Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
The title compound, C64H66O6P2, possesses crystallographic twofold symmetry and displays the calixarene cone conformation. The two symmetry-independent calixarene rings subtend interplanar angles of 143.06 (3) and 97.71 (4)° to the reference plane of the bridging C atoms. The phospho­ryl O atom accepts three C—H...O hydrogen bonds from the same neighbouring mol­ecule.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S160053680300494X/bt6246sup1.cif
Contains datablocks 2, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S160053680300494X/bt62462sup2.hkl
Contains datablock 2

CCDC reference: 209922

Key indicators

  • Single-crystal X-ray study
  • T = 173 K
  • Mean [sigma](C-C) = 0.002 Å
  • R factor = 0.034
  • wR factor = 0.085
  • Data-to-parameter ratio = 19.0

checkCIF results

No syntax errors found

ADDSYM reports no extra symmetry

General Notes

REFLT_03 From the CIF: _diffrn_reflns_theta_max 27.49 From the CIF: _reflns_number_total 6225 Count of symmetry unique reflns 3518 Completeness (_total/calc) 176.95% TEST3: Check Friedels for noncentro structure Estimate of Friedel pairs measured 2707 Fraction of Friedel pairs measured 0.769 Are heavy atom types Z>Si present yes Please check that the estimate of the number of Friedel pairs is correct. If it is not, please give the correct count in the _publ_section_exptl_refinement section of the submitted CIF.

Comment top

Phosphine oxides constitute an important class of molecules that have been extensively studied in coordination chemistry for three main reasons: (i) they may specifically bind certain metal ions, in particular, lanthanides and actinides; (ii) they constitute valuable precursors for the preparation of tertiary phosphines, suitable in turn for the preparation of transition metal complexes; (iii) when used as additional ligands in transition metal catalyzed reactions, e.g. carbonylations, they may drastically modify the outcome of the reaction (Clark et al., 2002).

As part of our ongoing investigations of the preparations of phosphorus-functionalized calixarenes (Bagatin et al., 1999), we recently reported the synthesis of the upper rim diphosphorylated calix[4]arene, (2) (Wieser-Jeunesse et al., 1998). The extraction properties of (2) towards rare-earth metal ions are similar to those of triphenylphosphine oxide (Burgard et al., 2000). Here we present the structure of (2).

The molecule of (2) is shown in Fig. 1; it displays crystallographic twofold symmetry. Bond lengths and angles (e.g. those at phosphorus, Table 1) may be considered normal. The cone conformation of the calixarene core is retained from the precursor (1). The reference plane of the calixarene, defined as the mean plane of the bridging C atoms (here C17, C37 and their equivalents) is exact by symmetry; the rings C11–C16 and C31–C36 subtend angles of 36.94 (3) and 82.29 (4)°, respectively, to this plane. The distances between centroids are 4.95 Å for C31–C36 and its symmetry-equivalent ring, and 7.68 Å for C11–C16 and its equivalent.

The phosphoryl O atom is directed away from the ring system in such a way that the angle between the PO vector and the normal to the reference plane is 79.8°. This enables O3 to accept three C—H···O hydrogen bonds from a neighbouring molecule (Table 2 and Fig. 2) related by the 21 axis parallel to a.

Experimental top

Compound (2) was conveniently prepared in a one-step procedure starting from the dibromocalixarene, (1) (see Scheme), and crystallized from dichloromethane/methanol.

Refinement top

Methyl H atoms were located in difference syntheses, idealized (C—H = 0.99 Å and H—C—H = 109.5°) and refined on the basis of rigid groups allowed to rotate but not to tip. Other H atoms were included using a riding model, with fixed C—H bond lengths of 0.95 Å (sp2 C atoms) or 0.98 Å (methylenes). Uiso(H) values were fixed at 1.2Ueq of the parent atom. The absolute configuration was established solely for the measured crystal, because the bulk sample is racemic.

Computing details top

Data collection: XSCANS (Fait, 1991); cell refinement: XSCANS; data reduction: XSCANS; program(s) used to solve structure: SHELXS97 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: XP5 (Siemens, 1994); software used to prepare material for publication: SHELXL97.

Figures top
[Figure 1] Fig. 1. The molecule of the title compound in the crystal. Ellipsoids represent 30% probability levels. H-atom radii are arbitrary.
[Figure 2] Fig. 2. Packing diagram of the title compound viewed parallel to the c axis. Hydrogen bonds are indicated by dashed lines. H atoms not involved in hydrogen bonds have been omitted.
5,11,17,23-Tetrakis(diphenylphosphinoyl)-25,26,27,28-tetrapropoxycalix[4]arene top
Crystal data top
C64H66O6P2Dx = 1.217 Mg m3
Mr = 993.11Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, P21212Cell parameters from 65 reflections
a = 12.1097 (15) Åθ = 5–25°
b = 24.311 (3) ŵ = 0.13 mm1
c = 9.2090 (15) ÅT = 173 K
V = 2711.1 (6) Å3Block, colourless
Z = 20.7 × 0.6 × 0.5 mm
F(000) = 1056
Data collection top
Siemens R3
diffractometer
Rint = 0.022
Radiation source: fine-focus sealed tubeθmax = 27.5°, θmin = 3.0°
Graphite monochromatorh = 158
ω scansk = 3131
9442 measured reflectionsl = 110
6225 independent reflections3 standard reflections every 247 reflections
5469 reflections with I > 2σ(I) intensity decay: none
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.034H-atom parameters constrained
wR(F2) = 0.085 w = 1/[σ2(Fo2) + (0.0541P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.00(Δ/σ)max < 0.001
6225 reflectionsΔρmax = 0.26 e Å3
327 parametersΔρmin = 0.21 e Å3
0 restraintsAbsolute structure: Flack (1983), 2713 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.01 (7)
Crystal data top
C64H66O6P2V = 2711.1 (6) Å3
Mr = 993.11Z = 2
Orthorhombic, P21212Mo Kα radiation
a = 12.1097 (15) ŵ = 0.13 mm1
b = 24.311 (3) ÅT = 173 K
c = 9.2090 (15) Å0.7 × 0.6 × 0.5 mm
Data collection top
Siemens R3
diffractometer
Rint = 0.022
9442 measured reflections3 standard reflections every 247 reflections
6225 independent reflections intensity decay: none
5469 reflections with I > 2σ(I)
Refinement top
R[F2 > 2σ(F2)] = 0.034H-atom parameters constrained
wR(F2) = 0.085Δρmax = 0.26 e Å3
S = 1.00Δρmin = 0.21 e Å3
6225 reflectionsAbsolute structure: Flack (1983), 2713 Friedel pairs
327 parametersAbsolute structure parameter: 0.01 (7)
0 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Least-squares planes (x,y,z in crystal coordinates) and deviations from them (* indicates atom used to define plane)

11.7321 (0.0027) x − 5.0650 (0.0144) y + 1.2352 (0.0063) z = 5.6805 (0.0082)

* 0.0246 (0.0010) C31 * −0.0138 (0.0011) C32 * −0.0076 (0.0012) C33 * 0.0181 (0.0012) C34 * −0.0075 (0.0011) C35 * −0.0138 (0.0011) C36

Rms deviation of fitted atoms = 0.0154

7.8140 (0.0035) x − 3.2968 (0.0107) y + 6.9235 (0.0023) z = 2.2586 (0.0060)

Angle to previous plane (with approximate e.s.d.) = 41.04 (0.05)

* 0.0000 (0.0000) C17 * 0.0000 (0.0000) C37 * 0.0000 (0.0000) C17_$1 * 0.0000 (0.0000) C37_$1

Rms deviation of fitted atoms = 0.0000

1.4393 (0.0072) x + 14.3213 (0.0121) y + 7.3606 (0.0036) z = 4.3664 (0.0056)

Angle to previous plane (with approximate e.s.d.) = 53.29 (0.04)

* −0.0313 (0.0010) C11 * 0.0172 (0.0010) C12 * 0.0102 (0.0011) C13 * −0.0233 (0.0011) C14 * 0.0096 (0.0011) C15 * 0.0177 (0.0010) C16

Rms deviation of fitted atoms = 0.0197

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
P0.39807 (3)0.241170 (15)0.04263 (4)0.02217 (9)
O10.46602 (9)0.43428 (4)0.34478 (12)0.0247 (2)
O20.73665 (8)0.47728 (4)0.38228 (11)0.0223 (2)
O30.27820 (9)0.23354 (5)0.07135 (13)0.0316 (3)
C110.45334 (12)0.38908 (6)0.25670 (16)0.0206 (3)
C120.34718 (13)0.37690 (6)0.20567 (17)0.0215 (3)
C130.33389 (12)0.33143 (6)0.11555 (17)0.0219 (3)
H130.26220.32230.08120.026*
C140.42380 (12)0.29903 (6)0.07464 (16)0.0218 (3)
C150.52986 (13)0.31416 (6)0.12035 (17)0.0216 (3)
H150.59170.29320.08930.026*
C160.54621 (12)0.35927 (6)0.21022 (16)0.0205 (3)
C170.66284 (12)0.37859 (6)0.24160 (17)0.0204 (3)
H17A0.71620.35000.21080.025*
H17B0.67190.38450.34730.025*
C180.49722 (14)0.42224 (7)0.49194 (17)0.0299 (4)
H18A0.54730.39010.49230.036*
H18B0.53850.45400.53190.036*
C190.39991 (16)0.41026 (8)0.58889 (19)0.0378 (4)
H19A0.34970.44240.59090.045*
H19B0.35830.37830.55070.045*
C200.44104 (19)0.39780 (9)0.7423 (2)0.0493 (5)
H20A0.46830.43170.78730.059*
H20B0.38020.38290.80050.059*
H20C0.50100.37080.73760.059*
C310.71789 (12)0.47961 (6)0.23317 (16)0.0194 (3)
C320.68638 (12)0.43172 (6)0.16129 (17)0.0209 (3)
C330.67197 (14)0.43371 (7)0.01123 (18)0.0276 (3)
H330.65150.40140.03990.033*
C340.68731 (15)0.48250 (7)0.06394 (18)0.0321 (4)
H340.67980.48320.16660.038*
C350.71347 (13)0.53000 (6)0.01056 (18)0.0274 (3)
H350.72130.56350.04150.033*
C360.72860 (12)0.52981 (6)0.16015 (17)0.0213 (3)
C370.74712 (12)0.58406 (6)0.23887 (18)0.0238 (3)
H37A0.81780.60060.20710.029*
H37B0.75130.57750.34480.029*
C380.85048 (14)0.46708 (8)0.41490 (19)0.0351 (4)
H38A0.87720.43540.35740.042*
H38B0.89530.49960.38850.042*
C390.86309 (17)0.45522 (8)0.5732 (2)0.0426 (5)
H39A0.94280.45390.59690.051*
H39B0.83010.48590.62910.051*
C400.80993 (18)0.40174 (9)0.6214 (2)0.0465 (5)
H40A0.84070.37120.56510.056*
H40B0.82480.39580.72490.056*
H40C0.73000.40370.60560.056*
C510.46214 (13)0.18042 (6)0.03542 (18)0.0247 (3)
C520.43896 (16)0.13109 (7)0.0353 (2)0.0394 (4)
H520.39280.13130.11870.047*
C530.48199 (18)0.08209 (7)0.0140 (2)0.0472 (5)
H530.46460.04870.03440.057*
C540.55027 (16)0.08154 (8)0.1337 (2)0.0426 (5)
H540.58070.04780.16730.051*
C550.57424 (18)0.12983 (9)0.2043 (2)0.0494 (5)
H550.62160.12950.28650.059*
C560.52972 (18)0.17911 (7)0.1563 (2)0.0415 (5)
H560.54580.21220.20690.050*
C610.47378 (14)0.25090 (6)0.21071 (16)0.0254 (3)
C620.41416 (15)0.25503 (8)0.34008 (18)0.0365 (4)
H620.33580.25290.33830.044*
C630.46896 (18)0.26218 (9)0.4715 (2)0.0468 (5)
H630.42790.26490.55910.056*
C640.58217 (18)0.26534 (8)0.4750 (2)0.0447 (5)
H640.61930.27020.56500.054*
C650.64226 (16)0.26148 (9)0.3476 (2)0.0401 (4)
H650.72050.26390.35030.048*
C660.58826 (14)0.25409 (7)0.21505 (17)0.0307 (3)
H660.62980.25120.12790.037*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
P0.01952 (18)0.01737 (16)0.0296 (2)0.00170 (15)0.00139 (16)0.00544 (15)
O10.0279 (6)0.0189 (5)0.0274 (6)0.0014 (4)0.0024 (5)0.0059 (4)
O20.0212 (5)0.0230 (5)0.0225 (5)0.0003 (4)0.0044 (4)0.0006 (4)
O30.0215 (6)0.0277 (6)0.0458 (7)0.0035 (4)0.0036 (5)0.0125 (5)
C110.0223 (8)0.0159 (6)0.0236 (7)0.0017 (6)0.0005 (6)0.0000 (6)
C120.0201 (7)0.0162 (7)0.0282 (8)0.0001 (6)0.0038 (6)0.0026 (6)
C130.0169 (7)0.0205 (7)0.0284 (8)0.0027 (6)0.0000 (6)0.0006 (6)
C140.0227 (8)0.0160 (6)0.0266 (8)0.0028 (5)0.0002 (6)0.0038 (6)
C150.0204 (7)0.0189 (6)0.0254 (7)0.0007 (6)0.0020 (6)0.0016 (6)
C160.0194 (8)0.0186 (7)0.0234 (7)0.0007 (6)0.0005 (6)0.0018 (6)
C170.0179 (7)0.0182 (7)0.0252 (7)0.0009 (5)0.0030 (6)0.0021 (6)
C180.0322 (9)0.0311 (8)0.0262 (8)0.0023 (7)0.0043 (7)0.0065 (7)
C190.0382 (10)0.0401 (9)0.0350 (9)0.0094 (8)0.0055 (8)0.0007 (8)
C200.0655 (15)0.0503 (12)0.0322 (10)0.0163 (10)0.0100 (10)0.0001 (9)
C310.0134 (7)0.0220 (7)0.0227 (7)0.0025 (6)0.0016 (6)0.0007 (6)
C320.0157 (7)0.0226 (7)0.0244 (7)0.0019 (6)0.0000 (6)0.0003 (6)
C330.0309 (9)0.0262 (7)0.0259 (8)0.0003 (7)0.0009 (7)0.0042 (6)
C340.0373 (10)0.0378 (9)0.0211 (8)0.0028 (8)0.0020 (7)0.0020 (7)
C350.0266 (8)0.0266 (8)0.0291 (8)0.0015 (6)0.0043 (7)0.0074 (7)
C360.0144 (7)0.0216 (7)0.0279 (8)0.0003 (6)0.0003 (6)0.0003 (6)
C370.0187 (7)0.0189 (7)0.0338 (8)0.0010 (6)0.0042 (6)0.0012 (6)
C380.0238 (8)0.0441 (10)0.0373 (10)0.0039 (8)0.0098 (7)0.0096 (8)
C390.0397 (11)0.0487 (11)0.0392 (11)0.0060 (9)0.0171 (8)0.0048 (9)
C400.0462 (12)0.0517 (12)0.0417 (11)0.0070 (9)0.0158 (9)0.0142 (10)
C510.0226 (8)0.0203 (7)0.0313 (8)0.0004 (6)0.0052 (7)0.0000 (6)
C520.0432 (10)0.0253 (8)0.0497 (11)0.0030 (7)0.0074 (9)0.0066 (8)
C530.0571 (13)0.0236 (8)0.0608 (13)0.0074 (8)0.0020 (11)0.0049 (9)
C540.0395 (11)0.0306 (9)0.0577 (12)0.0096 (8)0.0172 (10)0.0155 (9)
C550.0504 (13)0.0477 (11)0.0502 (12)0.0007 (10)0.0115 (10)0.0180 (10)
C560.0519 (12)0.0299 (9)0.0426 (11)0.0067 (8)0.0110 (10)0.0029 (8)
C610.0289 (8)0.0196 (7)0.0277 (7)0.0006 (6)0.0028 (6)0.0039 (6)
C620.0331 (10)0.0428 (10)0.0336 (9)0.0035 (8)0.0069 (7)0.0047 (8)
C630.0541 (13)0.0575 (12)0.0287 (9)0.0009 (10)0.0120 (9)0.0006 (9)
C640.0567 (13)0.0482 (11)0.0293 (9)0.0027 (10)0.0057 (9)0.0021 (8)
C650.0357 (10)0.0474 (10)0.0374 (9)0.0026 (9)0.0052 (8)0.0028 (9)
C660.0291 (9)0.0348 (8)0.0283 (8)0.0040 (7)0.0003 (7)0.0004 (7)
Geometric parameters (Å, º) top
P—O31.4871 (11)C35—C361.390 (2)
P—C141.8006 (15)C35—H350.9500
P—C611.8144 (16)C36—C371.522 (2)
P—C511.8164 (16)C37—H37A0.9900
O1—C111.3744 (17)C37—H37B0.9900
O1—C181.4369 (19)C38—C391.494 (2)
O2—C311.3930 (18)C38—H38A0.9900
O2—C381.4323 (19)C38—H38B0.9900
C11—C121.400 (2)C39—C401.518 (3)
C11—C161.405 (2)C39—H39A0.9900
C12—C131.392 (2)C39—H39B0.9900
C12—C37i1.516 (2)C40—H40A0.9800
C13—C141.396 (2)C40—H40B0.9800
C13—H130.9500C40—H40C0.9800
C14—C151.401 (2)C51—C561.382 (3)
C15—C161.388 (2)C51—C521.393 (2)
C15—H150.9500C52—C531.377 (3)
C16—C171.516 (2)C52—H520.9500
C17—C321.515 (2)C53—C541.378 (3)
C17—H17A0.9900C53—H530.9500
C17—H17B0.9900C54—C551.373 (3)
C18—C191.507 (2)C54—H540.9500
C18—H18A0.9900C55—C561.386 (3)
C18—H18B0.9900C55—H550.9500
C19—C201.529 (3)C56—H560.9500
C19—H19A0.9900C61—C661.389 (2)
C19—H19B0.9900C61—C621.397 (2)
C20—H20A0.9800C62—C631.391 (3)
C20—H20B0.9800C62—H620.9500
C20—H20C0.9800C63—C641.373 (3)
C31—C321.393 (2)C63—H630.9500
C31—C361.399 (2)C64—C651.384 (3)
C32—C331.394 (2)C64—H640.9500
C33—C341.386 (2)C65—C661.396 (2)
C33—H330.9500C65—H650.9500
C34—C351.380 (2)C66—H660.9500
C34—H340.9500
O3—P—C14111.90 (7)C36—C35—H35119.3
O3—P—C61110.96 (7)C35—C36—C31117.84 (14)
C14—P—C61108.81 (7)C35—C36—C37119.25 (14)
O3—P—C51112.70 (7)C31—C36—C37122.73 (13)
C14—P—C51108.90 (7)C12i—C37—C36109.61 (12)
C61—P—C51103.16 (7)C12i—C37—H37A109.7
C11—O1—C18115.04 (11)C36—C37—H37A109.7
C31—O2—C38111.76 (12)C12i—C37—H37B109.7
O1—C11—C12118.01 (13)C36—C37—H37B109.7
O1—C11—C16120.18 (13)H37A—C37—H37B108.2
C12—C11—C16121.58 (13)O2—C38—C39109.66 (15)
C13—C12—C11118.31 (13)O2—C38—H38A109.7
C13—C12—C37i122.04 (14)C39—C38—H38A109.7
C11—C12—C37i119.43 (13)O2—C38—H38B109.7
C12—C13—C14121.27 (14)C39—C38—H38B109.7
C12—C13—H13119.4H38A—C38—H38B108.2
C14—C13—H13119.4C38—C39—C40114.07 (17)
C13—C14—C15119.07 (13)C38—C39—H39A108.7
C13—C14—P117.90 (11)C40—C39—H39A108.7
C15—C14—P122.96 (11)C38—C39—H39B108.7
C16—C15—C14121.16 (14)C40—C39—H39B108.7
C16—C15—H15119.4H39A—C39—H39B107.6
C14—C15—H15119.4C39—C40—H40A109.5
C15—C16—C11118.36 (14)C39—C40—H40B109.5
C15—C16—C17119.42 (13)H40A—C40—H40B109.5
C11—C16—C17121.87 (13)C39—C40—H40C109.5
C32—C17—C16110.25 (12)H40A—C40—H40C109.5
C32—C17—H17A109.6H40B—C40—H40C109.5
C16—C17—H17A109.6C56—C51—C52118.42 (15)
C32—C17—H17B109.6C56—C51—P126.18 (12)
C16—C17—H17B109.6C52—C51—P115.40 (13)
H17A—C17—H17B108.1C53—C52—C51120.94 (18)
O1—C18—C19113.11 (14)C53—C52—H52119.5
O1—C18—H18A109.0C51—C52—H52119.5
C19—C18—H18A109.0C54—C53—C52119.95 (17)
O1—C18—H18B109.0C54—C53—H53120.0
C19—C18—H18B109.0C52—C53—H53120.0
H18A—C18—H18B107.8C55—C54—C53119.82 (17)
C18—C19—C20109.34 (17)C55—C54—H54120.1
C18—C19—H19A109.8C53—C54—H54120.1
C20—C19—H19A109.8C54—C55—C56120.40 (19)
C18—C19—H19B109.8C54—C55—H55119.8
C20—C19—H19B109.8C56—C55—H55119.8
H19A—C19—H19B108.3C51—C56—C55120.46 (18)
C19—C20—H20A109.5C51—C56—H56119.8
C19—C20—H20B109.5C55—C56—H56119.8
H20A—C20—H20B109.5C66—C61—C62119.16 (15)
C19—C20—H20C109.5C66—C61—P122.42 (12)
H20A—C20—H20C109.5C62—C61—P118.41 (13)
H20B—C20—H20C109.5C63—C62—C61120.30 (17)
C32—C31—O2118.64 (13)C63—C62—H62119.9
C32—C31—C36121.74 (13)C61—C62—H62119.9
O2—C31—C36119.60 (13)C64—C63—C62120.25 (17)
C31—C32—C33118.46 (14)C64—C63—H63119.9
C31—C32—C17122.15 (13)C62—C63—H63119.9
C33—C32—C17119.34 (14)C63—C64—C65120.05 (18)
C34—C33—C32120.55 (15)C63—C64—H64120.0
C34—C33—H33119.7C65—C64—H64120.0
C32—C33—H33119.7C64—C65—C66120.24 (17)
C35—C34—C33119.91 (15)C64—C65—H65119.9
C35—C34—H34120.0C66—C65—H65119.9
C33—C34—H34120.0C61—C66—C65119.99 (15)
C34—C35—C36121.34 (14)C61—C66—H66120.0
C34—C35—H35119.3C65—C66—H66120.0
C18—O1—C11—C12113.28 (15)C33—C34—C35—C362.2 (3)
C18—O1—C11—C1672.08 (18)C34—C35—C36—C310.8 (2)
O1—C11—C12—C13179.53 (13)C34—C35—C36—C37174.54 (15)
C16—C11—C12—C135.0 (2)C32—C31—C36—C354.0 (2)
O1—C11—C12—C37i4.8 (2)O2—C31—C36—C35177.51 (14)
C16—C11—C12—C37i169.77 (14)C32—C31—C36—C37171.23 (14)
C11—C12—C13—C141.0 (2)O2—C31—C36—C377.3 (2)
C37i—C12—C13—C14173.61 (14)C35—C36—C37—C12i55.51 (19)
C12—C13—C14—C152.8 (2)C31—C36—C37—C12i119.62 (16)
C12—C13—C14—P179.86 (11)C31—O2—C38—C39170.17 (14)
O3—P—C14—C134.41 (15)O2—C38—C39—C4067.0 (2)
C61—P—C14—C13118.57 (12)O3—P—C51—C56131.21 (16)
C51—P—C14—C13129.66 (12)C14—P—C51—C566.42 (18)
O3—P—C14—C15178.66 (12)C61—P—C51—C56109.05 (16)
C61—P—C14—C1558.37 (15)O3—P—C51—C5248.46 (15)
C51—P—C14—C1553.40 (15)C14—P—C51—C52173.25 (13)
C13—C14—C15—C162.7 (2)C61—P—C51—C5271.28 (14)
P—C14—C15—C16179.65 (12)C56—C51—C52—C530.2 (3)
C14—C15—C16—C111.1 (2)P—C51—C52—C53179.53 (16)
C14—C15—C16—C17172.26 (14)C51—C52—C53—C540.9 (3)
O1—C11—C16—C15179.46 (13)C52—C53—C54—C550.7 (3)
C12—C11—C16—C155.0 (2)C53—C54—C55—C560.3 (3)
O1—C11—C16—C176.3 (2)C52—C51—C56—C550.8 (3)
C12—C11—C16—C17168.14 (14)P—C51—C56—C55179.50 (16)
C15—C16—C17—C32107.02 (15)C54—C55—C56—C511.1 (3)
C11—C16—C17—C3266.07 (18)O3—P—C61—C66174.20 (13)
C11—O1—C18—C1985.98 (16)C14—P—C61—C6662.26 (15)
O1—C18—C19—C20179.80 (14)C51—P—C61—C6653.28 (14)
C38—O2—C31—C3292.89 (16)O3—P—C61—C625.49 (15)
C38—O2—C31—C3688.53 (17)C14—P—C61—C62118.05 (13)
O2—C31—C32—C33177.48 (14)C51—P—C61—C62126.41 (13)
C36—C31—C32—C334.0 (2)C66—C61—C62—C630.1 (3)
O2—C31—C32—C175.1 (2)P—C61—C62—C63179.63 (15)
C36—C31—C32—C17173.42 (13)C61—C62—C63—C640.1 (3)
C16—C17—C32—C31121.97 (15)C62—C63—C64—C650.1 (3)
C16—C17—C32—C3355.40 (19)C63—C64—C65—C660.3 (3)
C31—C32—C33—C340.9 (2)C62—C61—C66—C650.2 (3)
C17—C32—C33—C34176.61 (14)P—C61—C66—C65179.85 (14)
C32—C33—C34—C352.2 (3)C64—C65—C66—C610.4 (3)
Symmetry code: (i) x+1, y+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C15—H15···O3ii0.952.363.2546 (19)158
C17—H17A···O3ii0.992.523.4410 (18)155
C66—H66···O3ii0.952.593.512 (2)163
Symmetry code: (ii) x+1/2, y+1/2, z.

Experimental details

Crystal data
Chemical formulaC64H66O6P2
Mr993.11
Crystal system, space groupOrthorhombic, P21212
Temperature (K)173
a, b, c (Å)12.1097 (15), 24.311 (3), 9.2090 (15)
V3)2711.1 (6)
Z2
Radiation typeMo Kα
µ (mm1)0.13
Crystal size (mm)0.7 × 0.6 × 0.5
Data collection
DiffractometerSiemens R3
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
9442, 6225, 5469
Rint0.022
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.034, 0.085, 1.00
No. of reflections6225
No. of parameters327
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.26, 0.21
Absolute structureFlack (1983), 2713 Friedel pairs
Absolute structure parameter0.01 (7)

Computer programs: XSCANS (Fait, 1991), XSCANS, SHELXS97 (Sheldrick, 1990), SHELXL97 (Sheldrick, 1997), XP5 (Siemens, 1994), SHELXL97.

Selected geometric parameters (Å, º) top
P—O31.4871 (11)P—C611.8144 (16)
P—C141.8006 (15)P—C511.8164 (16)
O3—P—C14111.90 (7)O3—P—C51112.70 (7)
O3—P—C61110.96 (7)C14—P—C51108.90 (7)
C14—P—C61108.81 (7)C61—P—C51103.16 (7)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C15—H15···O3i0.952.363.2546 (19)158
C17—H17A···O3i0.992.523.4410 (18)155
C66—H66···O3i0.952.593.512 (2)163
Symmetry code: (i) x+1/2, y+1/2, z.
 

Subscribe to Acta Crystallographica Section E: Crystallographic Communications

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds