Download citation
Download citation
link to html
Zinc di­alkyl di­thio­carbamoyl­sulfinates have been proposed as intermediates in the antioxidant action of the respective zinc di­alkyl di­thio­carbamate additives in hydro­carbon-based plastics and lubricants. As a model compound, zinc diiso­butyl di­thio­carbamoyl­sulfinate, [Zn(C9H18NO2S2)2], has been prepared and its crystal structure determined.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S160053680301314X/bt6269sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S160053680301314X/bt6269Isup2.hkl
Contains datablock I

CCDC reference: 217380

Key indicators

  • Single-crystal X-ray study
  • T = 293 K
  • Mean [sigma](C-C) = 0.007 Å
  • R factor = 0.032
  • wR factor = 0.093
  • Data-to-parameter ratio = 12.7

checkCIF results

No syntax errors found

ADDSYM reports no extra symmetry

General Notes

REFLT_03 From the CIF: _diffrn_reflns_theta_max 24.97 From the CIF: _reflns_number_total 1695 Count of symmetry unique reflns 1309 Completeness (_total/calc) 129.49% TEST3: Check Friedels for noncentro structure Estimate of Friedel pairs measured 386 Fraction of Friedel pairs measured 0.295 Are heavy atom types Z>Si present yes WARNING: Large fraction of Friedel related reflns may be needed to determine absolute structure

Comment top

Zinc dialkylthiocarbamoylsulphinates, (I), and zinc dialkyldithiopercarbamates, (II), have been discussed as possible oxidation products in the antioxidant action of zinc dialkyldithiocarbamates additives in plastics and liquid hydrocarbons. (II) has been identified as derivative of (III) in model systems using autoxidizing liquid hydrocarbons (Al-Malaika et al., 1985; Shelkova et al., 1990) and vegetable oil based lubricants (Becker et al., 1996) and could be shown to display antioxidant activity itself. Though it has been demonstrated that (I) exhibits antioxidant activity (Shelkova et al., 1990) there is no evidence that it accumulates in these materials amounts during auto-oxidation.

While the solid-state structure of (II) (R1 = R2 = n-butyl) has been reported (Reck et al., 1995), structure proposals for (I), to the best of our knowledge, are based on their IR spectra only. Here, the solid-state structure of zinc diisobutyldithiocarbamoylsulphinate, (I) [R1 = R2 = –CH2CH(CH3)2], is reported.

Experimental top

Zinc diisobutyldithiocarbamoylsulphinate, (I), was prepared following the method reported by Shelkova et al. (1990) for the di-n-butyl isomer. A stirred solution of sodium diisobutyldithiocarbamate (1 molar equivalent) in acetone was treated with hydrogen peroxide (2 molar equivalents) in small portions and kept at 273–278 K. The yellow precipate formed after dilution with water was purified by fractionated crystallization from ethanol/n-hexane to yield colourless crystals of (I). IR spectrum (cm−1): 2975, 2960, 2940, 1530, 1460, 1445, 1435, 1380, 1365, 1350, 1330, 1290, 1275, 1255, 1170, 1165, 1155, 1090, 970, 955, 920, 855, 825, 815, 805, 645.

Refinement top

The molecule of (I) consists of two equivalent parts related by a twofold axis of the space group. The Zn atom occupies a special position on this twofold axis. Atoms C6 and C7 have very large anisotropic displacement parameters indicating a disorder of the corresponding isobutyl group.

Computing details top

Data collection: CAD-4 Operations Manual (Enraf-Nonius, 1977); cell refinement: CAD-4 Operations Manual; data reduction: PROCESS in_MolEN (Fair, 1990); program(s) used to solve structure: SHELXS97 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL-NT (Sheldrick, 1999); software used to prepare material for publication: SHELXTL97.

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), showing 50% probability displacement ellipsoids (SHELXTL; Sheldrick, 1999). H-atom labels have been omitted for clarity·[Symmetry code: (i) −x, −y − 1, z.]
zinc diisobutyldithiocarbamoylsulphinate top
Crystal data top
[Zn(C9H18NO2S2)2]Dx = 1.365 Mg m3
Mr = 538.10Mo Kα radiation, λ = 0.71069 Å
Tetragonal, P421cCell parameters from 25 reflections
a = 12.557 (2) Åθ = 12–20°
c = 16.600 (3) ŵ = 1.28 mm1
V = 2617.5 (8) Å3T = 293 K
Z = 4Prismatic, colourless
F(000) = 11360.36 × 0.33 × 0.29 mm
Data collection top
Enraf-Nonius CAD-4
diffractometer
Rint = 0.042
Radiation source: fine-focus sealed tubeθmax = 25.0°, θmin = 2.0°
Graphite monochromatorh = 014
2θω scansk = 1414
2940 measured reflectionsl = 019
1695 independent reflections3 standard reflections every 120 min
1523 reflections with I > 2σ(I) intensity decay: 0.5%
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.032 w = 1/[σ2(Fo2) + (0.0545P)2 + 0.3208P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.093(Δ/σ)max = 0.001
S = 1.11Δρmax = 0.53 e Å3
1695 reflectionsΔρmin = 0.31 e Å3
133 parametersExtinction correction: SHELXL97, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
1 restraintExtinction coefficient: 0.0101 (10)
Primary atom site location: structure-invariant direct methodsAbsolute structure: Flack (1983)
Secondary atom site location: difference Fourier mapAbsolute structure parameter: 0.02 (3)
Crystal data top
[Zn(C9H18NO2S2)2]Z = 4
Mr = 538.10Mo Kα radiation
Tetragonal, P421cµ = 1.28 mm1
a = 12.557 (2) ÅT = 293 K
c = 16.600 (3) Å0.36 × 0.33 × 0.29 mm
V = 2617.5 (8) Å3
Data collection top
Enraf-Nonius CAD-4
diffractometer
Rint = 0.042
2940 measured reflections3 standard reflections every 120 min
1695 independent reflections intensity decay: 0.5%
1523 reflections with I > 2σ(I)
Refinement top
R[F2 > 2σ(F2)] = 0.032H-atom parameters constrained
wR(F2) = 0.093Δρmax = 0.53 e Å3
S = 1.11Δρmin = 0.31 e Å3
1695 reflectionsAbsolute structure: Flack (1983)
133 parametersAbsolute structure parameter: 0.02 (3)
1 restraint
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Zn10.00000.50000.87762 (3)0.0513 (2)
S10.01766 (7)0.65813 (9)0.80688 (7)0.0687 (3)
S20.20087 (6)0.62201 (7)0.88583 (5)0.0457 (2)
O10.1229 (2)0.5581 (2)0.93532 (14)0.0575 (7)
O20.2442 (3)0.5577 (2)0.81989 (16)0.0696 (8)
N10.1422 (2)0.7923 (2)0.79122 (16)0.0441 (6)
C10.1049 (2)0.7058 (3)0.82410 (19)0.0424 (7)
C20.2452 (3)0.8403 (3)0.8144 (2)0.0509 (8)
H2A0.29630.78380.82390.061*
H2B0.27130.88300.76990.061*
C30.0819 (3)0.8482 (3)0.7268 (2)0.0511 (8)
H310.00790.85450.74270.061*
H320.11030.91960.72020.061*
C80.0196 (4)0.8465 (4)0.5856 (2)0.0780 (13)
H810.05200.85150.60550.117*
H820.04720.91670.57630.117*
H830.01990.80720.53590.117*
C90.2018 (4)0.7793 (4)0.6174 (3)0.0726 (12)
H910.24340.74220.65700.109*
H920.20270.74010.56770.109*
H930.23140.84890.60880.109*
C50.0884 (3)0.7897 (3)0.6468 (2)0.0532 (9)
H50.05960.71790.65460.064*
C40.2389 (4)0.9085 (5)0.8878 (4)0.0999 (19)
H40.22720.85750.93160.120*
C70.3507 (5)0.9530 (7)0.9047 (5)0.142 (3)
H7A0.40230.89690.89980.212*
H7B0.36671.00820.86650.212*
H7C0.35300.98180.95820.212*
C60.1510 (6)0.9825 (7)0.8954 (6)0.205 (5)
H6A0.15561.01850.94630.307*
H6B0.15421.03370.85260.307*
H6C0.08490.94430.89240.307*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.0491 (3)0.0481 (3)0.0567 (3)0.0169 (2)0.0000.000
S10.0378 (5)0.0709 (7)0.0974 (7)0.0176 (5)0.0146 (5)0.0314 (6)
S20.0404 (4)0.0413 (4)0.0553 (4)0.0046 (3)0.0080 (4)0.0009 (4)
O10.0617 (15)0.0595 (16)0.0513 (13)0.0197 (13)0.0124 (12)0.0083 (12)
O20.0708 (18)0.0633 (17)0.0745 (16)0.0205 (15)0.0068 (16)0.0059 (15)
N10.0388 (13)0.0377 (13)0.0559 (14)0.0048 (12)0.0007 (12)0.0005 (12)
C10.0358 (16)0.0404 (16)0.0508 (16)0.0000 (14)0.0015 (14)0.0004 (14)
C20.0436 (17)0.0420 (17)0.067 (2)0.0120 (16)0.0031 (17)0.0040 (17)
C30.0492 (18)0.0360 (15)0.0682 (19)0.0047 (16)0.0097 (17)0.0074 (16)
C80.077 (3)0.083 (3)0.074 (2)0.008 (3)0.007 (2)0.015 (2)
C90.062 (2)0.086 (3)0.069 (2)0.011 (2)0.003 (2)0.021 (2)
C50.055 (2)0.0445 (18)0.0598 (19)0.0011 (17)0.0076 (17)0.0035 (16)
C40.077 (3)0.107 (4)0.116 (4)0.003 (3)0.015 (3)0.060 (4)
C70.094 (4)0.150 (6)0.181 (6)0.024 (4)0.030 (5)0.103 (6)
C60.128 (7)0.201 (10)0.285 (11)0.013 (7)0.035 (8)0.179 (10)
Geometric parameters (Å, º) top
Zn1—O11.957 (2)C8—H810.9600
Zn1—O1i1.957 (2)C8—H820.9600
Zn1—S1i2.3175 (11)C8—H830.9600
Zn1—S12.3175 (11)C9—C51.511 (6)
S1—C11.676 (3)C9—H910.9600
S2—O21.465 (3)C9—H920.9600
S2—O11.509 (3)C9—H930.9600
S2—C11.899 (3)C5—H50.9800
N1—C11.303 (4)C4—C61.449 (7)
N1—C21.477 (4)C4—C71.537 (8)
N1—C31.487 (4)C4—H40.9800
C2—C41.490 (6)C7—H7A0.9600
C2—H2A0.9700C7—H7B0.9600
C2—H2B0.9700C7—H7C0.9600
C3—C51.519 (5)C6—H6A0.9600
C3—H310.9700C6—H6B0.9600
C3—H320.9700C6—H6C0.9600
C8—C51.513 (5)
O1—Zn1—O1i121.40 (15)H81—C8—H83109.5
O1—Zn1—S1i119.47 (9)H82—C8—H83109.5
O1i—Zn1—S1i90.23 (8)C5—C9—H91109.5
O1—Zn1—S190.23 (8)C5—C9—H92109.5
O1i—Zn1—S1119.47 (9)H91—C9—H92109.5
S1i—Zn1—S1119.11 (7)C5—C9—H93109.5
C1—S1—Zn197.55 (12)H91—C9—H93109.5
O2—S2—O1110.77 (17)H92—C9—H93109.5
O2—S2—C197.92 (16)C9—C5—C8111.2 (3)
O1—S2—C1100.17 (16)C9—C5—C3112.0 (3)
S2—O1—Zn1116.31 (13)C8—C5—C3109.2 (3)
C1—N1—C2123.0 (3)C9—C5—H5108.1
C1—N1—C3120.8 (3)C8—C5—H5108.1
C2—N1—C3116.2 (3)C3—C5—H5108.1
N1—C1—S1123.8 (2)C6—C4—C2118.7 (5)
N1—C1—S2117.4 (2)C6—C4—C7116.5 (6)
S1—C1—S2118.5 (2)C2—C4—C7108.0 (5)
N1—C2—C4113.7 (3)C6—C4—H4103.8
N1—C2—H2A108.8C2—C4—H4103.8
C4—C2—H2A108.8C7—C4—H4103.8
N1—C2—H2B108.8C4—C7—H7A109.5
C4—C2—H2B108.8C4—C7—H7B109.5
H2A—C2—H2B107.7H7A—C7—H7B109.5
N1—C3—C5111.9 (3)C4—C7—H7C109.5
N1—C3—H31109.2H7A—C7—H7C109.5
C5—C3—H31109.2H7B—C7—H7C109.5
N1—C3—H32109.2C4—C6—H6A109.5
C5—C3—H32109.2C4—C6—H6B109.5
H31—C3—H32107.9H6A—C6—H6B109.5
C5—C8—H81109.5C4—C6—H6C109.5
C5—C8—H82109.5H6A—C6—H6C109.5
H81—C8—H82109.5H6B—C6—H6C109.5
C5—C8—H83109.5
Symmetry code: (i) x, y1, z.

Experimental details

Crystal data
Chemical formula[Zn(C9H18NO2S2)2]
Mr538.10
Crystal system, space groupTetragonal, P421c
Temperature (K)293
a, c (Å)12.557 (2), 16.600 (3)
V3)2617.5 (8)
Z4
Radiation typeMo Kα
µ (mm1)1.28
Crystal size (mm)0.36 × 0.33 × 0.29
Data collection
DiffractometerEnraf-Nonius CAD-4
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
2940, 1695, 1523
Rint0.042
(sin θ/λ)max1)0.594
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.032, 0.093, 1.11
No. of reflections1695
No. of parameters133
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.53, 0.31
Absolute structureFlack (1983)
Absolute structure parameter0.02 (3)

Computer programs: CAD-4 Operations Manual (Enraf-Nonius, 1977), CAD-4 Operations Manual, PROCESS in_MolEN (Fair, 1990), SHELXS97 (Sheldrick, 1990), SHELXL97 (Sheldrick, 1997), SHELXTL-NT (Sheldrick, 1999), SHELXTL97.

 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds