Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
The title compound, (C2H10N2)2[Mo5O15(HPO4)2], consists of [Mo5O15(HPO4)2]4− clusters with one Mo and one O atom located on a twofold rotation axis linked to [H3N(CH2)2NH3]2+ ions. The [Mo5O15(HPO4)2]4− anion consists of five edge-sharing or corner-sharing MoO6 octahedra, which adopt distorted octahedral geometry, and two corner-sharing PO4 tetrahedra. The anion clusters are connected by hydrogen bonds with [H3N(CH2)2NH3]2+.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536803017859/bt6326sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536803017859/bt6326Isup2.hkl
Contains datablock I

CCDC reference: 222800

Key indicators

  • Single-crystal X-ray study
  • T = 298 K
  • Mean [sigma](C-C) = 0.005 Å
  • R factor = 0.022
  • wR factor = 0.045
  • Data-to-parameter ratio = 16.1

checkCIF/PLATON results

No syntax errors found



Alert level C PLAT764_ALERT_4_C Overcomplete CIF Bond list Detected (Rep/Expd) 1.12 Ratio
0 ALERT level A = In general: serious problem 0 ALERT level B = Potentially serious problem 1 ALERT level C = Check and explain 0 ALERT level G = General alerts; check 0 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 0 ALERT type 2 Indicator that the structure model may be wrong or deficient 0 ALERT type 3 Indicator that the structure quality may be low 1 ALERT type 4 Improvement, methodology, query or suggestion

Comment top

Since the mid-1990 s, organic-inorganic hydrid compounds have become a significant area of research for chemists on account of their pronounced structural diversity and controllability of their chemical and physical properties (Hagrman et al., 1999; Khan et al., 1999). In addition, the potential applications of this type of compound in catalysis (Smith, 1988; Occelli & Robson, 1989), new functional materials (Kresge et al., 1992) and biochemistry (Mann, 1993) etc., have attracted much attention from materials scientists and biological chemists. A class of metal oxide clusters based on anionic molybdenum phosphate framework has received much attention as a consequence of their potential applications in catalysis and materials science (Chen Qin & Hill, 1996). In the past few years, we have obtained several crystals of polyoxomolybdenum-phosphates, such as (NH3CH2CH2—NH3)2.5[Mo5O15(PO4)(HPO4)]·7.5H2O (Lin Zhengzhong et al., 2002) and Na4-(H3O)[Na(HPO4)2(PO4)4Mo18O49].16H2O (Lin Zhengzhong et al., 2001). We have now synthesized a new crystal of (NH3CH2CH2—NH3)2[Mo5O15(HPO4)2].

As shown in Fig. 1, the crystal structure comprises two ethylenediammonium and one [Mo5O15(HPO4)2]4− anion. The anion clusters are connected by extensive intermolecular hydrogen bonds involving [H3N(CH2)2NH3]2+. The [Mo5O15(HPO4)2]4− cluster anion can be described as a puckered ring of five edge-sharing or corner-sharing distorted [MoO6] octahedra with two capping [HPO4] tetrahedra on each side. The five Mo atoms are coplanar. Because of interatomic repulsion, each Mo centre displays typically distorted octahedral coordinations to their O-atom neighbours, with two short molybdyl MoO bonds in a cis configuration, two long Mo—O bonds trans to the short bonds, and two Mo—O bonds of intermediate length (Table 1). Bond-valence sum (BVS) calculations shows that the Mo atom exhibits a BVS of +6. In the PO4 tetrahedron, one of the P—O bonds is longer, which is ascribed to the P—O—H contact. The remaining three O atoms of each PO4 are shared with five MoO6 as common corners, thus one of the three O atoms is µ2-O and the other two are µ3-O. In the building block, each [Mo5O15(HPO4)2]4− cluster is linked to two [H3N(CH2)2NH3]2+. The [Mo5O15(HPO4)2]4− clusters are connected by [H3N(CH2)2NH3]2+ through hydrogen bonds to form a layer (Table 2). Within the layer lie many irregular tunnels occupied by ethylenediamine. Here, the addition of the organic template ethylenediamine does not only play a structure-directing role, but also supplies charge-compensating cations, which is not a unique phenomena in the synthesis of the organic–inorganic hydrid organodiamine molybdenum oxides.

Experimental top

A mixture of Ti(SO4)2 (0.4 g, 1.67 mmol), Na2MoO4·2H2O (0.6 g, 2.48 mmol), Mo (0.05 g, 0.52 mmol), H2N(CH2)2NH2 (0.2 ml, CR) and H3PO4 (0.5 ml, AR) in H2O (4 ml) was sealed in a 20 ml Teflon-lined stainless steel vessel and heated at 423 K for 4 d under autogeneous pressure. After the reaction was complete, the vessel was cooled slowly to room temperature and green crystals were produced.

Refinement top

All H atoms were positioned geometrically and fixed.

Computing details top

Data collection: TEXRAY (Molecular Structure Corporation, 1999); cell refinement: TEXRAY; data reduction: TEXSAN (Molecular Structure Corporation, 1999); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEX (McArdle, 1995); software used to prepare material for publication: SHELXL97.

Figures top
[Figure 1] Fig. 1. A perspective view of the structure of the crystal. Displacement ellipsoids are drawn at the 50% probability level for non-H atoms. Hydrogen bonds are shown.
Bis(ethylenediammonium) di-µ5-hydrogenphosphato-penta-µ2-oxo-decaoxopentamolybdenum top
Crystal data top
(C2H10N2)2[Mo5O15(HPO4)2]F(000) = 1992
Mr = 1035.90Dx = 2.828 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71069 Å
Hall symbol: -C 2ycCell parameters from 25 reflections
a = 17.6993 (10) Åθ = 12–18°
b = 10.0639 (8) ŵ = 2.75 mm1
c = 13.7659 (10) ÅT = 298 K
β = 97.1240 (16)°Block, green
V = 2433.1 (3) Å30.18 × 0.16 × 0.16 mm
Z = 4
Data collection top
Rigaku Weissenberg IP
diffractometer
2245 reflections with I > 2σ(I)
Radiation source: rotor targetRint = 0.000
Graphite monochromatorθmax = 27.5°, θmin = 2.3°
Detector resolution: none pixels mm-1h = 022
scintillation counter scansk = 013
2782 measured reflectionsl = 1717
2782 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.022Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.045H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.0136P)2]
where P = (Fo2 + 2Fc2)/3
2782 reflections(Δ/σ)max = 0.001
173 parametersΔρmax = 1.33 e Å3
0 restraintsΔρmin = 0.93 e Å3
Crystal data top
(C2H10N2)2[Mo5O15(HPO4)2]V = 2433.1 (3) Å3
Mr = 1035.90Z = 4
Monoclinic, C2/cMo Kα radiation
a = 17.6993 (10) ŵ = 2.75 mm1
b = 10.0639 (8) ÅT = 298 K
c = 13.7659 (10) Å0.18 × 0.16 × 0.16 mm
β = 97.1240 (16)°
Data collection top
Rigaku Weissenberg IP
diffractometer
2245 reflections with I > 2σ(I)
2782 measured reflectionsRint = 0.000
2782 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0220 restraints
wR(F2) = 0.045H-atom parameters constrained
S = 1.00Δρmax = 1.33 e Å3
2782 reflectionsΔρmin = 0.93 e Å3
173 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Mo10.604678 (15)0.60309 (3)0.25831 (2)0.01638 (7)
Mo20.656380 (14)0.28068 (3)0.292770 (19)0.01433 (7)
Mo30.50000.08409 (4)0.25000.01370 (9)
P0.49249 (4)0.37135 (8)0.38568 (5)0.01354 (17)
O10.63699 (12)0.7162 (2)0.18155 (17)0.0260 (6)
O20.50000.6450 (3)0.25000.0199 (7)
O30.63934 (12)0.6600 (2)0.37244 (17)0.0255 (5)
O40.56630 (11)0.4097 (2)0.34348 (15)0.0174 (5)
O50.67249 (11)0.4550 (2)0.24293 (15)0.0186 (5)
O60.71425 (12)0.2853 (2)0.40266 (15)0.0222 (5)
O70.70707 (12)0.1923 (2)0.21807 (16)0.0238 (5)
O80.58954 (11)0.1411 (2)0.33264 (14)0.0158 (5)
O90.53646 (13)0.0192 (2)0.16950 (16)0.0252 (5)
O100.44836 (11)0.2627 (2)0.32533 (14)0.0147 (5)
O110.44434 (11)0.4951 (2)0.39108 (14)0.0172 (5)
O120.51380 (12)0.3082 (2)0.48880 (15)0.0233 (5)
H12A0.52730.36670.52860.035*
C10.7180 (2)0.0635 (4)0.4294 (3)0.0333 (9)
H1A0.72450.15530.41070.040*
H1B0.69430.01620.37220.040*
C20.6654 (2)0.0582 (4)0.5094 (3)0.0342 (9)
H2A0.62220.11590.49070.041*
H2B0.69260.09290.56950.041*
N10.79285 (18)0.0052 (4)0.4604 (2)0.0427 (9)
H1C0.82120.00980.41140.064*
H1D0.81560.04990.51170.064*
H1E0.78730.07940.47690.064*
N20.63682 (15)0.0770 (3)0.52881 (19)0.0243 (7)
H2C0.60700.07270.57630.036*
H2D0.61030.10870.47460.036*
H2E0.67610.13050.54720.036*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Mo10.01366 (13)0.01593 (15)0.01940 (14)0.00173 (11)0.00147 (11)0.00100 (12)
Mo20.01195 (12)0.01675 (15)0.01407 (12)0.00117 (11)0.00072 (10)0.00027 (12)
Mo30.01389 (18)0.0137 (2)0.01372 (17)0.0000.00248 (14)0.000
P0.0132 (4)0.0161 (4)0.0113 (4)0.0000 (3)0.0015 (3)0.0024 (3)
O10.0215 (11)0.0243 (15)0.0323 (13)0.0034 (11)0.0042 (10)0.0075 (12)
O20.0177 (15)0.0176 (18)0.0246 (16)0.0000.0035 (14)0.000
O30.0230 (12)0.0242 (14)0.0288 (12)0.0042 (11)0.0006 (10)0.0051 (11)
O40.0143 (10)0.0170 (12)0.0217 (11)0.0009 (10)0.0050 (9)0.0015 (10)
O50.0144 (10)0.0222 (14)0.0201 (11)0.0028 (10)0.0053 (9)0.0019 (10)
O60.0190 (10)0.0261 (14)0.0200 (11)0.0004 (11)0.0030 (9)0.0010 (11)
O70.0178 (10)0.0307 (15)0.0234 (11)0.0036 (11)0.0045 (9)0.0052 (11)
O80.0132 (10)0.0197 (13)0.0137 (10)0.0018 (9)0.0014 (9)0.0029 (9)
O90.0300 (12)0.0206 (13)0.0265 (13)0.0044 (11)0.0097 (11)0.0053 (11)
O100.0142 (10)0.0155 (12)0.0144 (10)0.0001 (9)0.0020 (9)0.0031 (9)
O110.0154 (10)0.0192 (13)0.0170 (10)0.0026 (9)0.0022 (8)0.0040 (10)
O120.0344 (13)0.0220 (14)0.0122 (10)0.0002 (11)0.0022 (10)0.0022 (10)
C10.034 (2)0.025 (2)0.043 (2)0.0092 (18)0.0126 (18)0.0041 (18)
C20.034 (2)0.027 (2)0.044 (2)0.0034 (18)0.0149 (18)0.0140 (19)
N10.046 (2)0.042 (2)0.043 (2)0.0003 (18)0.0203 (17)0.0031 (18)
N20.0236 (14)0.0327 (19)0.0176 (13)0.0002 (14)0.0063 (12)0.0021 (13)
Geometric parameters (Å, º) top
Mo1—O11.699 (2)P—O41.543 (2)
Mo1—O31.713 (2)P—O121.559 (2)
Mo1—O21.8898 (8)O2—Mo1i1.8898 (8)
Mo1—O51.942 (2)O10—Mo2i2.3162 (19)
Mo1—O11i2.392 (2)O11—Mo1i2.392 (2)
Mo1—O42.413 (2)O12—H12A0.8200
Mo2—O71.698 (2)C1—N11.462 (5)
Mo2—O61.719 (2)C1—C21.529 (5)
Mo2—O51.918 (2)C1—H1A0.9700
Mo2—O81.958 (2)C1—H1B0.9700
Mo2—O42.234 (2)C2—N21.488 (4)
Mo2—O10i2.3162 (19)C2—H2A0.9700
Mo3—O9i1.704 (2)C2—H2B0.9700
Mo3—O91.704 (2)N1—H1C0.8900
Mo3—O81.920 (2)N1—H1D0.8900
Mo3—O8i1.9204 (19)N1—H1E0.8900
Mo3—O102.319 (2)N2—H2C0.8900
Mo3—O10i2.319 (2)N2—H2D0.8900
P—O111.516 (2)N2—H2E0.8900
P—O101.528 (2)
O1—Mo1—O3103.68 (12)O8i—Mo3—O10i81.11 (8)
O1—Mo1—O2102.47 (10)O10—Mo3—O10i78.34 (10)
O3—Mo1—O2102.57 (9)O11—P—O10111.21 (12)
O1—Mo1—O5100.72 (10)O11—P—O4108.67 (13)
O3—Mo1—O5101.59 (10)O10—P—O4111.95 (11)
O2—Mo1—O5141.21 (12)O11—P—O12111.38 (12)
O1—Mo1—O11i83.33 (9)O10—P—O12104.65 (12)
O3—Mo1—O11i172.36 (10)O4—P—O12108.93 (12)
O2—Mo1—O11i78.53 (7)Mo1i—O2—Mo1154.20 (19)
O5—Mo1—O11i73.78 (8)P—O4—Mo2129.97 (13)
O1—Mo1—O4168.22 (10)P—O4—Mo1133.41 (13)
O3—Mo1—O485.09 (10)Mo2—O4—Mo193.56 (7)
O2—Mo1—O482.90 (10)Mo2—O5—Mo1122.81 (10)
O5—Mo1—O469.44 (8)Mo3—O8—Mo2122.09 (10)
O11i—Mo1—O487.55 (7)P—O10—Mo2i129.54 (13)
O7—Mo2—O6104.20 (10)P—O10—Mo3126.48 (11)
O7—Mo2—O598.58 (10)Mo2i—O10—Mo394.13 (7)
O6—Mo2—O5101.02 (10)P—O11—Mo1i118.51 (11)
O7—Mo2—O8100.21 (10)P—O12—H12A109.5
O6—Mo2—O895.03 (9)N1—C1—C2112.7 (3)
O5—Mo2—O8151.42 (9)N1—C1—H1A109.0
O7—Mo2—O4160.90 (9)C2—C1—H1A109.0
O6—Mo2—O494.56 (9)N1—C1—H1B109.0
O5—Mo2—O473.96 (8)C2—C1—H1B109.0
O8—Mo2—O481.37 (8)H1A—C1—H1B107.8
O7—Mo2—O10i88.35 (9)N2—C2—C1114.4 (3)
O6—Mo2—O10i163.22 (9)N2—C2—H2A108.7
O5—Mo2—O10i87.81 (8)C1—C2—H2A108.7
O8—Mo2—O10i71.46 (8)N2—C2—H2B108.7
O4—Mo2—O10i74.01 (7)C1—C2—H2B108.7
O9i—Mo3—O9104.79 (16)H2A—C2—H2B107.6
O9i—Mo3—O898.54 (10)C1—N1—H1C109.5
O9—Mo3—O8102.50 (10)C1—N1—H1D109.5
O9i—Mo3—O8i102.50 (10)H1C—N1—H1D109.5
O9—Mo3—O8i98.54 (10)C1—N1—H1E109.5
O8—Mo3—O8i145.22 (14)H1C—N1—H1E109.5
O9i—Mo3—O1088.86 (10)H1D—N1—H1E109.5
O9—Mo3—O10165.02 (10)C2—N2—H2C109.5
O8—Mo3—O1081.11 (8)C2—N2—H2D109.5
O8i—Mo3—O1072.01 (8)H2C—N2—H2D109.5
O9i—Mo3—O10i165.02 (10)C2—N2—H2E109.5
O9—Mo3—O10i88.86 (10)H2C—N2—H2E109.5
O8—Mo3—O10i72.01 (8)H2D—N2—H2E109.5
Symmetry code: (i) x+1, y, z+1/2.

Experimental details

Crystal data
Chemical formula(C2H10N2)2[Mo5O15(HPO4)2]
Mr1035.90
Crystal system, space groupMonoclinic, C2/c
Temperature (K)298
a, b, c (Å)17.6993 (10), 10.0639 (8), 13.7659 (10)
β (°) 97.1240 (16)
V3)2433.1 (3)
Z4
Radiation typeMo Kα
µ (mm1)2.75
Crystal size (mm)0.18 × 0.16 × 0.16
Data collection
DiffractometerRigaku Weissenberg IP
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
2782, 2782, 2245
Rint0.000
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.022, 0.045, 1.00
No. of reflections2782
No. of parameters173
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.33, 0.93

Computer programs: TEXRAY (Molecular Structure Corporation, 1999), TEXRAY, TEXSAN (Molecular Structure Corporation, 1999), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), ORTEX (McArdle, 1995), SHELXL97.

 

Subscribe to Acta Crystallographica Section E: Crystallographic Communications

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds