Download citation
Download citation
link to html
In the title compound, [Pt2(μ-C13H14N3O)2(NH3)4](ClO4)6·2H2O, the dinuclear PtII cation is found to be a head-to-tail isomer having pseudo-C2 symmetry. Two positively charged viologen moieties tethered to the diplatinum unit are located at the farthest position to minimize the electrostatic repulsion between the moieties, and also serve as relatively strong electron-withdrawing groups, giving rise to a very long intradimer Pt...Pt distance [3.0852 (13) Å] which is the longest distance among those reported for amidate-bridged cis-diammineplatinum(II) dimers to date.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536803017756/bt6324sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536803017756/bt6324Isup2.hkl
Contains datablock I

CCDC reference: 222818

Key indicators

  • Single-crystal X-ray study
  • T = 296 K
  • Mean [sigma](C-C) = 0.039 Å
  • H-atom completeness 91%
  • Disorder in solvent or counterion
  • R factor = 0.062
  • wR factor = 0.108
  • Data-to-parameter ratio = 11.5

checkCIF/PLATON results

No syntax errors found



Alert level A PLAT027_ALERT_3_A _diffrn_reflns_theta_full too Low .............. 23.27 Deg.
Author Response: This might be due to the small size of the crystal employed.
PLAT306_ALERT_2_A Isolated Oxygen Atom (H-atoms Missing ?) .......        O27
Author Response: Water H atoms were not located.

Alert level B ABSTM02_ALERT_3_B The ratio of expected to reported Tmax/Tmin(RR) is > 1.50 Tmin and Tmax reported: 0.233 0.692 Tmin and Tmax expected: 0.141 0.692 RR = 1.650 Please check that your absorption correction is appropriate. RINTA01_ALERT_3_B The value of Rint is greater than 0.15 Rint given 0.164 THETM01_ALERT_3_B The value of sine(theta_max)/wavelength is less than 0.575 Calculated sin(theta_max)/wavelength = 0.5559 PLAT020_ALERT_3_B The value of Rint is greater than 0.10 ......... 0.16 PLAT023_ALERT_3_B Resolution (too) Low [sin(th)/Lambda < 0.6]..... 23.27 Deg. PLAT026_ALERT_3_B Ratio Observed / Unique Reflections too Low .... 36 Perc. PLAT060_ALERT_3_B Ratio Tmax/Tmin (Exp-to-Rep) (too) Large ....... 1.68 PLAT213_ALERT_2_B Atom C5 has ADP max/min Ratio ............. 4.30 prolat PLAT214_ALERT_2_B Atom O4 (Anion/Solvent) ADP max/min Ratio 5.70 prolat PLAT220_ALERT_2_B Large Non-Solvent C Ueq(max)/Ueq(min) ... 3.97 Ratio PLAT222_ALERT_3_B Large Non-Solvent H Ueq(max)/Ueq(min) ... 4.39 Ratio PLAT241_ALERT_2_B Check High U(eq) as Compared to Neighbors .... C24 PLAT242_ALERT_2_B Check Low U(eq) as Compared to Neighbors .... N10 PLAT342_ALERT_3_B Low Bond Precision on C-C bonds (x 1000) Ang ... 39 PLAT430_ALERT_2_B Short Inter D...A Contact O11B .. O28A = 2.69 Ang. PLAT430_ALERT_2_B Short Inter D...A Contact O13B .. O28A = 2.58 Ang. PLAT430_ALERT_2_B Short Inter D...A Contact O27 .. O28B = 2.72 Ang. PLAT430_ALERT_2_B Short Inter D...A Contact O27 .. O10A = 2.81 Ang. PLAT432_ALERT_2_B Short Inter X...Y Contact C3 .. O8A = 2.78 Ang.
Alert level C GOODF01_ALERT_2_C The least squares goodness of fit parameter lies outside the range 0.80 <> 2.00 Goodness of fit given = 0.702 PLAT041_ALERT_1_C Calc. and Rep. SumFormula Strings Differ .... ? PLAT042_ALERT_1_C Calc. and Rep. MoietyFormula Strings Differ .... ? PLAT068_ALERT_1_C Reported F000 Differs from Calcd (or Missing)... ? PLAT202_ALERT_3_C Isotropic non-H Atoms in Anion/Solvent ....... = 18 PLAT213_ALERT_2_C Atom N10 has ADP max/min Ratio ............. 3.10 prolat PLAT213_ALERT_2_C Atom C11 has ADP max/min Ratio ............. 3.60 oblate PLAT213_ALERT_2_C Atom C16 has ADP max/min Ratio ............. 3.30 prolat PLAT214_ALERT_2_C Atom O3 (Anion/Solvent) ADP max/min Ratio 4.60 oblate PLAT220_ALERT_2_C Large Non-Solvent N Ueq(max)/Ueq(min) ... 2.85 Ratio PLAT241_ALERT_2_C Check High U(eq) as Compared to Neighbors .... N1 PLAT241_ALERT_2_C Check High U(eq) as Compared to Neighbors .... C16 PLAT241_ALERT_2_C Check High U(eq) as Compared to Neighbors .... C19 PLAT241_ALERT_2_C Check High U(eq) as Compared to Neighbors .... C23 PLAT242_ALERT_2_C Check Low U(eq) as Compared to Neighbors .... Pt2 PLAT242_ALERT_2_C Check Low U(eq) as Compared to Neighbors .... N8 PLAT242_ALERT_2_C Check Low U(eq) as Compared to Neighbors .... C8 PLAT242_ALERT_2_C Check Low U(eq) as Compared to Neighbors .... C18 PLAT244_ALERT_4_C Low Solvent U(eq) as Compared to Neighbors .... Cl3 PLAT244_ALERT_4_C Low Solvent U(eq) as Compared to Neighbors .... Cl5 PLAT244_ALERT_4_C Low Solvent U(eq) as Compared to Neighbors .... Cl6 PLAT244_ALERT_4_C Low Solvent U(eq) as Compared to Neighbors .... Cl1 PLAT302_ALERT_4_C Anion/Solvent Disorder ......................... 36.00 Perc. PLAT311_ALERT_2_C Isolated Disordered Oxygen Atom (No H's ?) ..... >O28B PLAT311_ALERT_2_C Isolated Disordered Oxygen Atom (No H's ?) ..... <O28A PLAT420_ALERT_2_C D-H Without Acceptor N1 - H1 ... ? PLAT430_ALERT_2_C Short Inter D...A Contact O9B .. O19B = 2.86 Ang. PLAT430_ALERT_2_C Short Inter D...A Contact O27 .. O28A = 2.88 Ang. PLAT430_ALERT_2_C Short Inter D...A Contact O11A .. O11A = 2.88 Ang. PLAT432_ALERT_2_C Short Inter X...Y Contact C6 .. O16B = 2.97 Ang. PLAT432_ALERT_2_C Short Inter X...Y Contact C13 .. O13A = 2.93 Ang. PLAT432_ALERT_2_C Short Inter X...Y Contact C15 .. O9A = 2.93 Ang. PLAT726_ALERT_1_C H...A Calc 2.56834, Rep 2.58000, Dev.. 0.01 Ang. H4B -O20B 1.555 1.565 PLAT790_ALERT_4_C Centre of Gravity not Within Unit Cell: Resd. # 2 Cl O4 PLAT790_ALERT_4_C Centre of Gravity not Within Unit Cell: Resd. # 5 Cl O4 PLAT790_ALERT_4_C Centre of Gravity not Within Unit Cell: Resd. # 9 O
Alert level G FORMU01_ALERT_2_G There is a discrepancy between the atom counts in the _chemical_formula_sum and the formula from the _atom_site* data. Atom count from _chemical_formula_sum:C26 H44 Cl6 N10 O28 Pt2 Atom count from the _atom_site data: C26 H40 Cl6 N10 O28 Pt2 CELLZ01_ALERT_1_G Difference between formula and atom_site contents detected. CELLZ01_ALERT_1_G WARNING: H atoms missing from atom site list. Is this intentional? From the CIF: _cell_formula_units_Z 2 From the CIF: _chemical_formula_sum C26 H44 Cl6 N10 O28 Pt2 TEST: Compare cell contents of formula and atom_site data atom Z*formula cif sites diff C 52.00 52.00 0.00 H 88.00 80.00 8.00 Cl 12.00 12.00 0.00 N 20.00 20.00 0.00 O 56.00 56.00 0.00 Pt 4.00 4.00 0.00
2 ALERT level A = In general: serious problem 19 ALERT level B = Potentially serious problem 36 ALERT level C = Check and explain 3 ALERT level G = General alerts; check 6 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 35 ALERT type 2 Indicator that the structure model may be wrong or deficient 11 ALERT type 3 Indicator that the structure quality may be low 8 ALERT type 4 Improvement, methodology, query or suggestion

Comment top

A photochemical system made up of Ru(bpy)32+ (bpy = 2,2'-bipyridine) and methylviologen (usually, N,N'-dimethyl-4,4'-bipyridinium dichloride) has been thought of as one of the promising candidates to achieve artificial photosynthetic devices (Borgarello et al., 1981). More than a decade ago, we discovered that amidate-bridged cis-diammineplatinum(II) dimers, [Pt2(NH3)4(µ-amidato)2]2+ (amidate = acetamidate, α-pyrrolidinonate, α-pyridonate, etc.), are generally active as H2-evolving catalysts in the above photosystem (Sakai & Matsumoto, 1990; Sakai et al., 1993). Since then, efforts have been made to develop `photosynthetic molecular devices' which enable visible-light-induced reduction of water into molecular hydrogen in a sophisticated manner. In order to confirm the validity of our approach, efforts have also been made to prepare and to evaluate the amidate-bridged platinum dimers tethered to the methylviologen derivatives. We now report, for the first time, the crystal structure of such a dimer, viz. HT-[Pt2(NH3)4(µ-bridge)2](ClO4)6·2H2O, (I), where bridge = 2-(N'-methyl-4,4'-bipyridinium-1-yl)acetamidate and HT is a prefix denoting that this is a head-to-tail dimer, at least in the solid state. Note that two geometrical isomers, head-to-head (HH) and head-to-tail (HT), are possible for this class of doubly bridged dimers, because of the asymmetric feature of amidate N—C—O units. It should be also noted that the compound rapidly isomerizes upon dissolution to aqueous media to give a mixture of the HH and HT isomers, which has been confirmed thus far by using 195Pt NMR (the details will appear in our future publications). The catalytic activity of (I) has been confirmed to be comparable to that of the acetamidate-bridged analog reported in our previous paper (Sakai et al., 1993). An attractive feature of (I) is that the photolysis of a solution containing (I), together with edta (sacrificial electron donor) and Ru(bpy)32+ (photosensitizer), in the absence of methylviologen, also results in evolution of H2 in a relatively high quantum efficiency. The details on the photocatalytic function of (I) will also appear in future publications.

The asymmetric unit of (I) involves a dinuclear PtII cation, six perchlorate anions and two water molecules. As previously reported on an analogous dimer doubly bridged by N-methylisonicotinamidates, HH-[Pt2(NH3)4(µ-N-methylisonicotinamidato)2](ClO4)4 [abbreviated as (II); Sakai, Shiomi et al., 2003], it is often possible to determine the binding directions of two bridging amidates in a rational way (see Experimental). The experiments reveal that the reported dimer adopts the head-to-tail isomerism in the crystal structure. As discussed above, the compound behaves as a mixture of both the HH and HT isomers in solution (based on 195Pt NMR; unpublished results). As shown in Fig. 2, the complex cation in (I) possesses a pseudo-C2 symmetry, in which the conformations of two bridges roughly resemble with one another [O1—C1—C2—N7 = 38 (3)°, N1—C1—C2—N7 = −140 (2)°, O2—C14—C15—N9 = 9(3)° and N2—C14—C15—N9 = −165 (2)°]. The most remarkable feature is an amazingly long intradimer Pt—Pt distance [3.0852 (13) Å], for the values reported for the analogous dimers having the cis-Pt(NH3)2 units have been in the range 2.88—3.06 Å (Sakai & Takahashi, 2003; Sakai, Shiomi et al., 2003). As described in these reports, the observed long Pt—Pt distance in (I) reflects the relatively weak PtII—PtII bond. Obviously, the positively charged bipyridinium moieties in (I) play roles as electron-withdrawing groups to diminish the electron density at the PtII centers, leading to the weakening of the `mutual dative bonds' within the diplatinum cation [two PtII centers in a close contact are considered to form dative Pt(5dz2) Pt(6p or 6 s) bonds with one another; Connick et al., 1997]. It must be also noted that the long intradimer Pt—Pt distance is in part due to the HT structure, which tends to give a longer intradimer Pt—Pt distance compared to the HH one (Sakai, Tanaka et al., 1998).

The dihedral cant between the two Pt coordination planes within the dimeric unit (τ), and their average torsional twist about the Pt—Pt axis (ω) are estimated as τ = 40.8 (5)° and ω = 5(1)° (see also Table 1), where ω = 0° denotes that the two Pt coordination planes stack in an eclipsed fashion. The small ω value is characteristic of the dimers bridged by chain amidate ligands (Sakai, Tanaka et al., 1998; Matsumoto & Sakai, 1999; Sakai, Shiomi et al., 2003), indicating that the intradimer Pt—Pt distance and the ω value are strongly correlated with one another. On the other hand, atoms Pt1 and Pt2 are respectively shifted out of their coordination planes by 0.063 (8) and 0.085 (8) Å in such a manner that they have an attractive interaction with one another.

The pyridinium plane directly attached to the acetamidate unit is inclined with respect to the bridging O—C—N unit by 89 (3)° for N9/C16–C20 and 84 (1)° for N7/C3—C7. These are comparable to that reported for the uncoordinated ligand [79.1 (2)°; Sakai et al., 1997]. The twist angles of two pyridinium planes within the individual bipyridinium moieties are 28.4 (8)° for the bipyridinium involving N9 and N10, and is 25.6 (12)° for that involving N7 and N8. These values are both effectively larger than that observed for the uncoordinated ligand [6.1 (2)°; Sakai et al., 1997]. This might reflect that the π*(bipyridinium) orbitals accept part of electron density shifted from the Pt centers, leading to the decrease in aromaticity at the central C—C bonds of bipyridinium units.

Fig. 3 shows a crystal packing view of (I). The shortest Pt—Pt distance is determined as Pt1—Pt2(x + 1, y, z) = 9.0380 (14) Å (see Table 1), confirming the lack of any intermolecular Pt—Pt interaction in the crystal structure. The crystal packing is stabilized both by the electrostatic interactions between the complex cations and perchlorate anions and also by hydrogen bonds formed between the ammines and the O atoms of perchlorates (Tables 2 and 3).

Experimental top

N-(Carbamoylmethyl)-N'-methyl-4,4'-bipyridinium diperchlorate hydrate was prepared as previously described (Sakai et al., 1997). Compound (I) was prepared as follows: to an aqueous solution of cis-[Pt(NH3)2(OH2)2](ClO4)2 (0.2 mmol Pt/2 ml H2O), prepared as previously described (Sakai, Takeshita et al., 1998), was added N-(carbamoylmethyl)-N'-methyl-4,4'-bipyridinium diperchlorate hydrate (0.32 mmol). The solution was heated at 323 K for 2 d. Leaving the filtrate at room temperature for a few days afforded (I) as yellow plates (yield: 6%). Analysis calculated for C26H44Cl6N10O28Pt2: C 20.18, H 2.87, N 9.05%; found: C 19.85, H 2.57, N 8.82%. 1H NMR (D2O, 296 K): δ 4.52 (s, 6H); 5.52–5.65 (m, 4H); 8.55–8.61 (m, 8H); 9.01–9.07 p.p.m. (m, 8H).

Refinement top

The binding directions of O and NH for the bridging amidates were rationally determined by the least-squares calculations performed for two possible arrangements for each ligand as follows. A wrong combination gave an asymmetric feature with regard to the equivalent displacement parameters of the O and N atoms supposed, while an appropriate combination gave a moderate balance in these values. For O1 and N1, Ueq(O1) = 0.044 (5) Å2 and Ueq(N1) = 0.054 (6) Å2 were judged to be correct, for the reverse selection gave values of Ueq(N instead of O1) = 0.019 (4) Å2 and Ueq(O instead of N1) = 0.088 (8) Å2. For O2 and N2, Ueq(O2) = 0.037 (4) Å2 and Ueq(N2) = 0.033 (5) Å2 were judged to be correct, for the reverse selection gave values of Ueq(N instead of O2) = 0.014 (4) Å2 and Ueq(O instead of N2) = 0.061 (5) Å2. It must be also noted that the equivalent displacement parameters of two Pt ions [Ueq(Pt1) = 0.0327 (3) Å2 and Ueq(Pt2) = 0.0355 (3) Å2] deny the coexistence of two isomers in a certain disorder model (Sakai, Shiomi et al., 2003).

Four of six ClO4 anions show orientational disorder. Around each Cl atom there are two sets of possible positions as follows: O7A/O8A/O9A/O10A and O7B/O8B/O9B/O10B around Cl2; O11A/O12A/O13A/O14A and O11B/O12B/O13B/O14B around Cl3; O15A/O16A/O17A/O18A and O15B/O16B/O17B/O18B around Cl4; and O19A/O20A/O21A/O22A and O19B/O20B/O21B/O22B around Cl5. It was supposed that the disordered O atoms around each Cl atom have the same isotropic displacement parameter. Furthermore, Cl—O distances were restrained at 1.43 (3) Å and six O···O distances within each perchlorate anion were restrained as equal. The occupation factors of site A and B (sofA and sofB) around each Cl converged at values as follows: sofA(Cl2) = 26 (2)% and sofB(Cl2) = 74 (2)%; sofA(Cl3) = 50 (2)% and sofB(Cl3) = 50 (2)%; sofA(Cl4) = 54 (2)% and sofB(Cl4) = 46 (2)%; sofA(Cl5) = 78 (1)% and sofB(Cl5) = 22 (1)%. One of the remaining ClO4 ions was also judged to be partially disordered, in which only one of the four O atoms was assumed to be disordered over two sites (O24A and 24B). The occupation factors of these atoms were refined to converge at 42 (3) and 58 (3)%, respectively. A water molecule was also assumed to be disordered over two sites (O28A and O28B). These were assumed to have the same isotropic displacement parameter. The occupation factors of site A and B converged at 45 (7) and 55 (7)%, respectively.

All H atoms, except for those of water molecules, were located at their idealized positions [CH(methyl) = 0.96 Å, C—H(aromatic) = 0.93 Å, N—H(ammine) = 0.89 Å and N—H(amidate) = 0.86 Å], and included in the refinement in riding-motion approximation, with Uiso(methyl H) = 1.5Ueq(bonded C), Uiso(aromatic H) = 1.2eq(bonded C), Uiso(ammine H) = 1.5eq(bonded N) and Uiso(amidate H) = 1.2eq(bonded N). The water H atoms were not located. The highest peak was located 1.65 Å from Pt2, while the deepest hole was located 1.17 Å from Pt2.

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: KENX (Sakai, 2002); software used to prepare material for publication: SHELXL97, TEXSAN (Molecular Structure Corporation, 2001), KENX and ORTEPII (Johnson, 1976).

Figures top
[Figure 1] Fig. 1. The structure of the complex cation in (I), showing the atom-labeling scheme. Displacement ellipsoids are shown at the 50% probability level.
[Figure 2] Fig. 2. The structure of the cationic part of (I), showing that the complex has a pseudo-C2 symmetry.
[Figure 3] Fig. 3. The crystal packing, viewed down the a axis of (I). H atoms have been omitted for clarity.
bis[µ-2-(N'-methyl-4,4'-bipyridinium-1-yl)acetamidato]bis[cis- diammineplatinum(II)] hexaperchlorate dihydrate top
Crystal data top
[Pt2(C13H14N3O)2(NH3)4](ClO4)6·2H2OZ = 2
Mr = 1547.59F(000) = 1504
Triclinic, P1? # Insert any comments here.
Hall symbol: -P 1Dx = 2.097 Mg m3
a = 9.7641 (8) ÅMo Kα radiation, λ = 0.71073 Å
b = 10.4448 (8) ÅCell parameters from 801 reflections
c = 27.245 (2) Åθ = 2.4–16.6°
α = 80.396 (4)°µ = 6.13 mm1
β = 83.548 (3)°T = 296 K
γ = 63.566 (3)°Plate, yellow
V = 2450.9 (3) Å30.42 × 0.28 × 0.06 mm
Data collection top
Bruker SMART APEX CCD-detector
diffractometer
7033 independent reflections
Radiation source: fine-focus sealed tube2548 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.164
Detector resolution: 8.366 pixels mm-1θmax = 23.3°, θmin = 2.2°
ω scansh = 109
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
k = 1111
Tmin = 0.233, Tmax = 0.692l = 3030
14233 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.062Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.108H-atom parameters constrained
S = 0.70 w = 1/[σ2(Fo2)]
7033 reflections(Δ/σ)max < 0.001
613 parametersΔρmax = 0.89 e Å3
176 restraintsΔρmin = 0.89 e Å3
Crystal data top
[Pt2(C13H14N3O)2(NH3)4](ClO4)6·2H2Oγ = 63.566 (3)°
Mr = 1547.59V = 2450.9 (3) Å3
Triclinic, P1Z = 2
a = 9.7641 (8) ÅMo Kα radiation
b = 10.4448 (8) ŵ = 6.13 mm1
c = 27.245 (2) ÅT = 296 K
α = 80.396 (4)°0.42 × 0.28 × 0.06 mm
β = 83.548 (3)°
Data collection top
Bruker SMART APEX CCD-detector
diffractometer
7033 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2548 reflections with I > 2σ(I)
Tmin = 0.233, Tmax = 0.692Rint = 0.164
14233 measured reflectionsθmax = 23.3°
Refinement top
R[F2 > 2σ(F2)] = 0.062176 restraints
wR(F2) = 0.108H-atom parameters constrained
S = 0.70Δρmax = 0.89 e Å3
7033 reflectionsΔρmin = 0.89 e Å3
613 parameters
Special details top

Experimental. The first 50 frames were rescanned at the end of data collection to evaluate any possible decay phenomenon. Since it was judged to be negligible, no decay correction was applied to the data.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Mean-plane data from final SHELXL refinement run:-

Least-squares planes (x,y,z in crystal coordinates) and deviations from them (* indicates atom used to define plane)

− 4.6484 (0.0508) x + 2.1007 (0.0537) y + 20.2762 (0.1142) z = 4.0144 (0.0333)

* 0.0025 (0.0087) N1 * −0.0024 (0.0084) N3 * 0.0024 (0.0085) N4 * −0.0025 (0.0088) O2 0.0627 (0.0083) Pt1 2.9612 (0.0108) Pt2

Rms deviation of fitted atoms = 0.0025

− 2.5166 (0.0597) x − 2.7821 (0.0535) y + 24.1392 (0.0713) z = 5.9136 (0.0396)

Angle to previous plane (with approximate e.s.d.) = 40.82 (1/2)

* −0.0621 (0.0087) N2 * −0.0607 (0.0086) N5 * 0.0619 (0.0087) N6 * 0.0609 (0.0087) O1 − 0.0849 (0.0081) Pt2 − 2.9692 (0.0094) Pt1

Rms deviation of fitted atoms = 0.0614

7.5131 (0.2452) x − 1.4466 (0.4673) y + 9.7178 (0.3655) z = 1.6705 (0.1656)

Angle to previous plane (with approximate e.s.d.) = 77.22 (1.04)

* 0.0000 (0.0000) N2 * 0.0000 (0.0001) C14 * 0.0000 (0.0000) O2

Rms deviation of fitted atoms = 0.0000

5.6666 (0.0629) x + 10.2441 (0.0150) y + 1.6678 (0.2010) z = 0.3011 (0.0317)

Angle to previous plane (with approximate e.s.d.) = 88.56 (2.50)

* 0.0234 (0.0140) N9 * −0.0375 (0.0167) C16 * 0.0091 (0.0177) C17 * 0.0322 (0.0152) C18 * −0.0462 (0.0142) C19 * 0.0190 (0.0135) C20

Rms deviation of fitted atoms = 0.0305

7.4460 (0.0575) x + 8.9824 (0.0514) y + 12.0184 (0.2162) z = 1.8318 (0.0342)

Angle to previous plane (with approximate e.s.d.) = 28.35 (0.76)

* 0.0141 (0.0171) N10 * −0.0130 (0.0172) C21 * −0.0153 (0.0171) C22 * 0.0165 (0.0176) C23 * −0.0441 (0.0198) C24 * 0.0417 (0.0203) C25

Rms deviation of fitted atoms = 0.0276

5.5625 (0.3112) x + 10.3334 (0.0544) y + 4.1402 (0.5289) z = 5.2871 (0.1802)

Angle to previous plane (with approximate e.s.d.) = 24.97 (2.65)

* 0.0000 (0.0001) O1 * 0.0000 (0.0001) C1 * 0.0000 (0.0000) N1

Rms deviation of fitted atoms = 0.0000

7.3011 (0.0578) x − 2.5927 (0.0898) y + 3.7525 (0.2551) z = 3.7017 (0.0979)

Angle to previous plane (with approximate e.s.d.) = 83.69 (1.49)

* −0.0360 (0.0162) N7 * 0.0033 (0.0164) C3 * 0.0206 (0.0178) C4 * −0.0127 (0.0190) C5 * −0.0195 (0.0204) C6 * 0.0443 (0.0186) C7

Rms deviation of fitted atoms = 0.0266

− 4.6297 (0.0773) x + 5.9422 (0.0762) y + 5.0833 (0.2523) z = 0.5922 (0.1278)

Angle to previous plane (with approximate e.s.d.) = 25.60 (1.22)

* −0.0298 (0.0182) N8 * −0.0489 (0.0169) C8 * 0.0482 (0.0203) C9 * −0.0076 (0.0201) C10 * 0.0230 (0.0189) C11 * 0.0152 (0.0187) C12

Rms deviation of fitted atoms = 0.0327

− 4.6512 (0.0690) x + 2.4445 (0.0787) y + 19.7564 (0.1528) z = 4.1235 (0.0462)

Angle to previous plane (with approximate e.s.d.) = 41.18 (0.95)

* 0.0000 (0.0000) N3 * 0.0000 (0.0000) Pt1 * 0.0000 (0.0000) N4

Rms deviation of fitted atoms = 0.0000

− 1.9038 (0.0991) x − 2.8672 (0.0737) y + 24.3728 (0.0967) z = 5.8014 (0.0522)

Angle to previous plane (with approximate e.s.d.) = 46.95 (2/3)

* 0.0000 (0.0000) N5 * 0.0000 (0.0000) Pt2 * 0.0000 (0.0000) N6

Rms deviation of fitted atoms = 0.0000

− 4.6297 (0.0773) x + 5.9422 (0.0762) y + 5.0833 (0.2523) z = 0.5922 (0.1278)

Angle to previous plane (with approximate e.s.d.) = 88.13 (0.72)

* −0.0489 (0.0169) C8 * 0.0482 (0.0203) C9 * −0.0076 (0.0201) C10 * −0.0298 (0.0182) N8 * 0.0230 (0.0189) C11 * 0.0152 (0.0187) C12 3.9478 (0.0241) C8_$3 3.8507 (0.0250) C9_$3 3.9064 (0.0279) C10_$3 3.9286 (0.0245) N8_$3 3.8759 (0.0244) C11_$3 3.8836 (0.0265) C12_$3

Rms deviation of fitted atoms = 0.0327

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Pt10.06795 (11)0.40027 (9)0.17519 (3)0.0327 (3)
Pt20.09345 (11)0.41529 (10)0.27958 (3)0.0355 (3)
Cl10.5806 (8)0.3777 (8)0.1539 (3)0.064 (2)
Cl20.2174 (7)0.0094 (7)0.3545 (2)0.080 (2)
Cl30.3258 (9)0.3464 (7)0.4912 (3)0.101 (3)
Cl40.2627 (7)0.6182 (6)0.2946 (2)0.0621 (19)
Cl50.3428 (7)0.1263 (6)0.1812 (2)0.062 (2)
Cl60.0528 (9)0.6883 (7)0.0141 (3)0.065 (2)
O10.1310 (18)0.3216 (15)0.2982 (5)0.044 (5)
O20.0299 (16)0.2217 (13)0.1818 (5)0.037 (4)
O30.697 (2)0.3068 (19)0.1184 (7)0.105 (8)
O40.4408 (18)0.422 (2)0.1339 (7)0.125 (8)
O50.590 (2)0.297 (2)0.2000 (8)0.128 (9)
O60.5927 (18)0.5035 (18)0.1604 (6)0.091 (6)
O7A0.090 (5)0.041 (6)0.362 (2)0.096 (5)*0.26 (2)
O7B0.250 (3)0.047 (3)0.4020 (7)0.096 (5)*0.74 (2)
O8A0.356 (4)0.118 (6)0.375 (2)0.096 (5)*0.26 (2)
O8B0.317 (2)0.1685 (18)0.3471 (9)0.096 (5)*0.74 (2)
O9A0.230 (6)0.004 (7)0.3040 (11)0.096 (5)*0.26 (2)
O9B0.255 (3)0.048 (2)0.3155 (7)0.096 (5)*0.74 (2)
O10A0.190 (7)0.131 (5)0.385 (2)0.096 (5)*0.26 (2)
O10B0.064 (2)0.008 (2)0.3466 (8)0.096 (5)*0.74 (2)
O11A0.405 (4)0.427 (4)0.5001 (13)0.120 (5)*0.497 (19)
O11B0.406 (4)0.326 (3)0.4424 (9)0.120 (5)*0.503 (19)
O12A0.264 (5)0.389 (3)0.4422 (9)0.120 (5)*0.497 (19)
O12B0.168 (3)0.417 (3)0.4874 (16)0.120 (5)*0.503 (19)
O13A0.188 (3)0.382 (3)0.5299 (13)0.120 (5)*0.497 (19)
O13B0.377 (4)0.437 (4)0.5139 (12)0.120 (5)*0.503 (19)
O14A0.415 (4)0.191 (2)0.5012 (13)0.120 (5)*0.497 (19)
O14B0.377 (4)0.209 (3)0.5222 (11)0.120 (5)*0.503 (19)
O15A0.168 (3)0.660 (3)0.3385 (8)0.061 (3)*0.541 (19)
O15B0.122 (3)0.692 (3)0.2624 (10)0.061 (3)*0.459 (19)
O16A0.187 (3)0.621 (3)0.2535 (8)0.061 (3)*0.541 (19)
O16B0.321 (4)0.719 (3)0.2943 (11)0.061 (3)*0.459 (19)
O17A0.387 (2)0.472 (2)0.3076 (11)0.061 (3)*0.541 (19)
O17B0.364 (3)0.497 (3)0.2694 (12)0.061 (3)*0.459 (19)
O18A0.340 (3)0.715 (3)0.2812 (9)0.061 (3)*0.541 (19)
O18B0.212 (3)0.575 (3)0.3422 (8)0.061 (3)*0.459 (19)
O19A0.419 (2)0.171 (2)0.2209 (6)0.097 (5)*0.781 (13)
O19B0.258 (6)0.123 (6)0.2194 (17)0.097 (5)*0.219 (13)
O20A0.345 (2)0.182 (2)0.1374 (6)0.097 (5)*0.781 (13)
O20B0.342 (7)0.266 (4)0.186 (2)0.097 (5)*0.219 (13)
O21A0.1869 (19)0.178 (2)0.1931 (7)0.097 (5)*0.781 (13)
O21B0.273 (6)0.104 (6)0.1339 (13)0.097 (5)*0.219 (13)
O22A0.403 (2)0.0229 (16)0.1711 (7)0.097 (5)*0.781 (13)
O22B0.495 (4)0.020 (5)0.184 (2)0.097 (5)*0.219 (13)
O230.068 (3)0.623 (2)0.0281 (8)0.152 (10)
O24A0.054 (6)0.745 (5)0.055 (2)0.086 (9)*0.42 (3)
O24B0.104 (4)0.722 (3)0.0278 (14)0.086 (9)*0.58 (3)
O250.141 (2)0.592 (2)0.0492 (7)0.141 (10)
O260.080 (2)0.8052 (19)0.0007 (6)0.098 (7)
O270.355 (2)0.715 (2)0.3727 (7)0.131 (8)
O28A0.487 (7)0.543 (5)0.414 (3)0.104 (10)*0.45 (7)
O28B0.542 (6)0.508 (5)0.387 (2)0.104 (10)*0.55 (7)
N10.238 (2)0.2946 (18)0.2221 (6)0.054 (6)
H10.32580.25600.20690.065*
N20.0715 (19)0.2314 (16)0.2616 (6)0.033 (5)
H20.09460.17850.28560.039*
N30.1126 (18)0.5736 (15)0.1642 (5)0.046 (5)
H3A0.19080.55920.14220.069*
H3B0.13630.58710.19300.069*
H3C0.03030.65120.15280.069*
N40.1021 (18)0.4959 (16)0.1233 (5)0.053 (6)
H4A0.10140.57760.10770.080*
H4B0.19300.51490.13890.080*
H4C0.08480.43610.10120.080*
N50.1146 (19)0.6031 (17)0.3000 (6)0.063 (6)
H5A0.19470.63610.32140.095*
H5B0.12850.66830.27310.095*
H5C0.03000.58680.31450.095*
N60.3184 (19)0.4994 (17)0.2719 (8)0.093 (9)
H6A0.35170.59020.25730.140*
H6B0.36540.49740.30180.140*
H6C0.33860.44810.25320.140*
N70.359 (2)0.088 (2)0.3384 (7)0.044 (5)
N80.112 (3)0.280 (2)0.5398 (10)0.076 (8)
N90.058 (2)0.0285 (17)0.1734 (8)0.044 (5)
N100.561 (3)0.212 (2)0.0350 (7)0.044 (6)
C10.247 (3)0.271 (2)0.2689 (9)0.043 (7)
C20.401 (2)0.172 (2)0.2948 (7)0.035 (6)
H2A0.47380.10820.27240.042*
H2B0.44470.22940.30540.042*
C30.355 (3)0.125 (2)0.3822 (10)0.050 (7)
H30.38100.19740.38660.060*
C40.310 (3)0.047 (3)0.4222 (8)0.064 (8)
H40.30480.06740.45450.077*
C50.272 (3)0.059 (3)0.4139 (10)0.060 (9)
C60.283 (3)0.089 (3)0.3687 (9)0.063 (9)
H60.25490.15810.36260.076*
C70.335 (3)0.022 (3)0.3317 (9)0.060 (9)
H70.35400.05270.30040.072*
C80.222 (3)0.127 (2)0.4573 (9)0.041 (6)
C90.241 (3)0.139 (2)0.5087 (10)0.073 (9)
H90.29080.08770.51680.088*
C100.199 (4)0.216 (3)0.5486 (10)0.087 (11)
H100.22920.22330.58050.105*
C110.071 (3)0.262 (3)0.4918 (11)0.069 (9)
H110.00580.30010.48570.082*
C120.121 (3)0.190 (2)0.4518 (8)0.065 (8)
H120.08800.18240.42030.078*
C130.063 (3)0.366 (3)0.5837 (9)0.114 (13)
H13A0.04590.31860.58920.171*
H13B0.11180.37090.61320.171*
H13C0.09300.46140.57620.171*
C140.029 (2)0.177 (2)0.2208 (8)0.033 (6)
C150.033 (3)0.036 (2)0.2184 (8)0.053 (7)
H15A0.00930.03050.24820.064*
H15B0.13820.05100.21690.064*
C160.009 (3)0.000 (3)0.1281 (10)0.077 (10)
H160.09610.05090.12380.092*
C170.100 (3)0.039 (2)0.0884 (8)0.043 (7)
H170.05630.00850.05730.052*
C180.252 (3)0.122 (2)0.0901 (9)0.029 (6)
C190.303 (3)0.165 (2)0.1388 (8)0.048 (7)
H190.40390.23200.14320.058*
C200.213 (3)0.116 (2)0.1805 (8)0.034 (6)
H200.25410.14000.21180.041*
C210.355 (3)0.157 (3)0.0485 (9)0.047 (7)
C220.325 (3)0.071 (2)0.0033 (11)0.062 (8)
H220.23090.00900.00050.074*
C230.436 (4)0.103 (3)0.0394 (9)0.072 (10)
H230.41340.04170.06940.087*
C240.601 (3)0.305 (3)0.0044 (13)0.093 (10)
H240.69080.38940.00370.111*
C250.507 (4)0.278 (3)0.0496 (10)0.077 (10)
H250.54260.33740.07930.093*
C260.676 (3)0.240 (2)0.0771 (8)0.074 (9)
H26A0.64820.15440.10080.111*
H26B0.67940.31710.09290.111*
H26C0.77460.26660.06480.111*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Pt10.0308 (7)0.0342 (7)0.0353 (7)0.0166 (6)0.0005 (6)0.0042 (6)
Pt20.0283 (7)0.0354 (7)0.0401 (7)0.0112 (6)0.0009 (6)0.0064 (6)
Cl10.044 (5)0.060 (5)0.088 (6)0.025 (4)0.003 (5)0.003 (5)
Cl20.052 (5)0.111 (7)0.074 (6)0.038 (5)0.013 (5)0.014 (5)
Cl30.095 (7)0.094 (6)0.123 (7)0.046 (6)0.026 (6)0.012 (6)
Cl40.057 (5)0.058 (5)0.081 (5)0.033 (4)0.003 (5)0.012 (4)
Cl50.054 (5)0.045 (4)0.079 (5)0.015 (4)0.010 (4)0.002 (4)
Cl60.082 (7)0.045 (5)0.056 (5)0.023 (5)0.003 (5)0.010 (4)
O10.048 (12)0.054 (11)0.038 (11)0.028 (10)0.029 (10)0.010 (9)
O20.042 (11)0.032 (9)0.039 (10)0.022 (9)0.012 (9)0.016 (8)
O30.070 (15)0.106 (16)0.091 (15)0.003 (13)0.065 (13)0.035 (13)
O40.016 (11)0.23 (2)0.136 (19)0.044 (14)0.001 (13)0.062 (17)
O50.15 (2)0.116 (19)0.14 (2)0.091 (18)0.028 (18)0.007 (16)
O60.064 (14)0.075 (14)0.140 (18)0.036 (12)0.008 (13)0.008 (13)
O230.18 (3)0.14 (2)0.15 (2)0.052 (19)0.03 (2)0.076 (18)
O250.11 (2)0.17 (2)0.065 (15)0.028 (18)0.009 (15)0.048 (16)
O260.121 (19)0.093 (15)0.100 (15)0.069 (15)0.032 (14)0.020 (13)
O270.057 (15)0.16 (2)0.134 (19)0.012 (14)0.043 (14)0.045 (16)
N10.072 (17)0.065 (15)0.028 (12)0.036 (13)0.000 (13)0.005 (12)
N20.049 (14)0.045 (12)0.021 (11)0.039 (11)0.002 (11)0.008 (10)
N30.052 (14)0.047 (12)0.046 (13)0.031 (11)0.001 (11)0.004 (10)
N40.068 (15)0.081 (15)0.041 (12)0.061 (13)0.010 (12)0.006 (11)
N50.037 (14)0.075 (15)0.060 (14)0.016 (12)0.022 (12)0.003 (12)
N60.045 (15)0.039 (14)0.20 (3)0.009 (12)0.007 (17)0.050 (15)
N70.026 (13)0.051 (15)0.046 (15)0.014 (12)0.015 (12)0.019 (12)
N80.033 (16)0.074 (19)0.10 (2)0.004 (14)0.029 (16)0.032 (17)
N90.032 (14)0.026 (12)0.075 (16)0.018 (11)0.012 (14)0.004 (12)
N100.050 (17)0.014 (13)0.042 (15)0.003 (12)0.007 (13)0.011 (12)
C10.037 (18)0.050 (17)0.053 (19)0.026 (15)0.016 (17)0.024 (15)
C20.015 (14)0.033 (14)0.050 (16)0.008 (12)0.017 (13)0.017 (12)
C30.036 (17)0.052 (18)0.08 (2)0.033 (15)0.005 (18)0.011 (17)
C40.06 (2)0.10 (2)0.034 (17)0.032 (19)0.005 (16)0.009 (17)
C50.07 (2)0.038 (18)0.07 (2)0.030 (17)0.05 (2)0.042 (17)
C60.10 (3)0.07 (2)0.018 (15)0.040 (19)0.019 (18)0.008 (16)
C70.11 (3)0.045 (18)0.047 (19)0.047 (19)0.044 (19)0.007 (15)
C80.039 (10)0.048 (10)0.045 (10)0.019 (8)0.018 (8)0.016 (8)
C90.08 (2)0.035 (18)0.09 (2)0.011 (16)0.04 (2)0.038 (16)
C100.11 (3)0.06 (2)0.07 (2)0.01 (2)0.06 (2)0.016 (18)
C110.029 (17)0.08 (2)0.12 (3)0.035 (16)0.022 (19)0.01 (2)
C120.10 (2)0.07 (2)0.038 (16)0.055 (19)0.013 (17)0.013 (15)
C130.13 (3)0.13 (3)0.07 (2)0.06 (3)0.01 (2)0.04 (2)
C140.036 (16)0.038 (15)0.035 (15)0.028 (13)0.004 (14)0.007 (13)
C150.045 (18)0.068 (19)0.052 (18)0.023 (16)0.001 (16)0.030 (15)
C160.09 (3)0.08 (2)0.06 (2)0.05 (2)0.06 (2)0.023 (19)
C170.04 (2)0.07 (2)0.020 (15)0.029 (17)0.016 (15)0.008 (14)
C180.031 (10)0.032 (9)0.030 (10)0.015 (8)0.011 (8)0.009 (8)
C190.053 (19)0.018 (14)0.069 (19)0.012 (14)0.024 (17)0.015 (14)
C200.033 (10)0.032 (9)0.026 (9)0.006 (8)0.007 (8)0.005 (8)
C210.06 (2)0.05 (2)0.036 (18)0.024 (18)0.011 (18)0.006 (16)
C220.05 (2)0.040 (18)0.09 (2)0.012 (16)0.02 (2)0.010 (18)
C230.13 (3)0.06 (2)0.036 (19)0.06 (2)0.00 (2)0.019 (18)
C240.07 (3)0.04 (2)0.13 (3)0.012 (17)0.01 (2)0.00 (2)
C250.08 (3)0.08 (2)0.05 (2)0.02 (2)0.02 (2)0.007 (18)
C260.10 (3)0.07 (2)0.047 (18)0.029 (19)0.008 (19)0.021 (16)
Geometric parameters (Å, º) top
Pt1—N11.996 (17)N10—C231.24 (3)
Pt1—N32.012 (13)N10—C241.28 (3)
Pt1—O22.034 (12)N10—C261.48 (3)
Pt1—N42.082 (14)C1—C21.56 (3)
Pt1—Pt23.0852 (13)C3—C41.40 (3)
Pt1—Pt2i9.0380 (14)C4—C51.37 (3)
Pt2—N21.974 (15)C5—C61.30 (3)
Pt2—N61.991 (17)C5—C81.43 (3)
Pt2—N52.044 (16)C6—C71.31 (3)
Pt2—O12.048 (14)C8—C91.41 (3)
Cl1—O41.377 (15)C8—C121.44 (3)
Cl1—O51.378 (18)C9—C101.38 (3)
Cl1—O61.411 (16)C11—C121.39 (3)
Cl1—O31.422 (17)C14—C151.51 (2)
Cl2—O7B1.395 (16)C16—C171.32 (3)
Cl2—O9A1.41 (3)C17—C181.35 (3)
Cl2—O10B1.422 (17)C18—C191.40 (3)
Cl2—O9B1.451 (16)C18—C211.41 (3)
Cl2—O8A1.45 (3)C19—C201.37 (3)
Cl2—O7A1.46 (3)C21—C221.37 (3)
Cl2—O10A1.48 (3)C21—C251.46 (3)
Cl2—O8B1.497 (16)C22—C231.47 (3)
Cl3—O12B1.38 (2)C24—C251.44 (3)
Cl3—O11A1.43 (2)N1—H10.8600
Cl3—O14B1.44 (2)N2—H20.8600
Cl3—O12A1.45 (2)N3—H3A0.8900
Cl3—O14A1.46 (2)N3—H3B0.8900
Cl3—O11B1.47 (2)N3—H3C0.8900
Cl3—O13B1.49 (2)N4—H4A0.8900
Cl3—O13A1.56 (2)N4—H4B0.8900
Cl4—O16B1.40 (2)N4—H4C0.8900
Cl4—O16A1.401 (18)N5—H5A0.8900
Cl4—O18B1.41 (2)N5—H5B0.8900
Cl4—O15A1.431 (18)N5—H5C0.8900
Cl4—O17B1.44 (2)N6—H6A0.8900
Cl4—O17A1.479 (18)N6—H6B0.8900
Cl4—O18A1.490 (19)N6—H6C0.8900
Cl4—O15B1.53 (2)C2—H2A0.9700
Cl5—O19A1.383 (16)C2—H2B0.9700
Cl5—O22A1.389 (15)C3—H30.9300
Cl5—O22B1.40 (3)C4—H40.9300
Cl5—O19B1.41 (3)C6—H60.9300
Cl5—O20A1.421 (15)C7—H70.9300
Cl5—O21B1.43 (3)C9—H90.9300
Cl5—O21A1.426 (16)C10—H100.9300
Cl5—O20B1.43 (3)C11—H110.9300
Cl6—O251.326 (17)C12—H120.9300
Cl6—O261.346 (15)C13—H13A0.9600
Cl6—O231.39 (2)C13—H13B0.9600
Cl6—O24B1.43 (4)C13—H13C0.9600
Cl6—O24A1.44 (5)C15—H15A0.9700
O1—C11.27 (2)C15—H15B0.9700
O2—C141.27 (2)C16—H160.9300
N1—C11.26 (2)C17—H170.9300
N2—C141.28 (2)C19—H190.9300
N7—C31.30 (2)C20—H200.9300
N7—C71.32 (2)C22—H220.9300
N7—C21.48 (2)C23—H230.9300
N8—C101.35 (3)C24—H240.9300
N8—C111.37 (3)C25—H250.9300
N8—C131.54 (3)C26—H26A0.9600
N9—C161.31 (2)C26—H26B0.9600
N9—C201.40 (2)C26—H26C0.9600
N9—C151.50 (2)
O11B···O28B2.91 (5)O27···O14Biv3.06 (4)
O27···O28Bii2.72 (4)O27···O9Biii3.18 (3)
O27···O10Aiii2.81 (5)O28A···O11Av2.80 (7)
O27···O28Aii2.87 (5)O28B···O27i2.72 (4)
O27···O13Aiv3.06 (4)O28B···O13Bv3.12 (6)
N1—Pt1—N391.2 (6)C6—C7—N7120 (2)
N1—Pt1—O289.6 (6)C9—C8—C5133 (2)
N3—Pt1—O2176.2 (6)C9—C8—C12108 (2)
N1—Pt1—N4175.4 (7)C5—C8—C12119 (2)
N3—Pt1—N491.8 (6)C10—C9—C8130 (3)
O2—Pt1—N487.2 (5)N8—C10—C9118 (3)
N1—Pt1—Pt275.4 (6)N8—C11—C12124 (2)
N3—Pt1—Pt2103.5 (4)C11—C12—C8122 (2)
O2—Pt1—Pt280.3 (4)O2—C14—N2127.7 (19)
N4—Pt1—Pt2107.3 (5)O2—C14—C15114 (2)
N2—Pt2—N689.7 (7)N2—C14—C15118.3 (18)
N2—Pt2—N5178.5 (6)N9—C15—C14109.9 (18)
N6—Pt2—N590.8 (6)N9—C16—C17124 (3)
N2—Pt2—O190.8 (6)C16—C17—C18124 (3)
N6—Pt2—O1171.7 (7)C17—C18—C19113 (2)
N5—Pt2—O188.4 (6)C17—C18—C21126 (2)
N2—Pt2—Pt176.4 (5)C19—C18—C21121 (2)
N6—Pt2—Pt1108.8 (6)C20—C19—C18125 (2)
N5—Pt2—Pt1104.8 (4)C19—C20—N9116 (2)
O1—Pt2—Pt179.4 (4)C22—C21—C18122 (3)
O4—Cl1—O5111.4 (14)C22—C21—C25113 (3)
O4—Cl1—O6106.8 (12)C18—C21—C25125 (2)
O5—Cl1—O6107.9 (12)C21—C22—C23122 (2)
O4—Cl1—O3108.2 (12)N10—C23—C22119 (2)
O5—Cl1—O3114.5 (12)N10—C24—C25120 (2)
O6—Cl1—O3107.7 (11)C24—C25—C21119 (2)
O7B—Cl2—O10B114.2 (11)C1—N1—H1112.4
O7B—Cl2—O9B112.3 (10)Pt1—N1—H1112.4
O10B—Cl2—O9B109.5 (11)C14—N2—H2114.3
O9A—Cl2—O8A112.0 (17)Pt2—N2—H2114.3
O9A—Cl2—O7A111.5 (17)Pt1—N3—H3A109.5
O8A—Cl2—O7A108.2 (16)Pt1—N3—H3B109.5
O9A—Cl2—O10A110.5 (16)H3A—N3—H3B109.5
O8A—Cl2—O10A107.1 (16)Pt1—N3—H3C109.5
O7A—Cl2—O10A107.3 (16)H3A—N3—H3C109.5
O7B—Cl2—O8B108.5 (11)H3B—N3—H3C109.5
O10B—Cl2—O8B106.2 (10)Pt1—N4—H4A109.5
O9B—Cl2—O8B105.6 (10)Pt1—N4—H4B109.5
O12B—Cl3—O14B113.2 (15)H4A—N4—H4B109.5
O11A—Cl3—O12A112.2 (14)Pt1—N4—H4C109.5
O11A—Cl3—O14A113.7 (15)H4A—N4—H4C109.5
O12A—Cl3—O14A111.6 (14)H4B—N4—H4C109.5
O12B—Cl3—O11B112.1 (14)Pt2—N5—H5A109.5
O14B—Cl3—O11B108.9 (14)Pt2—N5—H5B109.5
O12B—Cl3—O13B109.2 (14)H5A—N5—H5B109.5
O14B—Cl3—O13B107.1 (13)Pt2—N5—H5C109.5
O11B—Cl3—O13B106.0 (13)H5A—N5—H5C109.5
O11A—Cl3—O13A106.6 (14)H5B—N5—H5C109.5
O12A—Cl3—O13A107.1 (14)Pt2—N6—H6A109.5
O14A—Cl3—O13A104.9 (13)Pt2—N6—H6B109.5
O16B—Cl4—O18B114.0 (13)H6A—N6—H6B109.5
O16A—Cl4—O15A115.4 (12)Pt2—N6—H6C109.5
O16B—Cl4—O17B113.1 (14)H6A—N6—H6C109.5
O18B—Cl4—O17B111.9 (12)H6B—N6—H6C109.5
O16A—Cl4—O17A110.1 (11)N7—C2—H2A110.7
O15A—Cl4—O17A108.0 (10)C1—C2—H2A110.7
O16A—Cl4—O18A109.8 (11)N7—C2—H2B110.7
O15A—Cl4—O18A107.6 (11)C1—C2—H2B110.7
O17A—Cl4—O18A105.5 (11)H2A—C2—H2B108.8
O16B—Cl4—O15B106.7 (12)N7—C3—H3122.1
O18B—Cl4—O15B106.8 (12)C4—C3—H3122.1
O17B—Cl4—O15B103.5 (11)C5—C4—H4120.0
O19A—Cl5—O22A112.6 (11)C3—C4—H4120.0
O22B—Cl5—O19B110.4 (17)C5—C6—H6119.5
O19A—Cl5—O20A111.3 (10)C7—C6—H6119.5
O22A—Cl5—O20A108.8 (9)C6—C7—H7119.8
O22B—Cl5—O21B110.2 (17)N7—C7—H7119.8
O19B—Cl5—O21B109.7 (17)C10—C9—H9115.1
O19A—Cl5—O21A108.9 (9)C8—C9—H9115.1
O22A—Cl5—O21A107.0 (10)N8—C10—H10121.1
O20A—Cl5—O21A108.0 (10)C9—C10—H10121.1
O22B—Cl5—O20B109.2 (17)N8—C11—H11118.1
O19B—Cl5—O20B109.3 (17)C12—C11—H11118.1
O21B—Cl5—O20B108.0 (17)C11—C12—H12118.8
O25—Cl6—O26115.0 (14)C8—C12—H12118.8
O25—Cl6—O23109.7 (14)N8—C13—H13A109.5
O26—Cl6—O23108.6 (13)N8—C13—H13B109.5
O25—Cl6—O24B109.3 (16)H13A—C13—H13B109.5
O26—Cl6—O24B113.7 (16)N8—C13—H13C109.5
O23—Cl6—O24B99 (2)H13A—C13—H13C109.5
O25—Cl6—O24A85 (2)H13B—C13—H13C109.5
O26—Cl6—O24A96 (2)N9—C15—H15A109.7
O23—Cl6—O24A141 (3)C14—C15—H15A109.7
C1—O1—Pt2126.4 (14)N9—C15—H15B109.7
C14—O2—Pt1123.5 (14)C14—C15—H15B109.7
C1—N1—Pt1135.2 (19)H15A—C15—H15B108.2
C14—N2—Pt2131.4 (13)N9—C16—H16118.2
C3—N7—C7123 (2)C17—C16—H16118.2
C3—N7—C2118 (2)C16—C17—H17118.1
C7—N7—C2119 (2)C18—C17—H17118.1
C10—N8—C11117 (3)C20—C19—H19117.7
C10—N8—C13119 (3)C18—C19—H19117.7
C11—N8—C13124 (2)C19—C20—H20121.8
C16—N9—C20118 (2)N9—C20—H20121.8
C16—N9—C15127 (2)C21—C22—H22118.9
C20—N9—C15115 (2)C23—C22—H22118.9
C23—N10—C24125 (3)N10—C23—H23120.4
C23—N10—C26119 (2)C22—C23—H23120.4
C24—N10—C26116 (2)N10—C24—H24119.9
N1—C1—O1122 (2)C25—C24—H24119.9
N1—C1—C2123 (2)C24—C25—H25120.3
O1—C1—C2115 (2)C21—C25—H25120.3
N7—C2—C1105.1 (16)N10—C26—H26A109.5
N7—C3—C4116 (2)N10—C26—H26B109.5
C5—C4—C3120 (2)H26A—C26—H26B109.5
C6—C5—C4119 (2)N10—C26—H26C109.5
C6—C5—C8126 (3)H26A—C26—H26C109.5
C4—C5—C8115 (3)H26B—C26—H26C109.5
C5—C6—C7121 (3)
O2—Pt1—Pt2—N25.0 (6)C9—C8—C12—C116 (4)
N4—Pt1—Pt2—N63.9 (7)C5—C8—C12—C11178 (3)
N3—Pt1—Pt2—N54.1 (7)C16—N9—C15—C1485 (3)
N1—Pt1—Pt2—O16.3 (6)C20—N9—C15—C1488 (2)
C3—N7—C2—C1105 (2)O2—C14—C15—N99 (3)
C7—N7—C2—C177 (2)N2—C14—C15—N9165 (2)
N1—C1—C2—N7140 (2)C20—N9—C16—C176 (4)
O1—C1—C2—N738 (3)C15—N9—C16—C17167 (2)
C7—N7—C3—C45 (4)N9—C16—C17—C185 (4)
C2—N7—C3—C4177.4 (19)C16—C17—C18—C192 (4)
N7—C3—C4—C50 (4)C16—C17—C18—C21175 (2)
C3—C4—C5—C62 (4)C17—C18—C19—C208 (3)
C3—C4—C5—C8178 (2)C21—C18—C19—C20169 (2)
C4—C5—C6—C72 (5)C18—C19—C20—N97 (3)
C8—C5—C6—C7178 (3)C16—N9—C20—C190 (3)
C5—C6—C7—N78 (5)C15—N9—C20—C19173.9 (17)
C3—N7—C7—C610 (4)C17—C18—C21—C2225 (4)
C2—N7—C7—C6173 (2)C19—C18—C21—C22152 (2)
C6—C5—C8—C9159 (3)C17—C18—C21—C25160 (2)
C4—C5—C8—C921 (4)C19—C18—C21—C2523 (4)
C6—C5—C8—C1226 (4)C18—C21—C22—C23176 (2)
C4—C5—C8—C12154 (2)C25—C21—C22—C231 (3)
C5—C8—C9—C10175 (3)C24—N10—C23—C222 (4)
C12—C8—C9—C1010 (4)C26—N10—C23—C22177 (2)
C11—N8—C10—C91 (4)C21—C22—C23—N102 (4)
C13—N8—C10—C9180 (2)C23—N10—C24—C257 (4)
C8—C9—C10—N87 (5)C26—N10—C24—C25171 (2)
C10—N8—C11—C124 (4)N10—C24—C25—C219 (4)
C13—N8—C11—C12177 (2)C22—C21—C25—C246 (4)
N8—C11—C12—C80 (4)C18—C21—C25—C24179 (2)
Symmetry codes: (i) x+1, y, z; (ii) x1, y, z; (iii) x, y+1, z; (iv) x, y+1, z+1; (v) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3A···O40.892.222.96 (2)141
N3—H3B···O15B0.892.303.16 (3)161
N3—H3B···O16A0.891.902.79 (2)179
N3—H3A···O250.892.573.10 (2)118
N3—H3C···O21Aiii0.892.383.05 (2)133
N4—H4A···O24A0.892.253.12 (4)165
N4—H4B···O6ii0.892.163.01 (2)159
N4—H4A···O20Aiii0.892.753.19 (2)113
N4—H4B···O20Biii0.892.583.16 (6)124
N4—H4C···O23vi0.892.152.99 (3)156
N5—H5A···O270.891.962.84 (2)173
N5—H5C···O15B0.892.432.89 (3)112
N5—H5B···O19Biii0.892.323.16 (5)157
N6—H6A···O20Biii0.892.263.04 (5)145
N6—H6B···O17Aii0.892.533.05 (3)118
N6—H6C···O17Bii0.892.713.12 (3)109
N6—H6A···O18Aii0.892.743.09 (3)105
Symmetry codes: (ii) x1, y, z; (iii) x, y+1, z; (vi) x, y+1, z.

Experimental details

Crystal data
Chemical formula[Pt2(C13H14N3O)2(NH3)4](ClO4)6·2H2O
Mr1547.59
Crystal system, space groupTriclinic, P1
Temperature (K)296
a, b, c (Å)9.7641 (8), 10.4448 (8), 27.245 (2)
α, β, γ (°)80.396 (4), 83.548 (3), 63.566 (3)
V3)2450.9 (3)
Z2
Radiation typeMo Kα
µ (mm1)6.13
Crystal size (mm)0.42 × 0.28 × 0.06
Data collection
DiffractometerBruker SMART APEX CCD-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.233, 0.692
No. of measured, independent and
observed [I > 2σ(I)] reflections
14233, 7033, 2548
Rint0.164
θmax (°)23.3
(sin θ/λ)max1)0.556
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.062, 0.108, 0.70
No. of reflections7033
No. of parameters613
No. of restraints176
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.89, 0.89

Computer programs: SMART (Bruker, 2001), SAINT (Bruker, 2001), SAINT, SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), KENX (Sakai, 2002), SHELXL97, TEXSAN (Molecular Structure Corporation, 2001), KENX and ORTEPII (Johnson, 1976).

Selected geometric parameters (Å, º) top
Pt1—N11.996 (17)Pt1—Pt2i9.0380 (14)
Pt1—N32.012 (13)Pt2—N21.974 (15)
Pt1—O22.034 (12)Pt2—N61.991 (17)
Pt1—N42.082 (14)Pt2—N52.044 (16)
Pt1—Pt23.0852 (13)Pt2—O12.048 (14)
O11B···O28B2.91 (5)O27···O14Biv3.06 (4)
O27···O28Bii2.72 (4)O27···O9Biii3.18 (3)
O27···O10Aiii2.81 (5)O28A···O11Av2.80 (7)
O27···O28Aii2.87 (5)O28B···O27i2.72 (4)
O27···O13Aiv3.06 (4)O28B···O13Bv3.12 (6)
N1—Pt1—N391.2 (6)N2—Pt2—N689.7 (7)
N1—Pt1—O289.6 (6)N2—Pt2—N5178.5 (6)
N3—Pt1—O2176.2 (6)N6—Pt2—N590.8 (6)
N1—Pt1—N4175.4 (7)N2—Pt2—O190.8 (6)
N3—Pt1—N491.8 (6)N6—Pt2—O1171.7 (7)
O2—Pt1—N487.2 (5)N5—Pt2—O188.4 (6)
N1—Pt1—Pt275.4 (6)N2—Pt2—Pt176.4 (5)
N3—Pt1—Pt2103.5 (4)N6—Pt2—Pt1108.8 (6)
O2—Pt1—Pt280.3 (4)N5—Pt2—Pt1104.8 (4)
N4—Pt1—Pt2107.3 (5)O1—Pt2—Pt179.4 (4)
O2—Pt1—Pt2—N25.0 (6)N3—Pt1—Pt2—N54.1 (7)
N4—Pt1—Pt2—N63.9 (7)N1—Pt1—Pt2—O16.3 (6)
Symmetry codes: (i) x+1, y, z; (ii) x1, y, z; (iii) x, y+1, z; (iv) x, y+1, z+1; (v) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3A···O40.892.222.96 (2)141
N3—H3B···O15B0.892.303.16 (3)161
N3—H3B···O16A0.891.902.79 (2)179
N3—H3A···O250.892.573.10 (2)118
N3—H3C···O21Aiii0.892.383.05 (2)133
N4—H4A···O24A0.892.253.12 (4)165
N4—H4B···O6ii0.892.163.01 (2)159
N4—H4A···O20Aiii0.892.753.19 (2)113
N4—H4B···O20Biii0.892.583.16 (6)124
N4—H4C···O23vi0.892.152.99 (3)156
N5—H5A···O270.891.962.84 (2)173
N5—H5C···O15B0.892.432.89 (3)112
N5—H5B···O19Biii0.892.323.16 (5)157
N6—H6A···O20Biii0.892.263.04 (5)145
N6—H6B···O17Aii0.892.533.05 (3)118
N6—H6C···O17Bii0.892.713.12 (3)109
N6—H6A···O18Aii0.892.743.09 (3)105
Symmetry codes: (ii) x1, y, z; (iii) x, y+1, z; (vi) x, y+1, z.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds