organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(±)-(rel-3R,3′R)-1,1′-Di­methyl-3,3′-bipyrrolidine-2,2′-di­thione

aMolecular Sciences Institute, School of Chemistry, University of the Witwatersrand, Private Bag 3, PO Wits, 2050 Johannesburg, South Africa
*Correspondence e-mail: joseph.michael@wits.ac.za

(Received 17 October 2012; accepted 19 October 2012; online 27 October 2012)

The asymmetric unit of the racemic title compound, C10H16N2S2, a C2-symmetric bis­(thiol­actam), contains one half-mol­ecule, the complete mol­ecule being generated by a twofold axis symmetry operation. The five-membered ring is nearly planar, with a maximum deviation of 0.025 (1) Å. In the crystal, the mol­ecules are linked via weak C—H⋯S inter­actions, forming infinite chains along the b-axis direction.

Related literature

For related synthesis, see: Tamaru et al. (1978[Tamaru, Y., Harada, T. & Yoshida, Z.-I. (1978). J. Am. Chem. Soc. 100, 1923-1925.]); Schroth et al. (2000[Schroth, W., Spitzner, R., Felicetti, M., Wagner, C. & Bruhn, C. (2000). Eur. J. Org. Chem. pp. 3093-3012.]).

[Scheme 1]

Experimental

Crystal data
  • C10H16N2S2

  • Mr = 228.37

  • Monoclinic, C 2/c

  • a = 20.520 (3) Å

  • b = 5.7237 (7) Å

  • c = 11.220 (2) Å

  • β = 122.009 (5)°

  • V = 1117.4 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.44 mm−1

  • T = 173 K

  • 0.45 × 0.42 × 0.16 mm

Data collection
  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.827, Tmax = 0.933

  • 1759 measured reflections

  • 1022 independent reflections

  • 957 reflections with I > 2σ(I)

  • Rint = 0.016

Refinement
  • R[F2 > 2σ(F2)] = 0.030

  • wR(F2) = 0.077

  • S = 1.09

  • 1022 reflections

  • 65 parameters

  • H-atom parameters constrained

  • Δρmax = 0.22 e Å−3

  • Δρmin = −0.21 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C5—H5B⋯S1i 0.98 2.98 3.8373 (18) 146
Symmetry code: (i) x, y-1, z.

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2004[Bruker (2004). SAINT-Plus and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus and XPREP (Bruker 2004[Bruker (2004). SAINT-Plus and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and DIAMOND (Brandenburg, 1999[Brandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

The title compound, (±)-(rel-3R,3'R)-1,1'-dimethyl-3,3'- bipyrrolidine-2,2'-dithione, was obtained as a minor product from the attempted SRN1 arylation of deprotonated 1-methylpyrrolidine-2-thione with 4-bromoanisole under photolytic conditions. Previous workers had reported the same dimer from the reaction of deprotonated 1-methylpyrrolidine-2-thione with molecular iodine – apparently incorrectly as the meso diastereomer (Tamaru et al., 1978), later corrected to the C2-symmetric isomer (Schroth et al., 2000).

The asymmetric unit of the title compound consists of half a molecule around a twofold axis, and Fig. 1 shows the atomic numbering scheme. The complete molecule is generated by the twofold axis. Both stereogenic centres have the same relative configuration, which is depicted in Fig. 1 as rel-(R,R'). The opposite enantiomer in the crystal is generated by the c-glide in C2/c. The hydrogen bonding of the title compound consists of weak C—H···S hydrogen bonds from the methyl group to generate hydrogen bonded chains along the b-axis by unit cell translations only (Fig. 2).

Related literature top

For related synthesis, see: Tamaru et al. (1978); Schroth et al. (2000).

Experimental top

A solution of 1-methylpyrrolidine-2-thione (580 mg, 5.5 mmol) in dry tetrahydrofuran (20 ml) was treated at 0 °C with a solution of n-butyllithium in hexane (5.5 mol). After 20 min 4-bromoanisole (690 µl, 5.5 mmol) was added, and the solution was irradiated for 30 min with a mercury lamp (125 W). The reaction mixture was poured into aq. NH4Cl solution, and the organic components were extracted with dichloromethane. Chromatography of the residue on silica gel after evaporation of the solvent returned unreacted 4-bromoanisole (50%), thiolactam (38%) and (±)-(rel-3R,3'R)-1,1'- dimethyl-3,3'-bipyrrolidine-2,2'-dithione (104 mg, 18%). The product was recrystallized from acetone to give colourless cubes, m.p. 476–477 K.

Refinement top

The C-bound H atoms were geometrically placed (C—H bond lengths of 0.99 for methylene CH2 and 0.98 for methyl CH3) and refined as riding with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(C).

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT-Plus (Bruker, 2004); data reduction: SAINT-Plus and XPREP (Bruker 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and DIAMOND (Brandenburg, 1999); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of (I) showing the atomic numbering scheme. Displacement ellipsoids are shown at the 50% probability level. Atoms with superscript (i) are at the symmetry position (-x, y, -z + 1/2).
[Figure 2] Fig. 2. View of the hydrogen bonded chains of (I). C—H···S are shown as dashed red lines.
(±)-(rel-3R,3'R)-1,1'-Dimethyl-3,3'-bipyrrolidine-2,2'- dithione top
Crystal data top
C10H16N2S2F(000) = 488
Mr = 228.37Dx = 1.357 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 419 reflections
a = 20.520 (3) Åθ = 3.8–30°
b = 5.7237 (7) ŵ = 0.44 mm1
c = 11.220 (2) ÅT = 173 K
β = 122.009 (5)°Cube, colourless
V = 1117.4 (3) Å30.45 × 0.42 × 0.16 mm
Z = 4
Data collection top
Bruker APEXII CCD area-detector
diffractometer
957 reflections with I > 2σ(I)
ω scansRint = 0.016
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
θmax = 25.5°, θmin = 2.3°
Tmin = 0.827, Tmax = 0.933h = 1923
1759 measured reflectionsk = 66
1022 independent reflectionsl = 135
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.030 w = 1/[σ2(Fo2) + (0.0336P)2 + 0.8972P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.077(Δ/σ)max < 0.001
S = 1.09Δρmax = 0.22 e Å3
1022 reflectionsΔρmin = 0.21 e Å3
65 parameters
Crystal data top
C10H16N2S2V = 1117.4 (3) Å3
Mr = 228.37Z = 4
Monoclinic, C2/cMo Kα radiation
a = 20.520 (3) ŵ = 0.44 mm1
b = 5.7237 (7) ÅT = 173 K
c = 11.220 (2) Å0.45 × 0.42 × 0.16 mm
β = 122.009 (5)°
Data collection top
Bruker APEXII CCD area-detector
diffractometer
1022 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
957 reflections with I > 2σ(I)
Tmin = 0.827, Tmax = 0.933Rint = 0.016
1759 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0300 restraints
wR(F2) = 0.077H-atom parameters constrained
S = 1.09Δρmax = 0.22 e Å3
1022 reflectionsΔρmin = 0.21 e Å3
65 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.60416 (8)0.7676 (3)0.29080 (15)0.0237 (3)
C20.53949 (8)0.7690 (3)0.31920 (15)0.0238 (3)
H20.5440.91370.3730.029*
C30.55488 (10)0.5558 (3)0.41423 (18)0.0342 (4)
H3A0.55910.60410.50280.041*
H3B0.51270.44060.3660.041*
C40.63050 (9)0.4508 (3)0.44413 (17)0.0318 (4)
H4A0.67060.46240.54530.038*
H4B0.62380.28460.41550.038*
C50.72017 (9)0.5339 (3)0.36087 (19)0.0343 (4)
H5A0.72940.65270.30860.051*
H5B0.71390.38090.31680.051*
H5C0.7640.52890.45820.051*
N10.65091 (7)0.5918 (2)0.35941 (13)0.0254 (3)
S10.61374 (2)0.96194 (8)0.18993 (4)0.03401 (17)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0208 (7)0.0274 (8)0.0243 (7)0.0042 (6)0.0130 (6)0.0032 (6)
C20.0227 (8)0.0261 (8)0.0265 (7)0.0000 (6)0.0157 (6)0.0012 (6)
C30.0330 (9)0.0395 (10)0.0391 (9)0.0072 (7)0.0252 (8)0.0136 (7)
C40.0318 (9)0.0333 (9)0.0366 (9)0.0046 (7)0.0225 (7)0.0090 (7)
C50.0244 (9)0.0406 (10)0.0429 (10)0.0030 (7)0.0213 (7)0.0010 (7)
N10.0211 (6)0.0296 (7)0.0294 (6)0.0014 (5)0.0160 (5)0.0015 (5)
S10.0327 (3)0.0375 (3)0.0394 (3)0.00300 (17)0.0242 (2)0.00804 (17)
Geometric parameters (Å, º) top
C1—N11.320 (2)C3—H3B0.99
C1—C21.520 (2)C4—N11.4672 (19)
C1—S11.6711 (15)C4—H4A0.99
C2—C31.539 (2)C4—H4B0.99
C2—C2i1.539 (3)C5—N11.451 (2)
C2—H21C5—H5A0.98
C3—C41.526 (2)C5—H5B0.98
C3—H3A0.99C5—H5C0.98
N1—C1—C2109.09 (12)N1—C4—C3104.31 (12)
N1—C1—S1126.33 (12)N1—C4—H4A110.9
C2—C1—S1124.58 (11)C3—C4—H4A110.9
C1—C2—C3105.06 (12)N1—C4—H4B110.9
C1—C2—C2i110.96 (14)C3—C4—H4B110.9
C3—C2—C2i114.74 (10)H4A—C4—H4B108.9
C1—C2—H2108.6N1—C5—H5A109.5
C3—C2—H2108.6N1—C5—H5B109.5
C2i—C2—H2108.6H5A—C5—H5B109.5
C4—C3—C2106.00 (13)N1—C5—H5C109.5
C4—C3—H3A110.5H5A—C5—H5C109.5
C2—C3—H3A110.5H5B—C5—H5C109.5
C4—C3—H3B110.5C1—N1—C5125.84 (13)
C2—C3—H3B110.5C1—N1—C4115.37 (12)
H3A—C3—H3B108.7C5—N1—C4118.76 (13)
N1—C1—C2—C31.74 (17)C2—C1—N1—C5179.01 (14)
S1—C1—C2—C3178.97 (11)S1—C1—N1—C50.3 (2)
N1—C1—C2—C2i126.30 (10)C2—C1—N1—C41.04 (18)
S1—C1—C2—C2i54.41 (12)S1—C1—N1—C4178.24 (11)
C1—C2—C3—C43.64 (17)C3—C4—N1—C13.37 (18)
C2i—C2—C3—C4125.78 (16)C3—C4—N1—C5178.51 (14)
C2—C3—C4—N14.13 (17)
Symmetry code: (i) x+1, y, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C5—H5B···S1ii0.982.983.8373 (18)146
Symmetry code: (ii) x, y1, z.

Experimental details

Crystal data
Chemical formulaC10H16N2S2
Mr228.37
Crystal system, space groupMonoclinic, C2/c
Temperature (K)173
a, b, c (Å)20.520 (3), 5.7237 (7), 11.220 (2)
β (°) 122.009 (5)
V3)1117.4 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.44
Crystal size (mm)0.45 × 0.42 × 0.16
Data collection
DiffractometerBruker APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.827, 0.933
No. of measured, independent and
observed [I > 2σ(I)] reflections
1759, 1022, 957
Rint0.016
(sin θ/λ)max1)0.606
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.030, 0.077, 1.09
No. of reflections1022
No. of parameters65
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.22, 0.21

Computer programs: APEX2 (Bruker, 2005), SAINT-Plus (Bruker, 2004), SAINT-Plus and XPREP (Bruker 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997) and DIAMOND (Brandenburg, 1999), WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C5—H5B···S1i0.982.983.8373 (18)146
Symmetry code: (i) x, y1, z.
 

Acknowledgements

This work was supported by the University of the Witwaters­rand and the Mol­ecular Sciences Institute, which are thanked for providing the infrastructure required to do this work. Dr R. B. Katz is thanked for performing the preliminary syntheses.

References

First citationBrandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2004). SAINT-Plus and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2005). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationSchroth, W., Spitzner, R., Felicetti, M., Wagner, C. & Bruhn, C. (2000). Eur. J. Org. Chem. pp. 3093–3012.  CrossRef Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTamaru, Y., Harada, T. & Yoshida, Z.-I. (1978). J. Am. Chem. Soc. 100, 1923–1925.  CrossRef CAS Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds