 (11)0.0026 (8)0.0017 (8)0.0012 (9)
C40.0338 (12)0.0481 (15)0.0319 (13)0.0023 (11)0.0032 (10)0.0060 (11)
C50.0350 (13)0.0678 (19)0.0278 (12)0.0033 (13)0.0014 (10)0.0094 (13)
C60.0257 (11)0.0513 (16)0.0385 (13)0.0029 (11)0.0031 (10)0.0200 (12)
C70.0258 (11)0.0368 (13)0.0447 (14)0.0020 (10)0.0009 (10)0.0025 (11)
C80.0266 (11)0.0385 (13)0.0315 (12)0.0008 (10)0.0024 (9)0.0025 (10)
C90.0155 (9)0.0278 (11)0.0415 (13)0.0017 (8)0.0028 (8)0.0055 (10)
C100.0275 (11)0.0281 (12)0.0616 (17)0.0028 (10)0.0004 (11)0.0026 (12)
C110.0345 (13)0.0229 (12)0.090 (2)0.0003 (10)0.0033 (14)0.0133 (14)
C120.0319 (13)0.0497 (16)0.0590 (18)0.0039 (12)0.0038 (12)0.0322 (15)
C130.0412 (14)0.0571 (18)0.0385 (14)0.0104 (13)0.0020 (11)0.0103 (13)
C140.0357 (13)0.0349 (13)0.0410 (14)0.0109 (10)0.0005 (11)0.0026 (11)
C150.0218 (10)0.0241 (10)0.0296 (11)0.0012 (8)0.0038 (8)0.0022 (9)
C160.0260 (10)0.0280 (11)0.0378 (13)0.0022 (9)0.0086 (9)0.0112 (10)
C170.0463 (14)0.0310 (13)0.0374 (13)0.0044 (11)0.0251 (11)0.0093 (11)
C180.0728 (19)0.0369 (14)0.0213 (11)0.0169 (13)0.0112 (12)0.0030 (10)
C190.0283 (11)0.0468 (15)0.0338 (13)0.0054 (10)0.0016 (10)0.0237 (11)
C200.0343 (11)0.0244 (11)0.0316 (12)0.0044 (9)0.0129 (9)0.0110 (9)
C210.0371 (14)0.0476 (17)0.069 (2)0.0163 (12)0.0024 (13)0.0180 (15)
C220.084 (2)0.0479 (18)0.072 (2)0.0241 (17)0.0557 (19)0.0213 (16)
C230.138 (4)0.073 (2)0.0282 (15)0.050 (2)0.0097 (19)0.0038 (15)
C240.0341 (15)0.099 (3)0.087 (3)0.0100 (16)0.0154 (15)0.069 (2)
C250.093 (2)0.0313 (14)0.0528 (18)0.0231 (15)0.0334 (17)0.0160 (13)
C260.0232 (10)0.0228 (10)0.0293 (11)0.0040 (8)0.0003 (8)0.0076 (9)
C270.0348 (12)0.0279 (11)0.0230 (11)0.0109 (9)0.0024 (9)0.0070 (9)
C280.0324 (12)0.0236 (11)0.0364 (13)0.0061 (9)0.0121 (10)0.0009 (10)
C290.0216 (10)0.0247 (11)0.0450 (14)0.0083 (9)0.0040 (9)0.0088 (10)
C300.0312 (11)0.0208 (10)0.0295 (11)0.0083 (8)0.0036 (9)0.0042 (9)
C310.0368 (13)0.0326 (13)0.0561 (17)0.0063 (11)0.0032 (12)0.0183 (12)
C320.073 (2)0.0499 (17)0.0317 (14)0.0236 (15)0.0221 (13)0.0135 (12)
C330.0587 (18)0.0383 (15)0.0634 (19)0.0060 (13)0.0336 (16)0.0080 (14)
C340.0244 (12)0.0531 (18)0.094 (2)0.0121 (12)0.0138 (14)0.0289 (17)
C350.073 (2)0.0287 (13)0.0398 (15)0.0130 (13)0.0124 (14)0.0039 (11)
O10.0238 (7)0.0297 (8)0.0266 (8)0.0004 (6)0.0030 (6)0.0016 (6)
N10.0214 (8)0.0266 (9)0.0290 (9)0.0017 (7)0.0047 (7)0.0027 (8)
Zr10.01732 (10)0.01876 (10)0.02010 (10)0.00190 (7)0.00397 (7)0.00094 (8)
Geometric parameters (Å, º) top
N2—C151.152 (3)C21—H21B0.9800
C1—O11.290 (3)C21—H21C0.9800
C1—N11.294 (3)C22—H22A0.9800
C1—C21.536 (3)C22—H22B0.9800
C1—Zr12.681 (2)C22—H22C0.9800
C2—C91.528 (3)C23—H23A0.9800
C2—C31.529 (3)C23—H23B0.9800
C2—H11.03 (3)C23—H23C0.9800
C3—C81.383 (3)C24—H24A0.9800
C3—C41.390 (3)C24—H24B0.9800
C4—C51.389 (4)C24—H24C0.9800
C4—H40.9500C25—H25A0.9800
C5—C61.375 (3)C25—H25B0.9800
C5—H50.9500C25—H25C0.9800
C6—C71.377 (2)C26—C271.404 (3)
C6—H60.9500C26—C301.414 (3)
C7—C81.386 (3)C26—C311.499 (3)
C7—H70.9500C26—Zr12.533 (2)
C8—H80.9500C27—C281.419 (3)
C9—C141.383 (4)C27—C321.502 (3)
C9—C101.395 (3)C27—Zr12.546 (2)
C10—C111.383 (4)C28—C291.408 (4)
C10—H100.9500C28—C331.503 (3)
C11—C121.369 (4)C28—Zr12.581 (2)
C11—H110.9500C29—C301.415 (3)
C12—C131.369 (4)C29—C341.507 (3)
C12—H120.9500C29—Zr12.585 (2)
C13—C141.386 (4)C30—C351.503 (3)
C13—H130.9500C30—Zr12.515 (2)
C14—H140.9500C31—H31A0.9800
C15—Zr12.300 (2)C31—H31B0.9800
C16—C171.407 (4)C31—H31C0.9800
C16—C201.416 (3)C32—H32A0.9800
C16—C211.513 (4)C32—H32B0.9800
C16—Zr12.531 (2)C32—H32C0.9800
C17—C181.399 (4)C33—H33A0.9800
C17—C221.518 (4)C33—H33B0.9800
C17—Zr12.544 (2)C33—H33C0.9800
C18—C191.419 (4)C34—H34A0.9800
C18—C231.501 (4)C34—H34B0.9800
C18—Zr12.536 (2)C34—H34C0.9800
C19—C201.403 (4)C35—H35A0.9800
C19—C241.497 (4)C35—H35B0.9800
C19—Zr12.556 (2)C35—H35C0.9800
C20—C251.496 (4)O1—Zr12.2729 (15)
C20—Zr12.569 (2)N1—Zr12.2455 (18)
C21—H21A0.9800N1—H20.89 (3)
O1—C1—N1114.36 (19)C32—C27—Zr1122.23 (16)
O1—C1—C2117.13 (19)C29—C28—C27108.3 (2)
N1—C1—C2128.5 (2)C29—C28—C33124.1 (2)
O1—C1—Zr157.79 (10)C27—C28—C33126.7 (3)
N1—C1—Zr156.59 (11)C29—C28—Zr174.33 (13)
C2—C1—Zr1174.91 (16)C27—C28—Zr172.56 (12)
C9—C2—C3114.79 (18)C33—C28—Zr1127.75 (16)
C9—C2—C1114.33 (18)C28—C29—C30107.7 (2)
C3—C2—C1109.85 (18)C28—C29—C34124.1 (2)
C9—C2—H1104.9 (15)C30—C29—C34126.4 (2)
C3—C2—H1106.4 (15)C28—C29—Zr174.05 (12)
C1—C2—H1105.7 (15)C30—C29—Zr171.18 (12)
C8—C3—C4118.6 (2)C34—C29—Zr1132.34 (17)
C8—C3—C2122.8 (2)C26—C30—C29107.9 (2)
C4—C3—C2118.5 (2)C26—C30—C35124.1 (2)
C5—C4—C3120.7 (2)C29—C30—C35127.2 (2)
C5—C4—H4119.7C26—C30—Zr174.46 (12)
C3—C4—H4119.7C29—C30—Zr176.63 (12)
C6—C5—C4120.0 (2)C35—C30—Zr1122.86 (16)
C6—C5—H5120.0C26—C31—H31A109.5
C4—C5—H5120.0C26—C31—H31B109.5
C5—C6—C7119.8 (2)H31A—C31—H31B109.5
C5—C6—H6120.1C26—C31—H31C109.5
C7—C6—H6120.1H31A—C31—H31C109.5
C6—C7—C8120.4 (2)H31B—C31—H31C109.5
C6—C7—H7119.8C27—C32—H32A109.5
C8—C7—H7119.8C27—C32—H32B109.5
C3—C8—C7120.5 (2)H32A—C32—H32B109.5
C3—C8—H8119.7C27—C32—H32C109.5
C7—C8—H8119.7H32A—C32—H32C109.5
C14—C9—C10117.8 (2)H32B—C32—H32C109.5
C14—C9—C2125.2 (2)C28—C33—H33A109.5
C10—C9—C2117.0 (2)C28—C33—H33B109.5
C11—C10—C9121.1 (3)H33A—C33—H33B109.5
C11—C10—H10119.4C28—C33—H33C109.5
C9—C10—H10119.4H33A—C33—H33C109.5
C12—C11—C10120.2 (2)H33B—C33—H33C109.5
C12—C11—H11119.9C29—C34—H34A109.5
C10—C11—H11119.9C29—C34—H34B109.5
C11—C12—C13119.4 (3)H34A—C34—H34B109.5
C11—C12—H12120.3C29—C34—H34C109.5
C13—C12—H12120.3H34A—C34—H34C109.5
C12—C13—C14121.0 (3)H34B—C34—H34C109.5
C12—C13—H13119.5C30—C35—H35A109.5
C14—C13—H13119.5C30—C35—H35B109.5
C9—C14—C13120.5 (2)H35A—C35—H35B109.5
C9—C14—H14119.8C30—C35—H35C109.5
C13—C14—H14119.8H35A—C35—H35C109.5
N2—C15—Zr1177.97 (19)H35B—C35—H35C109.5
C17—C16—C20108.1 (2)C1—O1—Zr193.51 (12)
C17—C16—C21127.5 (2)C1—N1—Zr194.67 (14)
C20—C16—C21124.1 (2)C1—N1—H2122.6 (18)
C17—C16—Zr174.40 (13)Zr1—N1—H2142.7 (18)
C20—C16—Zr175.33 (12)N1—Zr1—O157.43 (6)
C21—C16—Zr1121.31 (17)N1—Zr1—C1576.14 (7)
C18—C17—C16107.8 (2)O1—Zr1—C15133.57 (6)
C18—C17—C22125.3 (3)N1—Zr1—C30118.39 (7)
C16—C17—C22125.5 (3)O1—Zr1—C3081.87 (6)
C18—C17—Zr173.72 (13)C15—Zr1—C30124.57 (7)
C16—C17—Zr173.40 (12)N1—Zr1—C16127.16 (7)
C22—C17—Zr1128.88 (17)O1—Zr1—C16126.89 (7)
C17—C18—C19108.5 (2)C15—Zr1—C1680.32 (8)
C17—C18—C23124.3 (3)C30—Zr1—C16113.99 (7)
C19—C18—C23126.8 (3)N1—Zr1—C2688.41 (7)
C17—C18—Zr174.31 (14)O1—Zr1—C2672.94 (6)
C19—C18—Zr174.59 (13)C15—Zr1—C26107.97 (7)
C23—C18—Zr1122.88 (19)C30—Zr1—C2632.52 (7)
C20—C19—C18107.5 (2)C16—Zr1—C26144.15 (7)
C20—C19—C24126.2 (3)N1—Zr1—C18107.68 (9)
C18—C19—C24125.9 (3)O1—Zr1—C1874.38 (7)
C20—C19—Zr174.59 (13)C15—Zr1—C18125.16 (8)
C18—C19—Zr173.05 (14)C30—Zr1—C18102.10 (9)
C24—C19—Zr1124.10 (17)C16—Zr1—C1853.18 (8)
C19—C20—C16108.0 (2)C26—Zr1—C18126.59 (8)
C19—C20—C25123.6 (2)N1—Zr1—C17137.22 (8)
C16—C20—C25128.0 (3)O1—Zr1—C17102.76 (7)
C19—C20—Zr173.63 (13)C15—Zr1—C17112.35 (8)
C16—C20—Zr172.43 (12)C30—Zr1—C1791.95 (8)
C25—C20—Zr1124.99 (16)C16—Zr1—C1732.20 (8)
C16—C21—H21A109.5C26—Zr1—C17124.23 (7)
C16—C21—H21B109.5C18—Zr1—C1731.98 (9)
H21A—C21—H21B109.5N1—Zr1—C2786.83 (7)
C16—C21—H21C109.5O1—Zr1—C2798.99 (7)
H21A—C21—H21C109.5C15—Zr1—C2776.51 (8)
H21B—C21—H21C109.5C30—Zr1—C2753.65 (7)
C17—C22—H22A109.5C16—Zr1—C27132.01 (8)
C17—C22—H22B109.5C26—Zr1—C2732.08 (7)
H22A—C22—H22B109.5C18—Zr1—C27155.74 (9)
C17—C22—H22C109.5C17—Zr1—C27135.74 (8)
H22A—C22—H22C109.5N1—Zr1—C1984.38 (7)
H22B—C22—H22C109.5O1—Zr1—C1978.67 (7)
C18—C23—H23A109.5C15—Zr1—C1998.49 (9)
C18—C23—H23B109.5C30—Zr1—C19133.98 (8)
H23A—C23—H23B109.5C16—Zr1—C1953.28 (7)
C18—C23—H23C109.5C26—Zr1—C19150.00 (8)
H23A—C23—H23C109.5C18—Zr1—C1932.36 (9)
H23B—C23—H23C109.5C17—Zr1—C1953.30 (8)
C19—C24—H24A109.5C27—Zr1—C19170.73 (8)
C19—C24—H24B109.5N1—Zr1—C2095.14 (7)
H24A—C24—H24B109.5O1—Zr1—C20109.66 (7)
C19—C24—H24C109.5C15—Zr1—C2072.23 (7)
H24A—C24—H24C109.5C30—Zr1—C20144.43 (7)
H24B—C24—H24C109.5C16—Zr1—C2032.24 (7)
C20—C25—H25A109.5C26—Zr1—C20176.37 (7)
C20—C25—H25B109.5C18—Zr1—C2052.96 (8)
H25A—C25—H25B109.5C17—Zr1—C2053.11 (7)
C20—C25—H25C109.5C27—Zr1—C20147.17 (8)
H25A—C25—H25C109.5C19—Zr1—C2031.78 (8)
H25B—C25—H25C109.5N1—Zr1—C28115.49 (8)
C27—C26—C30108.32 (19)O1—Zr1—C28125.85 (7)
C27—C26—C31125.7 (2)C15—Zr1—C2871.97 (7)
C30—C26—C31125.6 (2)C30—Zr1—C2853.14 (7)
C27—C26—Zr174.44 (13)C16—Zr1—C28100.58 (8)
C30—C26—Zr173.02 (12)C26—Zr1—C2852.91 (7)
C31—C26—Zr1124.11 (15)C18—Zr1—C28136.57 (9)
C26—C27—C28107.7 (2)C17—Zr1—C28106.73 (8)
C26—C27—C32125.4 (2)C27—Zr1—C2832.12 (8)
C28—C27—C32126.5 (2)C19—Zr1—C28153.78 (8)
C26—C27—Zr173.47 (12)C20—Zr1—C28124.41 (8)
C28—C27—Zr175.32 (13)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H2···N2i0.89 (3)2.14 (3)3.014 (3)168 (3)
Symmetry code: (i) x+1, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H2···N2i0.89 (3)2.14 (3)3.014 (3)168 (3)
Symmetry code: (i) x+1, y, z.
 

Acknowledgements

We thank our technical staff, in particular Kathleen Schubert, for assistance. This work was supported by the Deutsche Forschungsgemeinschaft (RO1269/8–1).

References

First citationArndt, P., Lefeber, C., Kempe, R., Tillack, A. & Rosenthal, U. (1996). Chem. Ber. 129, 1281–1285.  CSD CrossRef CAS Web of Science Google Scholar
First citationBecker, L., Burlakov, V. V., Arndt, P., Spannenberg, A., Baumann, W., Jiao, H. & Rosenthal, U. (2013). Chem. Eur. J. 19, 4230–4237.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationBruker (2008). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2009). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2011). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFrömel, S., Kehr, G., Fröhlich, R., Daniliuc, C. G. & Erker, G. (2013). Dalton Trans. 42, 14531–14536.  Web of Science PubMed Google Scholar
First citationGambarotta, S., Strologo, S., Floriani, C., Chiesi-Villa, A. & Guastini, C. (1985). Inorg. Chem. 24, 654–660.  CSD CrossRef CAS Web of Science Google Scholar
First citationHaehnel, M., Yim, J. C.-H., Schafer, L. L. & Rosenthal, U. (2013). Angew. Chem. Int. Ed. 52, 11415–11419.  Web of Science CSD CrossRef CAS Google Scholar
First citationRuck, R. T. & Bergman, R. G. (2004). Angew. Chem. Int. Ed. 43, 5375–5377.  Web of Science CSD CrossRef Google Scholar
First citationSegerer, U., Sieler, J. & Hey-Hawkins, E. (2000). Organometallics, 19, 2445–2449.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds