organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Ethyl (2E,4E)-5-(3-bromo­phenyl­sulfon­yl)penta-2,4-dienoate

aDepartment of Physics, Presidency College, Chennai 600 005, India, and bDepartment of Chemistry, Pachaiyappa's College, Chennai 600 030, India
*Correspondence e-mail: aravindhanpresidency@gmail.com

(Received 11 January 2013; accepted 27 February 2013; online 6 March 2013)

In the title compound, C13H13BrO4S, both C=C double bonds adopt an E conformation. The S atom has a distorted tetra­hedral geometry with bond angles ranging from 102.17 (13) to 119.77 (14)°. The ethyl acrylate substituent adopts an extented conformation with all torsion angles close to 180°. In the crystal, mol­ecules are linked into centrosymmetric R22(14) dimers via pairs of C—H⋯O hydrogen bonds.

Related literature

For the biological activity of phenyl sulfonyl-containing compounds, see: De-Benedetti et al. (1985[De-Benedetti, P. G., Folli, U., Iarossi, D. & Frassineti, C. (1985). J. Chem. Soc. Perkin Trans. 2, pp. 1527-1532.]); Chumakov et al. (2006[Chumakov, Y. M., Tsapkov, V. I., Bocelli, G., Antonsyak, B. Y., Palomares-Sánches, S. A., Ortiz, R. S. & Gulya, A. P. (2006). J. Struct. Chem. 47, 923-929.]); Kremer et al. (2006[Kremer, E., Facchin, G., Estévez, E., Alborés, P., Baran, E. J., Ellena, J. & Torre, M. H. (2006). J. Inorg. Biochem. 100, 1167-1175.]). For related structures, see: Li et al. (2011[Li, X.-L. (2011). Acta Cryst. E67, o2622.]); Sankar et al. (2012[Sankar, U., Sabari, V., Suresh, G., Uma, R. & Aravindhan, S. (2012). Acta Cryst. E68, o1093.]); Chakkaravarthi et al. (2008[Chakkaravarthi, G., Dhayalan, V., Mohanakrishnan, A. K. & Manivannan, V. (2008). Acta Cryst. E64, o542.]); Rodriguez et al. (1995[Rodriguez, J. G., del Valle, C., Esteban-Calderon, C. & Martinez-Repoll, M. (1995). J. Chem. Crystallogr. 25, 249-257.]). For graph-set analysis of hydrogen bonds, see: Sankar et al. (2012[Sankar, U., Sabari, V., Suresh, G., Uma, R. & Aravindhan, S. (2012). Acta Cryst. E68, o1093.]).

[Scheme 1]

Experimental

Crystal data
  • C13H13BrO4S

  • Mr = 345.20

  • Monoclinic, C 2/c

  • a = 27.883 (5) Å

  • b = 6.001 (5) Å

  • c = 17.256 (5) Å

  • β = 94.020 (5)°

  • V = 2880 (3) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 3.01 mm−1

  • T = 293 K

  • 0.32 × 0.20 × 0.10 mm

Data collection
  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.972, Tmax = 0.992

  • 14906 measured reflections

  • 3479 independent reflections

  • 2360 reflections with I > 2σ(I)

  • Rint = 0.035

Refinement
  • R[F2 > 2σ(F2)] = 0.039

  • wR(F2) = 0.116

  • S = 1.01

  • 3479 reflections

  • 172 parameters

  • H-atom parameters constrained

  • Δρmax = 0.73 e Å−3

  • Δρmin = −0.41 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C7—H7⋯O3i 0.93 2.37 3.235 (4) 154
Symmetry code: (i) -x+2, -y, -z.

Data collection: APEX2 (Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Phenyl sulfonyl containing compounds show a wide range of biological properties (De-Benedetti et al., 1985). Sulfonamide derivatives are extensively used in medicine as they possess a wide range of medicinal, pharmacological and antimicrobial properties (Chumakov et al., 2006, Kremer et al., 2006).

Fig.1. shows a displacement ellipsoid plot of the title compound. The geometric parameters of the molecule of (I) (Fig. 1) agree well with the reported values of similar structures (Sankar et al., 2012). Both C=C double bonds display an E configuration. The title molecule exhibits structural similarities with the already reported related structures (Li et al., 2011; Sankar, et al., 2012). The dihedral angle between two planes (C6—C5—S1—O1) and (C4—C5—S1—O2) is 35.30 (13)°. The torsion angles C6—C5—S1-O1 and C4—C5—S1—O2 [-24.1 (2)° and 28 (2)°, respectively] indicate syn-conformation of the sulfonyl moiety. The S atom exhibits significant deviation from a regular tetrahedron, with the largest deviations being seen for the O1—S1—O2 [119.77 (14)°] and C5—S1—C7 [102.17 (13)°] angles. The widening of the angles may be due to repulsive interactions between the two short S=O bonds, similar to what is observed in related structures (Chakkaravarthi et al., 2008; Rodriguez et al., 1995). The ethyl acrylate group substituted at C7 position of the phenyl sulfonyl takes up an extented conformation which is evident from the torsion angle values [C8—C9—C10—C11 =] -178.6 (2)°; [C9—C10—C11—O3 =] 0.9 (3)°; [C9—C10—C11—O4 =]- 177.5 (2)°; [C10—C11—O4—C12 =]176.7 [C11—O4—C12—C13=] -156.6 (2)°.

The crystal packing is stabilized by C—H···O intermolecular interactions. The molecules are linked into centrosymmetric R22(14) dimers via C7—H7···O3 hydrogen bonds (Table 1). The packing of the compound is shown in Fig. 2.

Related literature top

For the biological activity of phenyl sulfonyl-containing compounds, see: De-Benedetti et al. (1985); Chumakov et al. (2006); Kremer et al. (2006). For related structures, see: Li et al. (2011); Sankar et al. (2012); Chakkaravarthi et al. (2008); Rodriguez et al. (1995). For graph-set analysis of hydrogen bonds, see: Sankar et al. (2012).

Experimental top

LHMDS (6.8 ml, 7.2 mmol, 2.5 equiv, 1.06 molar solution in THF) was added drop wise to a -15 °C cooled solution of bis 3-bromo phenyl sulfonyl methane (1 g, 2.9 mmol, 1 equiv) in dried THF (15 ml) under argon atm. The reaction mixture was stirred at -15 °C for 1 h, and then trans ethyl 4-bromo crotonate (0.61 g, 3.2 mmol, 1.1 equiv) in dry THF (5 ml) was added drop wise over the period of 10 min and allow the reaction mixture to come RT over the period of 1–2 h and stirred at RT for 24 h. The reaction mixture was quenched with sat NH4Cl (20 ml) and extracted with ethyl acetate (2x20 ml) washed with water (2x20 ml) and sat brine (20 ml), the organic layer was dried over MgSO4. Evaporation of the solvent under vacuum furnished desired crude product, The residue was purified by column chromatography on silica gel (230–400 mesh) with 17–20% of ethyl acetate in hexanes afforded the corresponding product 2E,4E)-ethyl 5-(3-bromophenylsulfonyl)penta-2,4-dienoateenoate as a colourless solid.

Refinement top

Hydrogen atoms were placed in calculated positions with C—H ranging from 0.93 Å to 0.97 Å and refined using a the riding model with fixed isotropic displacement parameters: Uiso(H) = 1.5 Ueq(C) for the methyl group and Uiso(H) = 1.2 Ueq(C) for other groups.

Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing 30% probability displacement ellipsoids for involed H atoms.
[Figure 2] Fig. 2. A view of the crystal packing H atoms involved in hydrogen bonding (dashed lines) have been omitted for clarity.
Ethyl (2E,4E)-5-(3-bromophenylsulfonyl)penta-2,4-dienoate top
Crystal data top
C13H13BrO4SF(000) = 1392
Mr = 345.20Dx = 1.592 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 5710 reflections
a = 27.883 (5) Åθ = 1.8–28.5°
b = 6.001 (5) ŵ = 3.01 mm1
c = 17.256 (5) ÅT = 293 K
β = 94.020 (5)°Monoclinic, colourless
V = 2880 (3) Å30.32 × 0.20 × 0.10 mm
Z = 8
Data collection top
Bruker APEXII CCD area-detector
diffractometer
3479 independent reflections
Radiation source: fine-focus sealed tube2360 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.035
ω and ϕ scansθmax = 28.1°, θmin = 2.4°
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
h = 3536
Tmin = 0.972, Tmax = 0.992k = 77
14906 measured reflectionsl = 2222
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.116H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.0677P)2 + 0.4368P]
where P = (Fo2 + 2Fc2)/3
3479 reflections(Δ/σ)max = 0.006
172 parametersΔρmax = 0.73 e Å3
0 restraintsΔρmin = 0.41 e Å3
Crystal data top
C13H13BrO4SV = 2880 (3) Å3
Mr = 345.20Z = 8
Monoclinic, C2/cMo Kα radiation
a = 27.883 (5) ŵ = 3.01 mm1
b = 6.001 (5) ÅT = 293 K
c = 17.256 (5) Å0.32 × 0.20 × 0.10 mm
β = 94.020 (5)°
Data collection top
Bruker APEXII CCD area-detector
diffractometer
3479 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
2360 reflections with I > 2σ(I)
Tmin = 0.972, Tmax = 0.992Rint = 0.035
14906 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0390 restraints
wR(F2) = 0.116H-atom parameters constrained
S = 1.01Δρmax = 0.73 e Å3
3479 reflectionsΔρmin = 0.41 e Å3
172 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.826326 (13)0.42424 (6)0.247333 (16)0.06505 (16)
S10.83626 (3)0.20959 (12)0.06349 (4)0.0457 (2)
O10.84030 (9)0.4471 (3)0.06892 (12)0.0624 (6)
O20.80643 (9)0.0904 (4)0.12028 (12)0.0616 (6)
O31.04522 (10)0.3791 (5)0.07427 (19)0.0914 (9)
C70.89422 (11)0.0998 (5)0.05976 (16)0.0494 (7)
H70.91900.17780.03310.059*
O41.01637 (8)0.6642 (5)0.14354 (16)0.0839 (8)
C100.96335 (12)0.3814 (6)0.1170 (2)0.0589 (8)
H100.93960.46530.14380.071*
C50.81767 (9)0.1422 (4)0.02920 (14)0.0398 (6)
C60.82704 (9)0.2916 (4)0.08969 (13)0.0411 (6)
H60.84140.42860.08150.049*
C40.79667 (11)0.0622 (5)0.04048 (17)0.0520 (7)
H40.79130.16160.00060.062*
C80.90412 (11)0.0915 (5)0.09374 (16)0.0484 (7)
H80.87950.16640.12200.058*
C111.01207 (12)0.4709 (6)0.10820 (18)0.0582 (8)
C20.79283 (10)0.0286 (5)0.17491 (17)0.0507 (7)
H20.78450.00940.22450.061*
C10.81425 (10)0.2298 (5)0.16221 (14)0.0428 (6)
C30.78369 (12)0.1169 (6)0.11396 (18)0.0585 (8)
H30.76870.25240.12230.070*
C90.95162 (11)0.1879 (5)0.08865 (16)0.0538 (8)
H90.97610.10530.06300.065*
C121.06419 (14)0.7664 (9)0.1426 (3)0.0987 (14)
H12A1.08830.65100.14600.118*
H12B1.07090.84630.09420.118*
C131.06654 (17)0.9140 (9)0.2053 (3)0.1135 (18)
H13B1.09790.98010.20390.170*
H13A1.06050.83420.25320.170*
H13C1.04281.02880.20170.170*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.0838 (3)0.0745 (3)0.03659 (18)0.00982 (17)0.00276 (15)0.01125 (13)
S10.0591 (5)0.0479 (4)0.0299 (3)0.0021 (3)0.0025 (3)0.0021 (3)
O10.0920 (17)0.0469 (13)0.0493 (12)0.0012 (11)0.0120 (11)0.0132 (9)
O20.0664 (14)0.0790 (16)0.0375 (10)0.0003 (11)0.0098 (9)0.0063 (9)
O30.0638 (17)0.102 (2)0.105 (2)0.0017 (15)0.0198 (15)0.0347 (17)
C70.0517 (18)0.0586 (19)0.0382 (14)0.0134 (14)0.0044 (12)0.0030 (12)
O40.0497 (14)0.0894 (18)0.110 (2)0.0094 (13)0.0102 (13)0.0372 (16)
C100.0491 (19)0.064 (2)0.0635 (19)0.0077 (15)0.0030 (15)0.0109 (15)
C50.0440 (15)0.0432 (14)0.0321 (12)0.0003 (12)0.0023 (11)0.0022 (10)
C60.0452 (16)0.0418 (15)0.0364 (13)0.0002 (12)0.0035 (11)0.0002 (11)
C40.0541 (19)0.0563 (19)0.0453 (15)0.0129 (14)0.0024 (13)0.0016 (13)
C80.0542 (18)0.0529 (17)0.0386 (14)0.0084 (14)0.0065 (12)0.0040 (12)
C110.052 (2)0.070 (2)0.0517 (17)0.0072 (16)0.0005 (15)0.0075 (15)
C20.0421 (17)0.068 (2)0.0425 (15)0.0031 (14)0.0089 (12)0.0115 (13)
C10.0410 (15)0.0531 (16)0.0341 (12)0.0095 (13)0.0009 (11)0.0028 (11)
C30.059 (2)0.063 (2)0.0539 (18)0.0192 (16)0.0038 (15)0.0145 (14)
C90.0539 (19)0.062 (2)0.0456 (15)0.0123 (15)0.0076 (13)0.0103 (14)
C120.053 (2)0.134 (4)0.107 (3)0.027 (2)0.012 (2)0.035 (3)
C130.081 (3)0.139 (5)0.121 (4)0.045 (3)0.013 (3)0.007 (3)
Geometric parameters (Å, º) top
Br1—C11.888 (3)C6—H60.9300
S1—O21.431 (2)C4—C31.382 (4)
S1—O11.433 (2)C4—H40.9300
S1—C71.742 (3)C8—C91.442 (4)
S1—C51.763 (2)C8—H80.9300
O3—C111.193 (4)C2—C11.371 (4)
C7—C81.327 (4)C2—C31.377 (5)
C7—H70.9300C2—H20.9300
O4—C111.320 (4)C3—H30.9300
O4—C121.467 (4)C9—H90.9300
C10—C91.310 (5)C12—C131.403 (6)
C10—C111.459 (5)C12—H12A0.9700
C10—H100.9300C12—H12B0.9700
C5—C41.379 (4)C13—H13B0.9600
C5—C61.387 (3)C13—H13A0.9600
C6—C11.376 (3)C13—H13C0.9600
O2—S1—O1119.77 (14)O3—C11—C10124.4 (3)
O2—S1—C7109.23 (14)O4—C11—C10112.9 (3)
O1—S1—C7107.56 (15)C1—C2—C3119.7 (3)
O2—S1—C5108.23 (13)C1—C2—H2120.2
O1—S1—C5108.47 (13)C3—C2—H2120.2
C7—S1—C5102.17 (13)C2—C1—C6121.8 (2)
C8—C7—S1122.1 (2)C2—C1—Br1118.4 (2)
C8—C7—H7118.9C6—C1—Br1119.8 (2)
S1—C7—H7118.9C2—C3—C4120.3 (3)
C11—O4—C12118.3 (3)C2—C3—H3119.9
C9—C10—C11122.9 (3)C4—C3—H3119.9
C9—C10—H10118.6C10—C9—C8125.8 (3)
C11—C10—H10118.6C10—C9—H9117.1
C4—C5—C6121.9 (2)C8—C9—H9117.1
C4—C5—S1119.1 (2)C13—C12—O4110.3 (3)
C6—C5—S1118.9 (2)C13—C12—H12A109.6
C1—C6—C5117.6 (2)O4—C12—H12A109.6
C1—C6—H6121.2C13—C12—H12B109.6
C5—C6—H6121.2O4—C12—H12B109.6
C5—C4—C3118.8 (3)H12A—C12—H12B108.1
C5—C4—H4120.6C12—C13—H13B109.5
C3—C4—H4120.6C12—C13—H13A109.5
C7—C8—C9122.6 (3)H13B—C13—H13A109.5
C7—C8—H8118.7C12—C13—H13C109.5
C9—C8—H8118.7H13B—C13—H13C109.5
O3—C11—O4122.7 (3)H13A—C13—H13C109.5
O2—S1—C7—C812.3 (3)C12—O4—C11—O31.7 (6)
O1—S1—C7—C8143.8 (2)C12—O4—C11—C10176.8 (4)
C5—S1—C7—C8102.1 (3)C9—C10—C11—O30.8 (6)
O2—S1—C5—C428.0 (3)C9—C10—C11—O4177.7 (3)
O1—S1—C5—C4159.4 (2)C3—C2—C1—C60.0 (4)
C7—S1—C5—C487.1 (3)C3—C2—C1—Br1179.8 (2)
O2—S1—C5—C6155.5 (2)C5—C6—C1—C20.2 (4)
O1—S1—C5—C624.1 (3)C5—C6—C1—Br1179.61 (19)
C7—S1—C5—C689.3 (2)C1—C2—C3—C41.0 (5)
C4—C5—C6—C10.5 (4)C5—C4—C3—C21.7 (5)
S1—C5—C6—C1176.9 (2)C11—C10—C9—C8178.6 (3)
C6—C5—C4—C31.5 (5)C7—C8—C9—C10176.0 (3)
S1—C5—C4—C3177.8 (2)C11—O4—C12—C13156.5 (4)
S1—C7—C8—C9177.7 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C7—H7···O3i0.932.373.235 (4)154
Symmetry code: (i) x+2, y, z.

Experimental details

Crystal data
Chemical formulaC13H13BrO4S
Mr345.20
Crystal system, space groupMonoclinic, C2/c
Temperature (K)293
a, b, c (Å)27.883 (5), 6.001 (5), 17.256 (5)
β (°) 94.020 (5)
V3)2880 (3)
Z8
Radiation typeMo Kα
µ (mm1)3.01
Crystal size (mm)0.32 × 0.20 × 0.10
Data collection
DiffractometerBruker APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2008)
Tmin, Tmax0.972, 0.992
No. of measured, independent and
observed [I > 2σ(I)] reflections
14906, 3479, 2360
Rint0.035
(sin θ/λ)max1)0.662
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.116, 1.01
No. of reflections3479
No. of parameters172
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.73, 0.41

Computer programs: APEX2 (Bruker, 2008), SAINT (Bruker, 2008), SHELXS97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 2012), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C7—H7···O3i0.932.373.235 (4)154.2
Symmetry code: (i) x+2, y, z.
 

Acknowledgements

SA and VS thank the UGC, India, for financial support. The authors thank Dr Babu Varghese, Senior Scientific Officer, SAIF, IIT, Chennai, India, for the X-ray intensity data collection.

References

First citationBruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChakkaravarthi, G., Dhayalan, V., Mohanakrishnan, A. K. & Manivannan, V. (2008). Acta Cryst. E64, o542.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationChumakov, Y. M., Tsapkov, V. I., Bocelli, G., Antonsyak, B. Y., Palomares-Sánches, S. A., Ortiz, R. S. & Gulya, A. P. (2006). J. Struct. Chem. 47, 923–929.  Web of Science CrossRef CAS Google Scholar
First citationDe-Benedetti, P. G., Folli, U., Iarossi, D. & Frassineti, C. (1985). J. Chem. Soc. Perkin Trans. 2, pp. 1527–1532.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationKremer, E., Facchin, G., Estévez, E., Alborés, P., Baran, E. J., Ellena, J. & Torre, M. H. (2006). J. Inorg. Biochem. 100, 1167–1175.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationLi, X.-L. (2011). Acta Cryst. E67, o2622.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRodriguez, J. G., del Valle, C., Esteban-Calderon, C. & Martinez-Repoll, M. (1995). J. Chem. Crystallogr. 25, 249–257.  CSD CrossRef Web of Science Google Scholar
First citationSankar, U., Sabari, V., Suresh, G., Uma, R. & Aravindhan, S. (2012). Acta Cryst. E68, o1093.  CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds