Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
The title compound, C13H8N2O7, displays s-cis-s-cis conform­ation of the carbonate group. Bond lengths and angles (Å and °) involving this group are: C=O 1.1839 (13), C-O 1.3462 (13) and 1.3483 (13), O-Carom 1.3947 (13) and 1.3994 (13); O=C-O 127.21 (10) and 127.02 (10), O-C-O 105.77 (9). The aromatic rings are perpendicular to the carbonate plane.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536803007487/bt6262sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536803007487/bt6262Isup2.hkl
Contains datablock I

CCDC reference: 214628

Key indicators

  • Single-crystal X-ray study
  • T = 133 K
  • Mean [sigma](C-C) = 0.002 Å
  • R factor = 0.034
  • wR factor = 0.097
  • Data-to-parameter ratio = 16.5

checkCIF results

No syntax errors found

ADDSYM reports no extra symmetry








Comment top

Bis(o-nitrophenyl) carbonate, (I), was synthesized some 50 years ago (Deutsch & Fernö, 1950), but has not been widely used in synthesis, in contrast to its p-isomer, which was used for activating the carboxylate group in peptide synthesis (Glatthard & Matter, 1963) and as a carbonylation reagent (Nesynov & Pel'kis, 1962; Izdebsky & Pawlok, 1989; Takata et al., 1991; Enders et al., 1999). Recently we noticed that the o-isomer is more reactive than the p-isomer in reactions with N-nucleophiles in organic solvents (Simon et al., 2002), a property that might be extended to other reactions.

As part of our investigations of the structure and reactivity of organic carbonates, we have begun to study the solid state structures of some organic carbonates. Here we present the structure of (I). This had already been determined by King & Bryant (1990) in space group Pc (with Z=2) after recrystallization from dichloromethane/hexane; our structure, recrystallized from benzene, represents a new polymorph.

In principle, the s-cis–s-trans and s-trans–s-trans conformations are both possible for organic carbonates; early studies of dimethyl and diphenyl carbonate by IR spectroscopy (Oki & Nakanishi, 1971) or by dipole moments and Molar Kerr constants (Chia et al., 1981) showed that the probable conformations were s-cis–s-cis or s-cis–s-trans. However, molecular polarization measurements of various diaryl carbonates by Exner & Jehlicka (1981) established that all investigated organic carbonates adopted only the s-cis–s-cis conformation. Finally, X-ray investigations of diphenyl (King & Bryant, 1993), bis(o-nitrophenyl) and bis(2,4-dinitrophenyl) carbonates (King & Bryant, 1990) unambiguously demonstrated s-cis-s-cis conformations.

The molecule of (I) is shown in Fig. 1. The carbonate moiety displays the s-cis–s-cis conformation (cf. torsion angles in Table 1); atoms C11 and C21 lie 0.186 (2) and 0.155 (2) Å, respectively, on opposite sides of the plane defined by C1, O1, O2 and O3. The aromatic rings are perpendicular to this plane [interplanar angles 86.41 (3) and 86.86 (3)°]. In the previous modification (King & Bryant, 1990), only one aromatic ring was perpendicular to the carbonate group; corresponding angles were 89.9 and 54.6°.

Bond lengths and angles of the carbonate moiety (Table 1) may be considered normal. A search of the Cambridge database (Allen, 2002) for the diaryl carbonate moiety revealed 15 hits, with mean values of 105.7° for the O—C—O and 127.1° for the OC—O angles, 1.175 Å for the CO and 1.342 Å for the C—O bonds of 21 carbonate groups. Some of the structures involved cyclic carbonate oligomers (Nagahata et al., 2000).

Short intramolecular contacts C1···O5, 2.7829 (14), and C1···O7, 2.7228 (13) Å, are observed, as are intramolecular contacts O2···C23, 2.9642 (14), and O3···N2, 3.0143 (13) Å (operator for second atoms: x, 0.5 − y, 0.5 + z). The molecular packing is further determined by four weak C—H···O hydrogen bonds (Table 2).

The structure of the corresponding para derivative is described in the following paper (Simon et al., 2003).

Experimental top

Triphosgene (bis(trichloromethyl) carbonate) was treated with six equivalents of o-nitrophenol and six equivalents of triethylamine in dichloromethane and recrystallized from benzene (Simon et al., 2001).

Refinement top

Hydrogen atoms were included using a riding model with fixed C—H bond lengths of 0.95 Å; U(H) values were fixed at 1.2 times the U(eq) of the parent atom.

Computing details top

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 1998)'; data reduction: SAINT (Bruker, 1998)'; program(s) used to solve structure: SHELXS97 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: XP (Siemens, 1994); software used to prepare material for publication: SHELXL97.

Figures top
[Figure 1] Fig. 1. The molecule of the title compound in the crystal. Ellipsoids represent 50% probability levels; H atom radii are arbitrary.
Bis(o-nitrophenyl) carbonate top
Crystal data top
C13H8N2O7F(000) = 624
Mr = 304.21Dx = 1.549 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 11.9789 (12) ÅCell parameters from 4316 reflections
b = 11.9076 (12) Åθ = 2.4–27.0°
c = 9.1495 (11) ŵ = 0.13 mm1
β = 92.128 (3)°T = 133 K
V = 1304.2 (2) Å3Prism, colourless
Z = 40.55 × 0.27 × 0.17 mm
Data collection top
Bruker SMART 1000 CCD
diffractometer
2594 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.032
Graphite monochromatorθmax = 28.5°, θmin = 1.7°
Detector resolution: 8.192 pixels mm-1h = 1615
ω–scansk = 1115
9339 measured reflectionsl = 1212
3286 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.034Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.097H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0503P)2 + 0.1183P]
where P = (Fo2 + 2Fc2)/3
3286 reflections(Δ/σ)max < 0.001
199 parametersΔρmax = 0.25 e Å3
0 restraintsΔρmin = 0.22 e Å3
Crystal data top
C13H8N2O7V = 1304.2 (2) Å3
Mr = 304.21Z = 4
Monoclinic, P21/cMo Kα radiation
a = 11.9789 (12) ŵ = 0.13 mm1
b = 11.9076 (12) ÅT = 133 K
c = 9.1495 (11) Å0.55 × 0.27 × 0.17 mm
β = 92.128 (3)°
Data collection top
Bruker SMART 1000 CCD
diffractometer
2594 reflections with I > 2σ(I)
9339 measured reflectionsRint = 0.032
3286 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0340 restraints
wR(F2) = 0.097H-atom parameters constrained
S = 1.06Δρmax = 0.25 e Å3
3286 reflectionsΔρmin = 0.22 e Å3
199 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Least-squares planes (x,y,z in crystal coordinates) and deviations from them (* indicates atom used to define plane)

− 6.1038 (0.0053) x − 6.5075 (0.0051) y + 6.2498 (0.0035) z = 1.9257 (0.0032)

* 0.0024 (0.0008) C11 * −0.0132 (0.0008) C12 * 0.0106 (0.0009) C13 * 0.0027 (0.0009) C14 * −0.0134 (0.0009) C15 * 0.0109 (0.0009) C16

Rms deviation of fitted atoms = 0.0100

8.7528 (0.0042) x + 2.6147 (0.0062) y + 5.6622 (0.0036) z = 5.4181 (0.0013)

Angle to previous plane (with approximate e.s.d.) = 86.41 (0.03)

* 0.0021 (0.0008) C1 * −0.0009 (0.0003) O1 * −0.0006 (0.0002) O2 * −0.0006 (0.0002) O3 0.1864 (0.0017) C11 − 0.1551 (0.0017) C21

Rms deviation of fitted atoms = 0.0012

− 8.6451 (0.0040) x + 2.7044 (0.0055) y + 6.2238 (0.0032) z = 2.8009 (0.0030)

Angle to previous plane (with approximate e.s.d.) = 86.86 (0.03)

* −0.0028 (0.0008) C21 * −0.0036 (0.0008) C22 * 0.0058 (0.0008) C23 * −0.0016 (0.0008) C24 * −0.0048 (0.0008) C25 * 0.0070 (0.0008) C26

Rms deviation of fitted atoms = 0.0046

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.29019 (6)0.17099 (7)0.42919 (9)0.0307 (2)
O20.21681 (6)0.05444 (7)0.59648 (9)0.03015 (19)
O30.16596 (6)0.22750 (6)0.59518 (8)0.02762 (19)
O40.50500 (10)0.00622 (11)0.83351 (13)0.0684 (4)
O50.39845 (9)0.12506 (8)0.74522 (11)0.0464 (3)
O60.07112 (8)0.29780 (8)0.27643 (12)0.0465 (3)
O70.03683 (7)0.16887 (7)0.36686 (11)0.0400 (2)
C10.23182 (9)0.15314 (9)0.52819 (12)0.0246 (2)
C110.28894 (9)0.03163 (9)0.55776 (12)0.0263 (2)
C120.38995 (9)0.05030 (10)0.63448 (12)0.0278 (2)
C130.45412 (10)0.14359 (10)0.60383 (14)0.0338 (3)
H130.52160.15770.65860.041*
C140.41949 (11)0.21607 (10)0.49325 (15)0.0382 (3)
H140.46360.27970.47100.046*
C150.32031 (11)0.19585 (11)0.41487 (15)0.0393 (3)
H150.29750.24470.33730.047*
C160.25427 (10)0.10472 (10)0.44916 (14)0.0344 (3)
H160.18500.09280.39750.041*
C210.16043 (9)0.33294 (9)0.52775 (12)0.0244 (2)
C220.08447 (9)0.35544 (9)0.41232 (12)0.0246 (2)
C230.07547 (9)0.46284 (9)0.35468 (12)0.0273 (2)
H230.02300.47830.27690.033*
C240.14357 (10)0.54725 (10)0.41140 (13)0.0299 (3)
H240.13850.62090.37180.036*
C250.21931 (10)0.52451 (10)0.52598 (13)0.0326 (3)
H250.26620.58270.56420.039*
C260.22705 (10)0.41741 (10)0.58515 (13)0.0303 (3)
H260.27800.40250.66480.036*
N10.43350 (9)0.02891 (10)0.74587 (12)0.0368 (3)
N20.01200 (8)0.26778 (8)0.34831 (11)0.0295 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0303 (4)0.0299 (4)0.0324 (4)0.0044 (3)0.0060 (3)0.0056 (3)
O20.0308 (4)0.0246 (4)0.0356 (4)0.0055 (3)0.0072 (3)0.0066 (3)
O30.0326 (4)0.0238 (4)0.0266 (4)0.0052 (3)0.0042 (3)0.0040 (3)
O40.0670 (7)0.0797 (9)0.0559 (7)0.0188 (6)0.0329 (6)0.0114 (6)
O50.0606 (6)0.0333 (5)0.0444 (6)0.0041 (4)0.0078 (5)0.0041 (4)
O60.0409 (5)0.0377 (5)0.0591 (6)0.0067 (4)0.0230 (5)0.0078 (4)
O70.0409 (5)0.0233 (4)0.0549 (6)0.0000 (4)0.0103 (4)0.0023 (4)
C10.0241 (5)0.0242 (5)0.0253 (5)0.0024 (4)0.0026 (4)0.0025 (4)
C110.0269 (5)0.0214 (5)0.0306 (6)0.0013 (4)0.0033 (4)0.0051 (4)
C120.0275 (5)0.0272 (6)0.0286 (6)0.0009 (4)0.0024 (4)0.0051 (4)
C130.0272 (5)0.0339 (6)0.0405 (7)0.0043 (5)0.0039 (5)0.0094 (5)
C140.0377 (6)0.0253 (6)0.0523 (8)0.0054 (5)0.0123 (6)0.0025 (5)
C150.0434 (7)0.0280 (6)0.0467 (8)0.0046 (5)0.0048 (6)0.0062 (5)
C160.0303 (6)0.0299 (6)0.0427 (7)0.0013 (5)0.0038 (5)0.0001 (5)
C210.0272 (5)0.0218 (5)0.0244 (5)0.0037 (4)0.0036 (4)0.0018 (4)
C220.0246 (5)0.0237 (5)0.0256 (5)0.0012 (4)0.0015 (4)0.0026 (4)
C230.0297 (5)0.0268 (6)0.0254 (5)0.0063 (4)0.0013 (4)0.0008 (4)
C240.0355 (6)0.0229 (5)0.0316 (6)0.0035 (4)0.0061 (5)0.0022 (4)
C250.0361 (6)0.0278 (6)0.0339 (6)0.0041 (5)0.0007 (5)0.0034 (5)
C260.0319 (6)0.0319 (6)0.0269 (6)0.0003 (5)0.0026 (5)0.0000 (5)
N10.0353 (5)0.0435 (6)0.0313 (6)0.0024 (5)0.0036 (4)0.0000 (4)
N20.0282 (5)0.0273 (5)0.0326 (5)0.0020 (4)0.0024 (4)0.0040 (4)
Geometric parameters (Å, º) top
O1—C11.1839 (13)C14—H140.9500
O2—C11.3462 (13)C15—C161.3858 (18)
O2—C111.3947 (13)C15—H150.9500
O3—C11.3483 (13)C16—H160.9500
O3—C211.3994 (13)C21—C261.3760 (16)
O4—N11.2250 (14)C21—C221.3942 (15)
O5—N11.2194 (14)C22—C231.3860 (15)
O6—N21.2260 (12)C22—N21.4658 (14)
O7—N21.2250 (13)C23—C241.3833 (16)
C11—C161.3736 (17)C23—H230.9500
C11—C121.3939 (15)C24—C251.3875 (16)
C12—C131.3855 (16)C24—H240.9500
C12—N11.4700 (15)C25—C261.3871 (17)
C13—C141.3819 (19)C25—H250.9500
C13—H130.9500C26—H260.9500
C14—C151.3858 (18)
C1—O2—C11115.40 (8)C26—C21—O3118.06 (9)
C1—O3—C21114.06 (8)C22—C21—O3121.68 (9)
O1—C1—O2127.21 (10)C23—C22—C21120.32 (10)
O1—C1—O3127.02 (10)C23—C22—N2117.94 (10)
O2—C1—O3105.77 (9)C21—C22—N2121.74 (10)
C16—C11—C12119.78 (10)C24—C23—C22119.42 (10)
C16—C11—O2118.41 (10)C24—C23—H23120.3
C12—C11—O2121.58 (10)C22—C23—H23120.3
C13—C12—C11120.25 (11)C23—C24—C25120.11 (11)
C13—C12—N1118.00 (10)C23—C24—H24119.9
C11—C12—N1121.73 (10)C25—C24—H24119.9
C14—C13—C12119.68 (11)C26—C25—C24120.44 (11)
C14—C13—H13120.2C26—C25—H25119.8
C12—C13—H13120.2C24—C25—H25119.8
C13—C14—C15119.91 (11)C21—C26—C25119.58 (10)
C13—C14—H14120.0C21—C26—H26120.2
C15—C14—H14120.0C25—C26—H26120.2
C14—C15—C16120.30 (12)O5—N1—O4123.79 (12)
C14—C15—H15119.8O5—N1—C12119.06 (10)
C16—C15—H15119.8O4—N1—C12117.14 (11)
C11—C16—C15120.01 (11)O7—N2—O6122.88 (10)
C11—C16—H16120.0O7—N2—C22119.48 (9)
C15—C16—H16120.0O6—N2—C22117.63 (9)
C26—C21—C22120.11 (10)
C11—O2—C1—O18.87 (16)C26—C21—C22—C230.02 (16)
C11—O2—C1—O3171.56 (8)O3—C21—C22—C23175.37 (10)
C21—O3—C1—O16.62 (15)C26—C21—C22—N2179.94 (10)
C21—O3—C1—O2172.96 (8)O3—C21—C22—N24.55 (16)
C1—O2—C11—C1693.99 (12)C21—C22—C23—C240.84 (16)
C1—O2—C11—C1291.49 (13)N2—C22—C23—C24179.24 (9)
C16—C11—C12—C131.47 (17)C22—C23—C24—C250.65 (17)
O2—C11—C12—C13172.98 (10)C23—C24—C25—C260.36 (18)
C16—C11—C12—N1176.54 (11)C22—C21—C26—C250.99 (17)
O2—C11—C12—N19.02 (17)O3—C21—C26—C25176.55 (10)
C11—C12—C13—C142.25 (18)C24—C25—C26—C211.18 (18)
N1—C12—C13—C14175.82 (11)C13—C12—N1—O5158.34 (12)
C12—C13—C14—C150.74 (19)C11—C12—N1—O519.71 (17)
C13—C14—C15—C161.6 (2)C13—C12—N1—O420.65 (17)
C12—C11—C16—C150.84 (18)C11—C12—N1—O4161.30 (12)
O2—C11—C16—C15175.46 (11)C23—C22—N2—O7160.35 (11)
C14—C15—C16—C112.4 (2)C21—C22—N2—O719.73 (16)
C1—O3—C21—C2698.63 (12)C23—C22—N2—O618.87 (15)
C1—O3—C21—C2285.88 (12)C21—C22—N2—O6161.05 (11)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C13—H13···O1i0.952.433.1060 (14)128
C26—H26···O1ii0.952.573.3782 (15)143
C16—H16···O6iii0.952.443.1756 (15)135
C24—H24···O6iv0.952.623.5351 (15)163
Symmetry codes: (i) x+1, y, z+1; (ii) x, y+1/2, z+1/2; (iii) x, y1/2, z+1/2; (iv) x, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC13H8N2O7
Mr304.21
Crystal system, space groupMonoclinic, P21/c
Temperature (K)133
a, b, c (Å)11.9789 (12), 11.9076 (12), 9.1495 (11)
β (°) 92.128 (3)
V3)1304.2 (2)
Z4
Radiation typeMo Kα
µ (mm1)0.13
Crystal size (mm)0.55 × 0.27 × 0.17
Data collection
DiffractometerBruker SMART 1000 CCD
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
9339, 3286, 2594
Rint0.032
(sin θ/λ)max1)0.671
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.034, 0.097, 1.06
No. of reflections3286
No. of parameters199
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.25, 0.22

Computer programs: SMART (Bruker, 1998), SAINT (Bruker, 1998)', SHELXS97 (Sheldrick, 1990), SHELXL97 (Sheldrick, 1997), XP (Siemens, 1994), SHELXL97.

Selected geometric parameters (Å, º) top
O1—C11.1839 (13)O3—C11.3483 (13)
O2—C11.3462 (13)O3—C211.3994 (13)
O2—C111.3947 (13)
C1—O2—C11115.40 (8)O1—C1—O3127.02 (10)
C1—O3—C21114.06 (8)O2—C1—O3105.77 (9)
O1—C1—O2127.21 (10)
C11—O2—C1—O18.87 (16)C21—O3—C1—O2172.96 (8)
C11—O2—C1—O3171.56 (8)C1—O2—C11—C1291.49 (13)
C21—O3—C1—O16.62 (15)C1—O3—C21—C2285.88 (12)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C13—H13···O1i0.952.433.1060 (14)128.3
C26—H26···O1ii0.952.573.3782 (15)142.9
C16—H16···O6iii0.952.443.1756 (15)134.6
C24—H24···O6iv0.952.623.5351 (15)162.8
Symmetry codes: (i) x+1, y, z+1; (ii) x, y+1/2, z+1/2; (iii) x, y1/2, z+1/2; (iv) x, y+1/2, z+1/2.
 

Subscribe to Acta Crystallographica Section E: Crystallographic Communications

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds