Download citation
Download citation
link to html
The title compound, [Pd(C5H6N2){(C6H5)3P}2]I·C4H8O2, has a square-planar geometry for Pd, coordinated by two trans-phosphines, an iodo, and an amino­pyridyl ligand. The cation, anion and solvent mol­ecule all lie on a crystallographic mirror plane, and are connected together by N—H...I and N—H...O hydrogen bonds.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536803017252/bt6322sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536803017252/bt6322Isup2.hkl
Contains datablock I

CCDC reference: 222789

Key indicators

  • Single-crystal X-ray study
  • T = 160 K
  • Mean [sigma](C-C) = 0.007 Å
  • R factor = 0.025
  • wR factor = 0.066
  • Data-to-parameter ratio = 18.6

checkCIF/PLATON results

No syntax errors found



Alert level B PLAT232_ALERT_2_B Hirshfeld Test Diff (M-X) I1 - Pd1 = 19.63 su
Alert level C PLAT042_ALERT_1_C Calc. and Rep. MoietyFormula Strings Differ .. ? PLAT125_ALERT_4_C No _symmetry_space_group_name_Hall Given ..... ? PLAT243_ALERT_4_C High Solvent U(eq) as Compared to Neighbors .. O2 PLAT244_ALERT_4_C Low Solvent U(eq) as Compared to Neighbors .. C25 PLAT244_ALERT_4_C Low Solvent U(eq) as Compared to Neighbors .. C26 PLAT790_ALERT_4_C Centre of Gravity not Within Unit Cell: Resd.# 2 C4 H8 O2
Alert level G REFLT03_ALERT_4_G Please check that the estimate of the number of Friedel pairs is correct. If it is not, please give the correct count in the _publ_section_exptl_refinement section of the submitted CIF. From the CIF: _diffrn_reflns_theta_max 28.80 From the CIF: _reflns_number_total 5016 Count of symmetry unique reflns 3075 Completeness (_total/calc) 163.12% TEST3: Check Friedels for noncentro structure Estimate of Friedel pairs measured 1941 Fraction of Friedel pairs measured 0.631 Are heavy atom types Z>Si present yes
0 ALERT level A = In general: serious problem 1 ALERT level B = Potentially serious problem 6 ALERT level C = Check and explain 1 ALERT level G = General alerts; check 1 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 1 ALERT type 2 Indicator that the structure model may be wrong or deficient 0 ALERT type 3 Indicator that the structure quality may be low 6 ALERT type 4 Improvement, methodology, query or suggestion

Comment top

The title compound, (I), was obtained unexpectedly as a by-product in a reaction exploring the synthesis of enantiomerically pure pyridylamino acids via palladium-catalysed cross-coupling of serine-derived organozinc reagents with various halopyridines (Tabanella et al., 2003). It is presumably derived from the product of oxidative addition of 2-amino-6-bromopyridine to bis(triphenylphosphine)palladium(0), followed by exchange of bromide for iodide, originating from the zinc reagent. Similar products have been obtained by other researchers in related reactions (Spee et al., 2000; Bocelli et al., 1998).

The complex cation (Fig. 1) contains Pd in a square-planar coordination environment, bonded to two trans-triphenylphosphine ligands, one iodide, and an amino-substituted pyridyl group through its ortho-C atom. This pyridyl ligand is protonated on the ring N atom, and it forms two hydrogen bonds to the uncoordinated second iodide anion, one from the pyridinium N—H and the other from the 6-amino NH2 group. The second H atom of the amino group is hydrogen bonded to the ethyl acetate solvent molecule (Fig. 2), which has relatively large anisotropic displacement parameters and may be subject to unresolved disorder in addition to the disorder detected and modelled for its two methyl groups. The Pd atom, both iodides, all atoms of the pyridyl ligand, and all non-H atoms of the solvent molecule lie in a crystallographic mirror plane, which relates the two phosphine ligands to each other. Deviations from ideal square-planar coordination geometry are small, as can be seen in Table 1 and in the figures. Apart from the hydrogen bonding, there are no significant intermolecular interactions.

Pyridyl complexes of palladium with a Pd—C bond are not unknown, but there are few reported crystal structures. A search of the Cambridge Structural Database (CSD, Version 5.24 with two updates, April 2003; Allen, 2002) finds seven. In every case, the other ligands are a combination of phosphines and halides. Except for one complex with a chelating diphosphine, which imposes a cis configuration (Chin et al., 1998), the pyridyl ligand always lies trans to a halide (Cave et al., 1999; Isobe et al., 1980; Newkome et al., 1987; Benetollo et al., 1991), as is the case here.

The CSD contains 100 structures of bis(phosphine) complexes of palladium with a Pd—C bond trans to a halide ligand. 12 of these have iodine as the halogen, nine of them with a substituted or unsubstituted phenyl or pyridyl ligand. For these, the Pd—C distances range from 2.009 to 2.048 Å, and the Pd—I distances from 2.680 to 2.706 Å. The title complex thus has both the shortest Pd—I bond and (marginally) the shortest Pd—C bond. The values are in accordance with the known relative trans influences of aryl and iodo ligands (e.g. Spee et al., 2000; Vicente et al., 1999; Flemming et al., 1998).

Experimental top

The synthetic strategy for the preparation of pyridylalanines and the reaction leading to the formation of the title compound are described by Tabanella et al. (2003). A zinc reagent derived from iodoalanine was treated with 2-amino-6-bromopyridine and with dichlorobis(triphenylphosphine)palladium as a coupling catalyst, and the title compound was isolated by recrystallization of the crude reaction mixture from ethyl acetate.

Refinement top

H atoms were placed geometrically and refined with a riding model (including free rotation about C—C bonds), and with Uiso constrained to be 1.2 (1.5 for methyl groups) times Ueq of the carrier atom; N—H distances were set at 0.88 Å, and C—H to 0.95 (aromatic), 0.98 (methyl) or 0.99 Å (methylene). Both methyl groups of the solvent molecule were found to be disordered, each with two sets of H atoms, which were constrained to ideal tetrahedral angles and assigned equal occupancy factors. The largest peaks in the final difference synthesis lie close to the Pd and I atoms.

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: local programs; data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXTL (Sheldrick, 2001); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and local programs.

Figures top
[Figure 1] Fig. 1. The structure of the cation and anion, with atom labels and 50% probability ellipsoids for non-H atoms. Hydrogen bonds are shown as dashed lines. The solvent molecule is not shown.
[Figure 2] Fig. 2. The cation, anion and solvent molecule, viewed perpendicular to the mirror plane. H atoms not involved in hydrogen bonding have been omitted; hydrogen bonds are shown as dashed lines.
trans-(6-amino-2-pyridinio)iodobis(triphenylphosphine)palladium(II) iodide ethyl acetate solvate top
Crystal data top
[Pd(C5H6N2)(C18H15P}2]I·C4H8O2Dx = 1.608 Mg m3
Mr = 1066.96Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, Cmc21Cell parameters from 13025 reflections
a = 15.0297 (9) Åθ = 2.2–28.8°
b = 16.9603 (10) ŵ = 1.93 mm1
c = 17.2897 (11) ÅT = 160 K
V = 4407.3 (5) Å3Plate, pale yellow
Z = 40.40 × 0.21 × 0.10 mm
F(000) = 2104
Data collection top
Bruker SMART 1K CCD
diffractometer
5016 independent reflections
Radiation source: sealed tube4828 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.030
Detector resolution: 8.192 pixels mm-1θmax = 28.8°, θmin = 1.8°
narrow–frame ω scansh = 1919
Absorption correction: multi-scan
(SADABS; Sheldrick, 2002)
k = 2217
Tmin = 0.600, Tmax = 0.824l = 2319
14181 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.026H-atom parameters constrained
wR(F2) = 0.066 w = 1/[σ2(Fo2) + (0.0393P)2 + 0.905P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max = 0.001
5016 reflectionsΔρmax = 1.28 e Å3
270 parametersΔρmin = 0.71 e Å3
1 restraintAbsolute structure: Flack (1983); 2220 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.005 (16)
Crystal data top
[Pd(C5H6N2)(C18H15P}2]I·C4H8O2V = 4407.3 (5) Å3
Mr = 1066.96Z = 4
Orthorhombic, Cmc21Mo Kα radiation
a = 15.0297 (9) ŵ = 1.93 mm1
b = 16.9603 (10) ÅT = 160 K
c = 17.2897 (11) Å0.40 × 0.21 × 0.10 mm
Data collection top
Bruker SMART 1K CCD
diffractometer
5016 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2002)
4828 reflections with I > 2σ(I)
Tmin = 0.600, Tmax = 0.824Rint = 0.030
14181 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.026H-atom parameters constrained
wR(F2) = 0.066Δρmax = 1.28 e Å3
S = 1.04Δρmin = 0.71 e Å3
5016 reflectionsAbsolute structure: Flack (1983); 2220 Friedel pairs
270 parametersAbsolute structure parameter: 0.005 (16)
1 restraint
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Pd10.50000.278578 (18)0.282560 (19)0.01377 (7)
I10.50000.420395 (18)0.21713 (2)0.02785 (9)
C10.50000.1796 (3)0.3462 (3)0.0177 (9)
N10.50000.1095 (2)0.3084 (2)0.0209 (8)
H10.50000.11140.25760.025*
C20.50000.0360 (3)0.3416 (3)0.0279 (11)
N20.50000.0265 (3)0.2959 (3)0.0354 (11)
H2A0.50000.02040.24540.042*
H2B0.50000.07410.31610.042*
C30.50000.0335 (3)0.4235 (3)0.0304 (12)
H30.50000.01580.44960.036*
C40.50000.1024 (3)0.4646 (3)0.0310 (13)
H40.50000.10060.51950.037*
C50.50000.1769 (3)0.4264 (3)0.0240 (10)
H50.50000.22430.45560.029*
P10.65508 (4)0.27780 (4)0.28541 (5)0.01498 (14)
C60.7082 (2)0.32603 (18)0.20310 (19)0.0169 (6)
C70.7793 (2)0.3781 (2)0.2112 (2)0.0250 (7)
H70.80130.39100.26110.030*
C80.8176 (3)0.4111 (2)0.1457 (3)0.0318 (9)
H80.86480.44790.15110.038*
C90.7880 (3)0.3910 (2)0.0725 (2)0.0282 (8)
H90.81540.41340.02810.034*
C100.7193 (3)0.3389 (2)0.0645 (2)0.0286 (8)
H100.69970.32450.01420.034*
C110.6778 (2)0.3068 (2)0.1291 (2)0.0242 (7)
H110.62890.27180.12290.029*
C120.6957 (2)0.32586 (19)0.3731 (2)0.0189 (7)
C130.6376 (2)0.3692 (2)0.4194 (2)0.0252 (7)
H130.57720.37520.40420.030*
C140.6676 (3)0.4039 (2)0.4878 (2)0.0307 (8)
H140.62740.43220.52000.037*
C150.7567 (3)0.3967 (2)0.5087 (2)0.0341 (9)
H150.77760.42100.55480.041*
C160.8155 (3)0.3540 (2)0.4626 (2)0.0314 (8)
H160.87610.34900.47730.038*
C170.7853 (2)0.3189 (2)0.3949 (2)0.0261 (7)
H170.82540.28990.36340.031*
C180.71207 (19)0.18245 (18)0.2894 (2)0.0176 (6)
C190.7548 (2)0.1507 (2)0.2255 (2)0.0293 (8)
H190.75310.17780.17750.035*
C200.8002 (3)0.0797 (2)0.2313 (3)0.0377 (10)
H200.83040.05890.18750.045*
C210.8013 (3)0.0394 (2)0.3002 (2)0.0334 (9)
H210.83280.00900.30410.040*
C220.7570 (3)0.0690 (2)0.3638 (2)0.0297 (8)
H220.75710.04050.41110.036*
C230.7125 (2)0.1402 (2)0.3585 (2)0.0236 (7)
H230.68190.16050.40230.028*
I20.50000.09769 (2)0.11255 (2)0.03015 (9)
C240.50000.2651 (8)0.2157 (9)0.120 (6)
H24A0.46330.22230.19470.180*0.50
H24B0.47560.31590.19910.180*0.50
H24C0.56110.25970.19650.180*0.50
C250.50000.2605 (5)0.3083 (8)0.080 (4)
O10.50000.1948 (3)0.3390 (4)0.0605 (15)
O20.50000.3250 (4)0.3347 (7)0.111 (3)
C260.50000.3210 (6)0.4186 (7)0.069 (3)
H26A0.44660.29240.43690.083*0.50
H26B0.55340.29240.43690.083*0.50
C270.50000.4071 (6)0.4510 (10)0.101 (4)
H27A0.48120.40650.50520.152*0.50
H27B0.56010.42920.44710.152*0.50
H27C0.45870.43950.42080.152*0.50
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Pd10.01199 (13)0.01359 (15)0.01575 (16)0.0000.0000.00026 (12)
I10.02021 (15)0.01820 (14)0.0452 (2)0.0000.0000.00699 (14)
C10.0101 (18)0.021 (2)0.022 (2)0.0000.0000.0016 (17)
N10.025 (2)0.021 (2)0.016 (2)0.0000.0000.0053 (15)
C20.028 (3)0.019 (2)0.037 (3)0.0000.0000.010 (2)
N20.058 (3)0.021 (2)0.027 (3)0.0000.0000.0026 (19)
C30.025 (3)0.031 (3)0.036 (3)0.0000.0000.016 (2)
C40.027 (3)0.044 (3)0.022 (3)0.0000.0000.017 (2)
C50.025 (2)0.032 (3)0.015 (2)0.0000.0000.0048 (19)
P10.0124 (3)0.0171 (3)0.0154 (4)0.0000 (3)0.0001 (3)0.0003 (3)
C60.0161 (14)0.0191 (15)0.0155 (17)0.0015 (11)0.0018 (11)0.0002 (12)
C70.0232 (15)0.0276 (16)0.0243 (17)0.0055 (13)0.0003 (14)0.0021 (15)
C80.0251 (18)0.039 (2)0.031 (2)0.0112 (15)0.0031 (15)0.0067 (16)
C90.0280 (19)0.032 (2)0.025 (2)0.0011 (15)0.0055 (15)0.0072 (15)
C100.037 (2)0.034 (2)0.0151 (17)0.0003 (16)0.0014 (15)0.0004 (14)
C110.0229 (17)0.0267 (18)0.023 (2)0.0034 (13)0.0003 (13)0.0020 (13)
C120.0203 (15)0.0173 (15)0.0191 (17)0.0049 (12)0.0015 (12)0.0018 (12)
C130.0239 (17)0.0264 (17)0.0254 (19)0.0030 (14)0.0005 (13)0.0024 (14)
C140.041 (2)0.0295 (19)0.022 (2)0.0033 (16)0.0049 (16)0.0057 (14)
C150.053 (3)0.032 (2)0.0179 (19)0.0134 (17)0.0102 (17)0.0021 (14)
C160.034 (2)0.0325 (19)0.028 (2)0.0069 (15)0.0129 (16)0.0045 (16)
C170.0224 (16)0.0245 (18)0.031 (2)0.0009 (13)0.0051 (15)0.0015 (14)
C180.0141 (13)0.0160 (14)0.0228 (17)0.0012 (11)0.0004 (13)0.0006 (13)
C190.042 (2)0.0287 (18)0.0176 (18)0.0089 (15)0.0002 (14)0.0009 (16)
C200.057 (3)0.0292 (19)0.027 (2)0.0159 (17)0.0068 (19)0.0036 (15)
C210.041 (2)0.0219 (18)0.037 (3)0.0111 (15)0.0027 (16)0.0018 (15)
C220.036 (2)0.0235 (19)0.029 (2)0.0057 (15)0.0010 (16)0.0078 (15)
C230.0207 (15)0.0268 (17)0.0232 (17)0.0054 (13)0.0029 (13)0.0051 (14)
I20.02745 (17)0.0432 (2)0.01984 (17)0.0000.0000.00002 (15)
C240.057 (6)0.130 (10)0.173 (15)0.0000.0000.078 (11)
C250.022 (3)0.046 (5)0.172 (12)0.0000.0000.025 (6)
O10.040 (3)0.035 (3)0.106 (5)0.0000.0000.021 (3)
O20.051 (4)0.059 (4)0.224 (12)0.0000.0000.005 (5)
C260.055 (5)0.069 (6)0.084 (7)0.0000.0000.034 (5)
C270.087 (8)0.073 (7)0.143 (12)0.0000.0000.035 (7)
Geometric parameters (Å, º) top
Pd1—I12.6580 (5)C13—H130.950
Pd1—C12.006 (4)C13—C141.397 (5)
Pd1—P12.3313 (7)C14—H140.950
Pd1—P1i2.3313 (7)C14—C151.394 (6)
C1—N11.356 (6)C15—H150.950
C1—C51.388 (7)C15—C161.393 (6)
N1—H10.880C16—H160.950
N1—C21.372 (6)C16—C171.389 (5)
C2—N21.322 (7)C17—H170.950
C2—C31.416 (8)C18—C191.385 (5)
N2—H2A0.880C18—C231.394 (5)
N2—H2B0.880C19—H190.950
C3—H30.950C19—C201.388 (5)
C3—C41.369 (9)C20—H200.950
C4—H40.950C20—C211.373 (6)
C4—C51.425 (7)C21—H210.950
C5—H50.950C21—C221.381 (5)
P1—C61.825 (3)C22—H220.950
P1—C121.826 (3)C22—C231.384 (5)
P1—C181.831 (3)C23—H230.950
C6—C71.393 (4)C24—H24A0.980
C6—C111.398 (5)C24—H24B0.980
C7—H70.950C24—H24C0.980
C7—C81.389 (5)C24—C251.603 (18)
C8—H80.950C25—O11.236 (12)
C8—C91.382 (6)C25—O21.185 (12)
C9—H90.950O2—C261.453 (14)
C9—C101.367 (5)C26—H26A0.990
C10—H100.950C26—H26B0.990
C10—C111.391 (5)C26—C271.564 (13)
C11—H110.950C27—H27A0.980
C12—C131.395 (5)C27—H27B0.980
C12—C171.403 (5)C27—H27C0.980
I1—Pd1—C1171.95 (14)C12—C13—C14120.4 (3)
I1—Pd1—P190.81 (2)H13—C13—C14119.8
I1—Pd1—P1i90.81 (2)C13—C14—H14120.2
C1—Pd1—P189.06 (2)C13—C14—C15119.5 (4)
C1—Pd1—P1i89.06 (2)H14—C14—C15120.2
P1—Pd1—P1i177.49 (5)C14—C15—H15119.8
Pd1—C1—N1118.0 (3)C14—C15—C16120.5 (4)
Pd1—C1—C5125.2 (4)H15—C15—C16119.8
N1—C1—C5116.8 (4)C15—C16—H16120.1
C1—N1—H1116.7C15—C16—C17119.9 (4)
C1—N1—C2126.6 (4)H16—C16—C17120.1
H1—N1—C2116.7C12—C17—C16120.3 (3)
N1—C2—N2118.6 (5)C12—C17—H17119.9
N1—C2—C3116.5 (5)C16—C17—H17119.9
N2—C2—C3124.9 (5)P1—C18—C19122.0 (3)
C2—N2—H2A120.0P1—C18—C23119.2 (3)
C2—N2—H2B120.0C19—C18—C23118.8 (3)
H2A—N2—H2B120.0C18—C19—H19119.7
C2—C3—H3120.2C18—C19—C20120.5 (4)
C2—C3—C4119.5 (5)H19—C19—C20119.7
H3—C3—C4120.2C19—C20—H20120.0
C3—C4—H4119.5C19—C20—C21120.0 (4)
C3—C4—C5121.1 (5)H20—C20—C21120.0
H4—C4—C5119.5C20—C21—H21119.9
C1—C5—C4119.6 (5)C20—C21—C22120.3 (3)
C1—C5—H5120.2H21—C21—C22119.9
C4—C5—H5120.2C21—C22—H22120.1
Pd1—P1—C6114.73 (10)C21—C22—C23119.9 (3)
Pd1—P1—C12110.45 (11)H22—C22—C23120.1
Pd1—P1—C18118.26 (10)C18—C23—C22120.5 (3)
C6—P1—C12107.51 (14)C18—C23—H23119.8
C6—P1—C18102.71 (15)C22—C23—H23119.8
C12—P1—C18101.94 (16)H24A—C24—H24B109.5
P1—C6—C7122.8 (3)H24A—C24—H24C109.5
P1—C6—C11117.8 (2)H24A—C24—C25109.5
C7—C6—C11119.4 (3)H24B—C24—H24C109.5
C6—C7—H7120.3H24B—C24—C25109.5
C6—C7—C8119.4 (3)H24C—C24—C25109.5
H7—C7—C8120.3C24—C25—O1118.3 (9)
C7—C8—H8119.5C24—C25—O2109.9 (12)
C7—C8—C9120.9 (3)O1—C25—O2131.8 (14)
H8—C8—C9119.5C25—O2—C26110.0 (10)
C8—C9—H9120.2O2—C26—H26A110.0
C8—C9—C10119.7 (3)O2—C26—H26B110.0
H9—C9—C10120.2O2—C26—C27108.3 (10)
C9—C10—H10119.6H26A—C26—H26B108.4
C9—C10—C11120.7 (4)H26A—C26—C27110.0
H10—C10—C11119.6H26B—C26—C27110.0
C6—C11—C10119.8 (3)C26—C27—H27A109.5
C6—C11—H11120.1C26—C27—H27B109.5
C10—C11—H11120.1C26—C27—H27C109.5
P1—C12—C13120.1 (2)H27A—C27—H27B109.5
P1—C12—C17120.4 (3)H27A—C27—H27C109.5
C13—C12—C17119.4 (3)H27B—C27—H27C109.5
C12—C13—H13119.8
Symmetry code: (i) x+1, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···I20.882.523.393 (4)173
N2—H2A···I20.883.053.806 (5)146
N2—H2B···O10.882.082.950 (6)168

Experimental details

Crystal data
Chemical formula[Pd(C5H6N2)(C18H15P}2]I·C4H8O2
Mr1066.96
Crystal system, space groupOrthorhombic, Cmc21
Temperature (K)160
a, b, c (Å)15.0297 (9), 16.9603 (10), 17.2897 (11)
V3)4407.3 (5)
Z4
Radiation typeMo Kα
µ (mm1)1.93
Crystal size (mm)0.40 × 0.21 × 0.10
Data collection
DiffractometerBruker SMART 1K CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2002)
Tmin, Tmax0.600, 0.824
No. of measured, independent and
observed [I > 2σ(I)] reflections
14181, 5016, 4828
Rint0.030
(sin θ/λ)max1)0.678
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.026, 0.066, 1.04
No. of reflections5016
No. of parameters270
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.28, 0.71
Absolute structureFlack (1983); 2220 Friedel pairs
Absolute structure parameter0.005 (16)

Computer programs: SMART (Bruker, 2001), SAINT (Bruker, 2001), SHELXTL (Sheldrick, 2001), SHELXTL and local programs.

Selected geometric parameters (Å, º) top
Pd1—I12.6580 (5)Pd1—P12.3313 (7)
Pd1—C12.006 (4)
I1—Pd1—C1171.95 (14)C1—Pd1—P189.06 (2)
I1—Pd1—P190.81 (2)P1—Pd1—P1i177.49 (5)
Symmetry code: (i) x+1, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···I20.882.523.393 (4)173
N2—H2A···I20.883.053.806 (5)146
N2—H2B···O10.882.082.950 (6)168
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds