Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
(Bu4N)2[Hg4I10] is the first compound for which tetranuclear anions [Hg4I10]2- are observed in its crystal structure. Charge balance is achieved by ordered [Bu4N]+ cations.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536803007335/bt6259sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536803007335/bt6259Isup2.hkl
Contains datablock I

CCDC reference: 214560

Key indicators

  • Single-crystal X-ray study
  • T = 293 K
  • Mean [sigma](C-C) = 0.019 Å
  • R factor = 0.038
  • wR factor = 0.060
  • Data-to-parameter ratio = 26.8

checkCIF results

No syntax errors found

ADDSYM reports no extra symmetry


Yellow Alert Alert Level C:
GOODF_01 Alert C The least squares goodness of fit parameter lies outside the range 0.80 <> 2.00 Goodness of fit given = 0.746 RINTA_01 Alert C The value of Rint is greater than 0.10 Rint given 0.107 PLAT_360 Alert C Short C(sp3)-C(sp3) Bond C(11) - C(15) = 1.42 Ang.
0 Alert Level A = Potentially serious problem
0 Alert Level B = Potential problem
3 Alert Level C = Please check

Comment top

Halogenomercurate(II) anions show a wide variety of steric arrangements, dependent upon charge and size of the counter-cation(s) and the stoichiometry (Dean et al., 1994; Grdenic et al. 1965; House et al., 1994; Serezhkin et al., 2001). Up to now, only one compound has been reported for the Bu4NI/HgI2 system. (Bu4N)[HgI3] contains trigonal planar [HgI3] units (Goggin et al., 1982).

Other discrete iodomercurate(II) anions with different cations that have been reported are the tetrahedral [HgI4] and the octahedral [HgI6]4−, as well as the dimeric [Hg2I6]2− and the trimeric [Hg3I8]2− units.

Recently, we have reported on the structure of (Et4N)2[Hg4Cl10] (Nockemann & Meyer, 2002). Bitetrahedral [Hg2Cl6]2− anions built from two tetrahedra sharing one common edge have two slightly bent HgCl2 molecules, with Cl—Hg—Cl angles of about 170°, attached to either side so that, in summa, it may be considered as the tetrameric [Hg4Cl10]2− anion. The two terminal mercuric ions exhibit coordination number 2 + 1 in a T-shaped arrangement.

The tetrameric anion [Hg4I10]2− in the crystal structure of (Bu4N)2[Hg4I10] may also be derived from bitetrahedral [Hg2I6]2− units to which two HgI2 molecules are again attached on either side. The two central tetrahedra are only slightly distorted with Hg—I distances ranging from 2.715 (1) to 2.910 (1) Å. The outer HgI2 molecules show considerably shorter distances ranging between 2.617 (1) and 2.647 (1) Å, with I—Hg—I angles of 149.09 (5) and 142.93 (4)°, but the distances to the iodide ions of the edges shared with the central [Hg2I6]2− are, in turn, much longer, 3.080 (1)–3.316 (1) Å. In summary, in the tetrameric anion [Hg4I10]2−, all mercuric ions may be considered as having coordination number 4, and all tetrahedra share common edges, in contrast to the situation in the tetrameric [Hg4Cl10]2− where coordination numbers are 4 and 3 (twice each), respectively.

In (Bu4N)2[Hg4I10], charge balance is achieved by two crystallographically independent, perfectly ordered tetrahedral [Bu4N]+ cations which are arranged in the crystal structure, together with the anions in a 2:1 ratio, as Fig. 1 illustrates.

Experimental top

1 mmol (0.369 g) of tetrabutylammonium iodide, (Bu4)NI, and 2 mmol (0.454 g) of mercuric iodide HgI2, were dissolved by stirring in 50 ml me thanol at 323 K until a clear solution was obtained. Yellow single crystals were obtained when the solution was allowed to sit at room temperature for 2 d.

Refinement top

The positions of the H atoms were calculated.

Computing details top

Data collection: X-AREA (Stoe & Cie, 2001); cell refinement: X-STEP32 (Stoe & Cie, 2000); data reduction: X-RED (Stoe & Cie, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: DIAMOND (Brandenburg, Bonn, 1999); software used to prepare material for publication: SHELXL97.

Figures top
[Figure 1] Fig. 1. Packing diagram of (Bu4N)2[Hg4I10] viewed down the a axis.
[Figure 2] Fig. 2. View on the [Hg4I10]2− anions, showing 50% probability displacement ellipsoids and the atom-numbering scheme.
[Figure 3] Fig. 3. View on the one [Bu4N]+ cation, showing 50% probability displacement ellipsoids.
[Figure 4] Fig. 4. View on the second [Bu4N]+ cation, showing 50% probability displacement ellipsoids.
(I) top
Crystal data top
(C16H36N)2[Hg4I10]Z = 2
Mr = 2556.28F(000) = 2256
Triclinic, P1Dx = 2.873 Mg m3
Hall symbol: -P1Mo Kα radiation, λ = 0.71073 Å
a = 11.681 ÅCell parameters from 37776 reflections
b = 15.770 Åθ = 3.6–59.3°
c = 18.288 ŵ = 15.60 mm1
α = 114.33°T = 293 K
β = 104.18°Prismatic needles, yellow
γ = 90.18°0.3 × 0.15 × 0.1 mm
V = 2955.3 Å3
Data collection top
Stoe Imaging Plate Diffraction System, IPDS-I
diffractometer
11615 independent reflections
Radiation source: fine-focus sealed tube5987 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.107
ϕ scansθmax = 26.0°, θmin = 1.8°
Absorption correction: numerical
X-SHAPE (Stoe & Cie, 1998)
h = 1214
Tmin = 0.075, Tmax = 0.210k = 1919
37776 measured reflectionsl = 2222
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.038H-atom parameters constrained
wR(F2) = 0.060 w = 1/[σ2(Fo2)]
where P = (Fo2 + 2Fc2)/3
S = 0.75(Δ/σ)max = 0.001
11615 reflectionsΔρmax = 1.23 e Å3
434 parametersΔρmin = 1.22 e Å3
0 restraintsExtinction correction: SHELXL97, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.001058 (11)
Crystal data top
(C16H36N)2[Hg4I10]γ = 90.18°
Mr = 2556.28V = 2955.3 Å3
Triclinic, P1Z = 2
a = 11.681 ÅMo Kα radiation
b = 15.770 ŵ = 15.60 mm1
c = 18.288 ÅT = 293 K
α = 114.33°0.3 × 0.15 × 0.1 mm
β = 104.18°
Data collection top
Stoe Imaging Plate Diffraction System, IPDS-I
diffractometer
11615 independent reflections
Absorption correction: numerical
X-SHAPE (Stoe & Cie, 1998)
5987 reflections with I > 2σ(I)
Tmin = 0.075, Tmax = 0.210Rint = 0.107
37776 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0380 restraints
wR(F2) = 0.060H-atom parameters constrained
S = 0.75Δρmax = 1.23 e Å3
11615 reflectionsΔρmin = 1.22 e Å3
434 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Hg10.38130 (5)0.22200 (4)0.90692 (3)0.04672 (14)
Hg20.24241 (5)0.26466 (4)0.48016 (3)0.05259 (15)
Hg30.17054 (5)0.26822 (4)0.25961 (3)0.04796 (14)
Hg40.32403 (5)0.23488 (4)0.69056 (3)0.05249 (15)
I10.21389 (6)0.11121 (5)0.73107 (4)0.03533 (18)
I20.55075 (7)0.11387 (6)0.92013 (5)0.0418 (2)
I30.37342 (7)0.37437 (6)0.44126 (5)0.0456 (2)
I40.27812 (8)0.14200 (6)0.16275 (6)0.0498 (2)
I50.04493 (7)0.40968 (7)0.28468 (6)0.0537 (2)
I60.24863 (8)0.33706 (7)0.99093 (6)0.0580 (3)
I70.40076 (7)0.15357 (5)0.54342 (5)0.03795 (19)
I80.49995 (7)0.34043 (6)0.83231 (5)0.0405 (2)
I90.05955 (7)0.16003 (6)0.34222 (5)0.0404 (2)
I100.16514 (7)0.34376 (5)0.62856 (5)0.03698 (19)
N10.6372 (8)0.3455 (6)0.2355 (6)0.033 (2)
C10.6908 (9)0.3962 (7)0.1937 (6)0.032 (3)
H1B0.71120.46190.23220.039*
H1A0.76420.37090.18430.039*
C30.7231 (9)0.3759 (8)0.3206 (6)0.033 (3)
H3B0.80250.36670.31360.040*
H3A0.72210.44260.35200.040*
C20.6193 (10)0.2403 (7)0.1847 (7)0.033 (3)
H2B0.58230.21220.21280.040*
H2A0.56340.22640.13120.040*
C60.7271 (11)0.1935 (8)0.1690 (8)0.048 (3)
H6B0.79120.21750.22010.057*
H6A0.75270.20660.12780.057*
C50.6128 (10)0.3898 (8)0.1117 (6)0.035 (3)
H5B0.54020.41710.12020.042*
H5A0.59140.32450.07220.042*
C90.6784 (11)0.4418 (8)0.0762 (7)0.041 (3)
H9B0.62140.45130.03260.049*
H9A0.71370.50290.12000.049*
C130.7760 (11)0.3889 (9)0.0405 (8)0.047 (3)
H13C0.81490.42470.02000.056*
H13B0.74120.32920.00440.056*
H13A0.83300.37950.08330.056*
C40.5129 (10)0.3763 (8)0.2415 (7)0.036 (3)
H4B0.46240.35860.18560.043*
H4A0.47830.34210.26600.043*
C80.5121 (10)0.4802 (8)0.2922 (7)0.041 (3)
H8B0.55180.51640.27170.049*
H8A0.55300.49820.35030.049*
C120.3780 (11)0.4986 (8)0.2825 (8)0.043 (3)
H12B0.33990.48510.22480.052*
H12A0.33730.45680.29730.052*
C70.7001 (11)0.3270 (10)0.3713 (8)0.053 (3)
H7B0.70180.26010.34150.064*
H7A0.62210.33710.38080.064*
C110.799 (2)0.3666 (12)0.4578 (10)0.109 (8)
H11B0.87690.36280.44770.131*
H11A0.79160.43210.48930.131*
C160.3674 (12)0.5986 (9)0.3374 (9)0.055 (4)
H16C0.28490.60780.33060.066*
H16B0.40610.64000.32200.066*
H16A0.40440.61190.39460.066*
C100.6987 (12)0.0892 (8)0.1382 (9)0.051 (3)
H10B0.62840.06790.09110.061*
H10A0.67930.07730.18200.061*
C140.7961 (13)0.0320 (10)0.1119 (10)0.066 (4)
H14C0.77090.03300.09440.079*
H14B0.86610.05190.15810.079*
H14A0.81350.04050.06660.079*
N20.1871 (7)0.8544 (6)0.2661 (5)0.025 (2)
C250.1782 (11)0.9389 (10)0.4984 (7)0.053 (4)
H25B0.23330.93850.54750.064*
H25A0.17291.00370.50760.064*
C210.2272 (11)0.8888 (9)0.4227 (7)0.044 (3)
H21B0.31020.91220.43670.053*
H21A0.22220.82210.40830.053*
C170.1578 (10)0.9046 (7)0.3490 (6)0.032 (3)
H17B0.16770.97130.36420.039*
H17A0.07420.88680.34020.039*
C190.1084 (9)0.8829 (7)0.2042 (6)0.029 (2)
H19B0.12540.95010.22380.035*
H19A0.02650.87040.20320.035*
C230.1188 (11)0.8357 (8)0.1153 (7)0.041 (3)
H23B0.20110.84480.11550.049*
H23A0.09540.76890.09300.049*
C270.0417 (10)0.8747 (10)0.0600 (7)0.047 (3)
H27B0.06890.94060.08050.056*
H27A0.03940.86980.06340.056*
C310.0431 (13)0.8249 (12)0.0300 (8)0.065 (4)
H31C0.00720.85250.06210.078*
H31B0.01460.75980.05120.078*
H31A0.12290.83060.03410.078*
C200.3188 (9)0.8807 (7)0.2771 (6)0.028 (2)
H20B0.33820.84280.22550.034*
H20A0.36610.86440.32000.034*
C240.3562 (9)0.9847 (8)0.3008 (7)0.034 (3)
H24B0.32460.99930.25360.041*
H24A0.32581.02500.34660.041*
C280.4894 (9)0.9998 (8)0.3257 (7)0.035 (3)
H28B0.51930.95240.28320.042*
H28A0.51990.99380.37750.042*
C180.1714 (9)0.7474 (6)0.2367 (7)0.029 (2)
H18B0.19620.71780.18590.035*
H18A0.22320.73210.27870.035*
C220.0441 (10)0.7069 (8)0.2204 (8)0.044 (3)
H22B0.01660.73910.26980.053*
H22A0.00730.71720.17510.053*
C290.0592 (15)0.8946 (12)0.4877 (10)0.079 (5)
H29C0.03250.92850.53650.095*
H29B0.06430.83080.47990.095*
H29A0.00380.89590.43990.095*
C260.0357 (11)0.6017 (8)0.1980 (7)0.040 (3)
H26B0.08160.59250.24560.048*
H26A0.04660.57840.18700.048*
C300.0794 (13)0.5455 (9)0.1241 (9)0.065 (4)
H30C0.07380.48080.11450.078*
H30B0.16080.56810.13430.078*
H30A0.03180.55140.07590.078*
C320.5330 (11)1.0989 (9)0.3371 (8)0.052 (4)
H32C0.61831.10800.35350.063*
H32B0.50361.14560.37950.063*
H32A0.50391.10420.28550.063*
C150.789 (2)0.316 (2)0.5052 (16)0.167 (12)
H15C0.85090.34180.55660.200*
H15B0.79650.25160.47420.200*
H15A0.71290.32180.51700.200*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Hg10.0433 (3)0.0550 (3)0.0383 (3)0.0149 (3)0.0130 (2)0.0152 (2)
Hg20.0576 (3)0.0578 (4)0.0441 (3)0.0034 (3)0.0078 (3)0.0267 (3)
Hg30.0431 (3)0.0532 (3)0.0524 (3)0.0132 (3)0.0159 (3)0.0253 (3)
Hg40.0562 (3)0.0607 (4)0.0398 (3)0.0009 (3)0.0082 (3)0.0234 (3)
I10.0272 (4)0.0453 (5)0.0307 (4)0.0036 (3)0.0080 (3)0.0134 (3)
I20.0395 (4)0.0408 (5)0.0414 (4)0.0058 (4)0.0083 (4)0.0154 (4)
I30.0438 (5)0.0546 (5)0.0454 (5)0.0025 (4)0.0118 (4)0.0281 (4)
I40.0427 (5)0.0526 (5)0.0523 (5)0.0076 (4)0.0147 (4)0.0195 (4)
I50.0343 (5)0.0531 (5)0.0883 (7)0.0099 (4)0.0172 (5)0.0437 (5)
I60.0442 (5)0.0711 (6)0.0472 (5)0.0179 (5)0.0187 (4)0.0104 (5)
I70.0405 (4)0.0391 (5)0.0356 (4)0.0105 (4)0.0124 (3)0.0160 (4)
I80.0414 (5)0.0396 (5)0.0367 (4)0.0062 (4)0.0090 (4)0.0133 (4)
I90.0476 (5)0.0369 (4)0.0372 (4)0.0004 (4)0.0096 (4)0.0172 (4)
I100.0357 (4)0.0334 (4)0.0378 (4)0.0063 (4)0.0109 (4)0.0107 (4)
N10.025 (5)0.033 (5)0.037 (5)0.003 (4)0.007 (4)0.012 (4)
C10.027 (6)0.033 (6)0.038 (6)0.010 (5)0.014 (5)0.014 (5)
C30.028 (6)0.034 (6)0.031 (6)0.002 (5)0.003 (5)0.012 (5)
C20.033 (6)0.028 (6)0.034 (6)0.006 (5)0.005 (5)0.012 (5)
C60.042 (7)0.043 (7)0.044 (7)0.002 (6)0.014 (6)0.003 (6)
C50.041 (7)0.044 (7)0.024 (6)0.000 (6)0.015 (5)0.016 (5)
C90.048 (7)0.029 (6)0.041 (7)0.009 (6)0.014 (6)0.010 (5)
C130.055 (8)0.050 (8)0.047 (7)0.025 (7)0.033 (7)0.020 (6)
C40.030 (6)0.045 (7)0.042 (7)0.004 (5)0.016 (5)0.023 (6)
C80.038 (7)0.045 (7)0.040 (7)0.010 (6)0.017 (6)0.015 (6)
C120.041 (7)0.043 (7)0.057 (8)0.014 (6)0.027 (6)0.024 (6)
C70.047 (8)0.078 (10)0.044 (8)0.022 (7)0.014 (6)0.035 (7)
C110.23 (3)0.068 (11)0.049 (10)0.010 (14)0.052 (13)0.033 (9)
C160.065 (10)0.047 (8)0.062 (9)0.034 (7)0.039 (8)0.020 (7)
C100.050 (8)0.038 (7)0.069 (9)0.014 (6)0.020 (7)0.025 (7)
C140.068 (10)0.051 (9)0.085 (11)0.021 (8)0.032 (9)0.029 (8)
N20.025 (5)0.021 (5)0.030 (5)0.012 (4)0.011 (4)0.010 (4)
C250.048 (8)0.074 (9)0.029 (6)0.020 (7)0.011 (6)0.013 (6)
C210.046 (7)0.059 (8)0.035 (7)0.015 (7)0.020 (6)0.023 (6)
C170.033 (6)0.030 (6)0.038 (6)0.005 (5)0.019 (5)0.013 (5)
C190.025 (6)0.024 (6)0.036 (6)0.004 (5)0.002 (5)0.013 (5)
C230.051 (8)0.043 (7)0.027 (6)0.016 (6)0.016 (6)0.011 (5)
C270.028 (6)0.079 (10)0.042 (7)0.008 (7)0.000 (6)0.038 (7)
C310.056 (9)0.104 (13)0.047 (8)0.029 (9)0.015 (7)0.043 (9)
C200.033 (6)0.036 (6)0.027 (5)0.019 (5)0.020 (5)0.016 (5)
C240.026 (6)0.043 (7)0.039 (6)0.001 (5)0.003 (5)0.026 (6)
C280.030 (6)0.036 (6)0.044 (7)0.010 (5)0.017 (5)0.019 (6)
C180.027 (6)0.016 (5)0.042 (6)0.006 (5)0.001 (5)0.014 (5)
C220.036 (7)0.039 (7)0.055 (8)0.001 (6)0.006 (6)0.021 (6)
C290.091 (12)0.089 (12)0.057 (10)0.018 (10)0.030 (9)0.026 (9)
C260.038 (7)0.036 (7)0.047 (7)0.007 (6)0.012 (6)0.018 (6)
C300.074 (10)0.044 (8)0.064 (9)0.000 (8)0.039 (8)0.001 (7)
C320.037 (7)0.055 (8)0.052 (8)0.023 (7)0.009 (6)0.022 (7)
C150.14 (2)0.25 (3)0.12 (2)0.01 (2)0.031 (17)0.09 (2)
Geometric parameters (Å, º) top
Hg1—I62.6347 (11)C5—C91.536 (14)
Hg1—I22.6476 (10)C9—C131.530 (15)
Hg1—I13.0800 (9)C4—C81.516 (16)
Hg1—I83.2065 (10)C8—C121.574 (16)
Hg2—I32.7152 (9)C12—C161.507 (16)
Hg2—I92.7489 (10)C7—C111.58 (2)
Hg2—I102.8554 (9)C11—C151.42 (3)
Hg2—I72.9103 (10)C10—C141.503 (18)
Hg3—I52.6167 (11)N2—C191.497 (13)
Hg3—I42.6231 (11)N2—C171.519 (12)
Hg3—I93.1534 (9)N2—C201.535 (12)
Hg3—I33.3150 (10)N2—C181.541 (12)
Hg4—I82.7435 (10)C25—C291.486 (17)
Hg4—I12.7659 (9)C25—C211.535 (16)
Hg4—I72.8346 (9)C21—C171.510 (16)
Hg4—I102.8759 (11)C19—C231.520 (14)
N1—C31.508 (13)C23—C271.510 (16)
N1—C21.514 (13)C27—C311.509 (17)
N1—C11.534 (12)C20—C241.545 (14)
N1—C41.548 (14)C24—C281.499 (15)
C1—C51.515 (15)C28—C321.556 (15)
C3—C71.497 (15)C18—C221.526 (14)
C2—C61.490 (16)C22—C261.532 (15)
C6—C101.507 (16)C26—C301.492 (16)
I6—Hg1—I2142.91 (4)C3—N1—C4111.6 (8)
I6—Hg1—I1104.66 (3)C2—N1—C4106.7 (8)
I2—Hg1—I1104.76 (3)C1—N1—C4109.1 (8)
I6—Hg1—I8104.08 (3)C5—C1—N1116.0 (8)
I2—Hg1—I899.08 (3)C7—C3—N1116.1 (9)
I1—Hg1—I887.89 (2)C6—C2—N1117.1 (9)
I3—Hg2—I9108.93 (3)C2—C6—C10109.5 (9)
I3—Hg2—I10120.18 (3)C1—C5—C9110.4 (9)
I9—Hg2—I10112.23 (3)C13—C9—C5112.9 (10)
I3—Hg2—I7108.25 (3)C8—C4—N1114.9 (9)
I9—Hg2—I7114.09 (3)C4—C8—C12107.0 (9)
I10—Hg2—I792.33 (3)C16—C12—C8111.2 (10)
I5—Hg3—I4149.08 (4)C3—C7—C11109.3 (11)
I5—Hg3—I9101.10 (3)C15—C11—C7111.9 (18)
I4—Hg3—I9103.60 (3)C6—C10—C14115.3 (11)
I5—Hg3—I394.43 (3)C19—N2—C17108.2 (8)
I4—Hg3—I3105.20 (3)C19—N2—C20111.1 (7)
I9—Hg3—I386.82 (2)C17—N2—C20109.4 (7)
I8—Hg4—I1104.75 (3)C19—N2—C18111.5 (8)
I8—Hg4—I7114.82 (3)C17—N2—C18110.9 (8)
I1—Hg4—I7115.92 (3)C20—N2—C18105.7 (7)
I8—Hg4—I10113.95 (3)C29—C25—C21112.7 (11)
I1—Hg4—I10114.20 (3)C17—C21—C25110.7 (10)
I7—Hg4—I1093.49 (3)C21—C17—N2118.5 (9)
Hg4—I1—Hg184.53 (2)N2—C19—C23116.4 (9)
Hg2—I3—Hg380.86 (3)C27—C23—C19111.6 (10)
Hg4—I7—Hg286.95 (3)C23—C27—C31113.2 (11)
Hg4—I8—Hg182.50 (3)N2—C20—C24115.9 (8)
Hg2—I9—Hg383.38 (2)C28—C24—C20107.4 (9)
Hg2—I10—Hg487.22 (3)C24—C28—C32110.0 (10)
C3—N1—C2113.0 (9)C22—C18—N2113.7 (9)
C3—N1—C1104.9 (8)C26—C22—C18111.4 (10)
C2—N1—C1111.6 (8)C30—C26—C22113.8 (10)

Experimental details

Crystal data
Chemical formula(C16H36N)2[Hg4I10]
Mr2556.28
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)11.681, 15.770, 18.288
α, β, γ (°)114.33, 104.18, 90.18
V3)2955.3
Z2
Radiation typeMo Kα
µ (mm1)15.60
Crystal size (mm)0.3 × 0.15 × 0.1
Data collection
DiffractometerStoe Imaging Plate Diffraction System, IPDS-I
diffractometer
Absorption correctionNumerical
X-SHAPE (Stoe & Cie, 1998)
Tmin, Tmax0.075, 0.210
No. of measured, independent and
observed [I > 2σ(I)] reflections
37776, 11615, 5987
Rint0.107
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.060, 0.75
No. of reflections11615
No. of parameters434
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.23, 1.22

Computer programs: X-AREA (Stoe & Cie, 2001), X-STEP32 (Stoe & Cie, 2000), X-RED (Stoe & Cie, 2001), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), DIAMOND (Brandenburg, Bonn, 1999), SHELXL97.

Selected geometric parameters (Å, º) top
Hg1—I62.6347 (11)Hg4—I82.7435 (10)
Hg1—I22.6476 (10)Hg4—I12.7659 (9)
Hg1—I13.0800 (9)Hg4—I72.8346 (9)
Hg1—I83.2065 (10)Hg4—I102.8759 (11)
Hg2—I32.7152 (9)N1—C31.508 (13)
Hg2—I92.7489 (10)N1—C21.514 (13)
Hg2—I102.8554 (9)N1—C11.534 (12)
Hg2—I72.9103 (10)N1—C41.548 (14)
Hg3—I52.6167 (11)N2—C191.497 (13)
Hg3—I42.6231 (11)N2—C171.519 (12)
Hg3—I93.1534 (9)N2—C201.535 (12)
Hg3—I33.3150 (10)N2—C181.541 (12)
I6—Hg1—I2142.91 (4)I8—Hg4—I10113.95 (3)
I6—Hg1—I1104.66 (3)I1—Hg4—I10114.20 (3)
I2—Hg1—I1104.76 (3)I7—Hg4—I1093.49 (3)
I6—Hg1—I8104.08 (3)Hg4—I1—Hg184.53 (2)
I2—Hg1—I899.08 (3)Hg2—I3—Hg380.86 (3)
I1—Hg1—I887.89 (2)Hg4—I7—Hg286.95 (3)
I3—Hg2—I9108.93 (3)Hg4—I8—Hg182.50 (3)
I3—Hg2—I10120.18 (3)Hg2—I9—Hg383.38 (2)
I9—Hg2—I10112.23 (3)Hg2—I10—Hg487.22 (3)
I3—Hg2—I7108.25 (3)C3—N1—C2113.0 (9)
I9—Hg2—I7114.09 (3)C3—N1—C1104.9 (8)
I10—Hg2—I792.33 (3)C2—N1—C1111.6 (8)
I5—Hg3—I4149.08 (4)C3—N1—C4111.6 (8)
I5—Hg3—I9101.10 (3)C2—N1—C4106.7 (8)
I4—Hg3—I9103.60 (3)C1—N1—C4109.1 (8)
I5—Hg3—I394.43 (3)C19—N2—C17108.2 (8)
I4—Hg3—I3105.20 (3)C19—N2—C20111.1 (7)
I9—Hg3—I386.82 (2)C17—N2—C20109.4 (7)
I8—Hg4—I1104.75 (3)C19—N2—C18111.5 (8)
I8—Hg4—I7114.82 (3)C17—N2—C18110.9 (8)
I1—Hg4—I7115.92 (3)C20—N2—C18105.7 (7)
 

Subscribe to Acta Crystallographica Section E: Crystallographic Communications

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds