Download citation
Download citation
link to html
In the title compound, [K(C12H24O6)](C6H3N2O5)·C6H4N2O5, the 18-crown-6-potassium ion is centrosymmetric, with the O atoms from o-nitro groups of the anions above and below the plane. The phenolate O atoms of adjacent anions are connected by short symmetrical hydrogen bonds [2.453 (4) Å], forming chains in the c direction.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536803005105/bt6245sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536803005105/bt6245Isup2.hkl
Contains datablock I

CCDC reference: 209885

Key indicators

  • Single-crystal X-ray study
  • T = 298 K
  • Mean [sigma](C-C) = 0.004 Å
  • R factor = 0.040
  • wR factor = 0.107
  • Data-to-parameter ratio = 13.7

checkCIF results

No syntax errors found

ADDSYM reports no extra symmetry

General Notes

FORMU_01 There is a discrepancy between the atom counts in the _chemical_formula_sum and _chemical_formula_moiety. This is usually due to the moiety formula being in the wrong format. Atom count from _chemical_formula_sum: C24 H31 K1 N4 O16 Atom count from _chemical_formula_moiety:C6 H4 N2 O5

Comment top

In the title compound, (I), the asymmetric unit contains one anion with half a potassium and half a hydrogen ion, each lying on inversion centres. The potassium ion lies in the plane of the 18-crown-6 molecule, with K—O distances 2.777 (2), 2.780 (2) and 2.845 (2) Å. Eightfold coordination of the potassium is completed by O9 and O9'(-x, 1 - y, 1 - z) from o-nitro groups on either side of the crown [2.756 (2) Å] (Fig. 1). Phenolate atom O7 is 2.453 (4) Å from O7'(-x, 1 - y, 2 - z), with the hydrogen ion, H30, at the mid-point (0, 1/2, 1) to give a typical short symmetrical hydrogen bond. These hydrogen bonds connect the molecules into zigzag chains in the c direction.

The Cambridge Structural Database (Allen, 2002) lists over 300 structures containing the 18-crown-6-potassium cation. When two ligands are available, as in (I), the cation can be centrosymmetric, for example, Bryn & Strouse (1981). More often, the potassium ion is out of the ring plane and is coordinated by one or two ligand atoms on the side away from the crown. The potassium ion can lie as much as 1.6 Å out of the plane of the crown O atoms (Ziolo et al., 1981), but is usually closer to the plane. For example, in 18-crown-6-potassium propiophenone (Veya et al., 1994), the potassium ion is 0.678 Å out of the plane.

In 18-crown-6 [2,6-bis(trifluoromethyl)phenylphosphanyl]potassium (Rudzevich et al., 2002), the potassium ion is 0.465 Å out of the plane. In these examples, the exposed face of the potassium is coordinated by one atom from the anion. In 18-crown-6 potassium picrate (Barnes & Collard, 1988), the potassium ion is 0.678 Å out of the plane and is coordinated by the phenol O atom and an O atom from an o-nitro group of the same anion at distances of 2.741 (3) and 2.846 (4) Å, respectively.

Coordination of nitrophenolate anions to potassium ions by O atoms from o-nitro groups occurs in potassium picrate (Palenik, 1972) and in potassium 2,4-dinitrophenolate (Chaloner et al., 1998), as well as in 18-crown-6 potassium picrate (Barnes & Collard, 1988). The phenolate O atom is usually involved as well. In (I), the phenolate O atom is not involved because of the opportunity to form a strong hydrogen bond and restricted access to the potassium ion lying in the ring plane. The plane of the phenyl ring makes an angle of 22.9 (1)° with the plane of the crown. The p-nitro group is twisted by 12.9 (4)° from the plane of the phenyl group compared with 30.2 (3)° for the o-nitro group. These values are typical of p- and o-nitro groups of nitrobenzenes (Barnes & Chudek, 2003). Coordination to three O atoms from nitro groups of two bridging anions in a dimeric complex has also been observed (Barne et al., 1994).

Experimental top

Aqueous solutions of potassium 2,4-dinitrophenolate (0.1 mmol) and 18-crown-6 (0.1 mmol) were mixed and allowed to crystallize.

Refinement top

H atoms attached to C atoms were placed in calculated positions and allowed to ride during the refinement. Isotropic displacement parameters were constrained to be 1.3Ueq of the adjacent C atom. A difference synthesis showed atom H30 at the inversion centre (0, 1/2, 1). The coordinates were fixed at this position while the isotropic displacement parameter was allowed to refine.

Computing details top

Data collection: CAD-4-PC (Enraf-Nonius, 1993); cell refinement: CAD-4-PC; data reduction: XCAD4 (Harms & Wocadlo, 1996); program(s) used to solve structure: SHELXS97 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: PLATON (Spek, 1999); software used to prepare material for publication: SHELXL97.

Figures top
[Figure 1] Fig. 1. The structure of the centrosymmetric unit in (I), showing ellipsoids at the 50% probability level.
1,4,7,10,13,16-Hexaoxacyclooctadecane-potassium hydrogen bis(2,4-dinitrophenolate) top
Crystal data top
C12H24KO6+·C6H3N2O5·C6H4N2O5Z = 1
Mr = 670.63F(000) = 350
Triclinic, P1Dx = 1.453 Mg m3
a = 7.4869 (7) ÅMo Kα radiation, λ = 0.71073 Å
b = 10.3156 (18) ÅCell parameters from 25 reflections
c = 10.6773 (18) Åθ = 10.0–12.0°
α = 83.6340 (14)°µ = 0.25 mm1
β = 69.4840 (11)°T = 298 K
γ = 85.0830 (11)°Lath, yellow
V = 766.6 (2) Å30.36 × 0.18 × 0.09 mm
Data collection top
Enraf-Nonius CAD-4
diffractometer
Rint = 0.023
Radiation source: fine-focus sealed tubeθmax = 25.5°, θmin = 2.0°
Graphite monochromatorh = 09
ω–2θ scansk = 1212
3065 measured reflectionsl = 1212
2827 independent reflections3 standard reflections every 300 reflections
1752 reflections with I > 2σ(I) intensity decay: none
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040Hydrogen site location: difference Fourier map
wR(F2) = 0.107H atoms treated by a mixture of independent and constrained refinement
S = 1.01 w = 1/[σ2(Fo2) + (0.0443P)2 + 0.0572P]
where P = (Fo2 + 2Fc2)/3
2827 reflections(Δ/σ)max = 0.003
206 parametersΔρmax = 0.15 e Å3
0 restraintsΔρmin = 0.15 e Å3
Crystal data top
C12H24KO6+·C6H3N2O5·C6H4N2O5γ = 85.0830 (11)°
Mr = 670.63V = 766.6 (2) Å3
Triclinic, P1Z = 1
a = 7.4869 (7) ÅMo Kα radiation
b = 10.3156 (18) ŵ = 0.25 mm1
c = 10.6773 (18) ÅT = 298 K
α = 83.6340 (14)°0.36 × 0.18 × 0.09 mm
β = 69.4840 (11)°
Data collection top
Enraf-Nonius CAD-4
diffractometer
Rint = 0.023
3065 measured reflections3 standard reflections every 300 reflections
2827 independent reflections intensity decay: none
1752 reflections with I > 2σ(I)
Refinement top
R[F2 > 2σ(F2)] = 0.0400 restraints
wR(F2) = 0.107H atoms treated by a mixture of independent and constrained refinement
S = 1.01Δρmax = 0.15 e Å3
2827 reflectionsΔρmin = 0.15 e Å3
206 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
K10.00000.50000.50000.0562 (2)
C10.0547 (4)0.3112 (2)0.9670 (3)0.0597 (7)
C20.0467 (3)0.2116 (2)0.8836 (2)0.0503 (6)
C30.1507 (3)0.1015 (2)0.9306 (3)0.0517 (6)
H30.14060.03670.87410.067*
C40.2683 (3)0.0892 (2)1.0610 (3)0.0540 (6)
C50.2803 (4)0.1824 (3)1.1480 (3)0.0675 (7)
H50.36050.17231.23710.088*
C60.1731 (4)0.2892 (3)1.1013 (3)0.0690 (7)
H60.17870.34991.16090.090*
O70.0448 (3)0.41405 (17)0.9223 (2)0.0844 (6)
N80.0717 (3)0.2207 (2)0.7419 (2)0.0671 (6)
O90.1044 (3)0.3287 (2)0.6824 (2)0.0935 (7)
O100.1349 (4)0.1199 (2)0.6893 (2)0.1029 (8)
N110.3853 (3)0.0243 (2)1.1095 (3)0.0684 (6)
O120.3536 (3)0.11430 (18)1.0382 (2)0.0849 (6)
O130.5147 (3)0.0216 (2)1.2186 (2)0.0989 (7)
C210.2587 (4)0.3377 (3)0.2027 (3)0.0822 (9)
H21A0.36940.30110.13490.107*
H21B0.18060.38930.15790.107*
O220.3180 (3)0.41814 (18)0.27939 (17)0.0686 (5)
C230.4175 (4)0.5273 (3)0.2004 (3)0.0759 (8)
H23A0.33650.57980.15850.099*
H23B0.53100.49740.13010.099*
C240.4716 (4)0.6068 (3)0.2872 (3)0.0774 (8)
H24A0.54130.55240.33650.101*
H24B0.55300.67530.23290.101*
O250.3015 (2)0.66265 (18)0.37812 (17)0.0712 (5)
C260.3376 (5)0.7438 (3)0.4642 (3)0.0815 (9)
H26A0.42910.80750.41200.106*
H26B0.38990.69180.52580.106*
C270.1547 (5)0.8107 (3)0.5396 (3)0.0826 (9)
H27A0.17670.87430.59230.107*
H27B0.09660.85600.47780.107*
O280.0312 (3)0.71463 (16)0.62582 (18)0.0690 (5)
C290.1467 (5)0.7694 (3)0.7058 (3)0.0873 (10)
H29A0.21560.81120.64910.114*
H29B0.12690.83470.75770.114*
H300.00000.50001.00000.18 (2)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
K10.0628 (5)0.0444 (4)0.0528 (4)0.0122 (4)0.0073 (4)0.0028 (3)
C10.0575 (15)0.0405 (13)0.093 (2)0.0011 (11)0.0394 (15)0.0110 (13)
C20.0523 (14)0.0384 (12)0.0656 (15)0.0051 (10)0.0277 (12)0.0003 (11)
C30.0577 (15)0.0362 (12)0.0685 (16)0.0031 (10)0.0299 (13)0.0066 (11)
C40.0571 (15)0.0425 (13)0.0686 (16)0.0053 (11)0.0305 (13)0.0014 (12)
C50.0657 (17)0.0761 (19)0.0667 (17)0.0007 (14)0.0292 (14)0.0125 (14)
C60.0675 (18)0.0642 (17)0.088 (2)0.0009 (14)0.0358 (16)0.0308 (15)
O70.0806 (13)0.0455 (10)0.1333 (18)0.0177 (9)0.0395 (13)0.0141 (11)
N80.0657 (15)0.0659 (15)0.0763 (16)0.0173 (12)0.0336 (13)0.0078 (13)
O90.1037 (17)0.0869 (15)0.0964 (15)0.0375 (13)0.0473 (13)0.0334 (12)
O100.1202 (19)0.0879 (16)0.0808 (14)0.0025 (14)0.0072 (13)0.0186 (13)
N110.0666 (15)0.0587 (14)0.0811 (16)0.0115 (12)0.0302 (14)0.0110 (13)
O120.0932 (15)0.0481 (11)0.1159 (17)0.0195 (10)0.0368 (13)0.0019 (11)
O130.0924 (16)0.0945 (16)0.0898 (16)0.0239 (13)0.0092 (14)0.0156 (13)
C210.0703 (19)0.108 (2)0.0703 (18)0.0182 (18)0.0213 (16)0.0413 (18)
O220.0660 (12)0.0781 (12)0.0558 (10)0.0018 (10)0.0134 (9)0.0106 (9)
C230.0601 (17)0.092 (2)0.0557 (15)0.0110 (15)0.0023 (14)0.0061 (15)
C240.0553 (17)0.082 (2)0.0797 (19)0.0165 (15)0.0084 (15)0.0159 (16)
O250.0622 (12)0.0755 (12)0.0706 (12)0.0241 (10)0.0122 (10)0.0044 (10)
C260.091 (2)0.076 (2)0.0826 (19)0.0414 (18)0.0337 (18)0.0118 (16)
C270.124 (3)0.0489 (15)0.088 (2)0.0210 (17)0.051 (2)0.0020 (15)
O280.0823 (13)0.0509 (10)0.0725 (11)0.0040 (9)0.0221 (10)0.0150 (9)
C290.093 (2)0.074 (2)0.103 (2)0.0140 (18)0.036 (2)0.0441 (19)
Geometric parameters (Å, º) top
K1—O9i2.756 (2)N11—O131.228 (3)
K1—O92.756 (2)C21—O221.423 (3)
K1—O25i2.7768 (16)C21—C29i1.491 (4)
K1—O252.7768 (16)C21—H21A0.9700
K1—O28i2.7801 (16)C21—H21B0.9700
K1—O282.7801 (16)O22—C231.424 (3)
K1—O222.8452 (17)C23—C241.478 (4)
K1—O22i2.8452 (17)C23—H23A0.9700
C1—O71.297 (3)C23—H23B0.9700
C1—C61.402 (4)C24—O251.424 (3)
C1—C21.417 (3)C24—H24A0.9700
C2—C31.378 (3)C24—H24B0.9700
C2—N81.458 (3)O25—C261.415 (3)
C3—C41.361 (3)C26—C271.479 (4)
C3—H30.9300C26—H26A0.9700
C4—C51.386 (3)C26—H26B0.9700
C4—N111.459 (3)C27—O281.429 (3)
C5—C61.362 (4)C27—H27A0.9700
C5—H50.9300C27—H27B0.9700
C6—H60.9300O28—C291.415 (3)
O7—H301.2266C29—C21i1.491 (4)
N8—O101.216 (3)C29—H29A0.9700
N8—O91.219 (3)C29—H29B0.9700
N11—O121.221 (3)
O9i—K1—O9180.0N8—O9—K1141.28 (17)
O9i—K1—O25i106.43 (6)O12—N11—O13123.7 (2)
O9—K1—O25i73.57 (6)O12—N11—C4118.6 (2)
O9i—K1—O2573.57 (6)O13—N11—C4117.6 (2)
O9—K1—O25106.43 (6)O22—C21—C29i109.0 (2)
O25i—K1—O25180.00 (6)O22—C21—H21A109.9
O9i—K1—O28i91.94 (6)C29i—C21—H21A109.9
O9—K1—O28i88.06 (6)O22—C21—H21B109.9
O25i—K1—O28i60.15 (5)C29i—C21—H21B109.9
O25—K1—O28i119.85 (5)H21A—C21—H21B108.3
O9i—K1—O2888.06 (6)C21—O22—C23112.6 (2)
O9—K1—O2891.94 (6)C21—O22—K1110.40 (15)
O25i—K1—O28119.85 (5)C23—O22—K1110.99 (14)
O25—K1—O2860.15 (5)O22—C23—C24109.3 (2)
O28i—K1—O28180.00 (7)O22—C23—H23A109.8
O9i—K1—O2287.13 (6)C24—C23—H23A109.8
O9—K1—O2292.87 (6)O22—C23—H23B109.8
O25i—K1—O22119.88 (5)C24—C23—H23B109.8
O25—K1—O2260.12 (6)H23A—C23—H23B108.3
O28i—K1—O2261.13 (5)O25—C24—C23108.2 (2)
O28—K1—O22118.87 (5)O25—C24—H24A110.1
O9i—K1—O22i92.87 (6)C23—C24—H24A110.1
O9—K1—O22i87.13 (6)O25—C24—H24B110.1
O25i—K1—O22i60.12 (5)C23—C24—H24B110.1
O25—K1—O22i119.88 (6)H24A—C24—H24B108.4
O28i—K1—O22i118.87 (5)C26—O25—C24112.9 (2)
O28—K1—O22i61.13 (5)C26—O25—K1115.20 (15)
O22—K1—O22i180.0C24—O25—K1117.03 (15)
O7—C1—C6122.6 (2)O25—C26—C27108.0 (2)
O7—C1—C2122.0 (3)O25—C26—H26A110.1
C6—C1—C2115.4 (2)C27—C26—H26A110.1
C3—C2—C1122.4 (2)O25—C26—H26B110.1
C3—C2—N8116.1 (2)C27—C26—H26B110.1
C1—C2—N8121.5 (2)H26A—C26—H26B108.4
C4—C3—C2118.9 (2)O28—C27—C26108.3 (2)
C4—C3—H3120.6O28—C27—H27A110.0
C2—C3—H3120.6C26—C27—H27A110.0
C3—C4—C5121.4 (2)O28—C27—H27B110.0
C3—C4—N11119.0 (2)C26—C27—H27B110.0
C5—C4—N11119.5 (2)H27A—C27—H27B108.4
C6—C5—C4119.1 (3)C29—O28—C27112.8 (2)
C6—C5—H5120.4C29—O28—K1113.70 (16)
C4—C5—H5120.4C27—O28—K1114.52 (15)
C5—C6—C1122.7 (2)O28—C29—C21i108.3 (2)
C5—C6—H6118.7O28—C29—H29A110.0
C1—C6—H6118.7C21i—C29—H29A110.0
C1—O7—H30113.9O28—C29—H29B110.0
O10—N8—O9123.2 (3)C21i—C29—H29B110.0
O10—N8—C2118.3 (2)H29A—C29—H29B108.4
O9—N8—C2118.5 (2)
Symmetry code: (i) x, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O7—H30···O7ii1.23 (1)1.23 (1)2.453 (4)180
Symmetry code: (ii) x, y+1, z+2.

Experimental details

Crystal data
Chemical formulaC12H24KO6+·C6H3N2O5·C6H4N2O5
Mr670.63
Crystal system, space groupTriclinic, P1
Temperature (K)298
a, b, c (Å)7.4869 (7), 10.3156 (18), 10.6773 (18)
α, β, γ (°)83.6340 (14), 69.4840 (11), 85.0830 (11)
V3)766.6 (2)
Z1
Radiation typeMo Kα
µ (mm1)0.25
Crystal size (mm)0.36 × 0.18 × 0.09
Data collection
DiffractometerEnraf-Nonius CAD-4
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
3065, 2827, 1752
Rint0.023
(sin θ/λ)max1)0.605
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.107, 1.01
No. of reflections2827
No. of parameters206
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.15, 0.15

Computer programs: CAD-4-PC (Enraf-Nonius, 1993), CAD-4-PC, XCAD4 (Harms & Wocadlo, 1996), SHELXS97 (Sheldrick, 1990), SHELXL97 (Sheldrick, 1997), PLATON (Spek, 1999), SHELXL97.

Selected geometric parameters (Å, º) top
K1—O9i2.756 (2)K1—O282.7801 (16)
K1—O92.756 (2)K1—O222.8452 (17)
K1—O25i2.7768 (16)K1—O22i2.8452 (17)
K1—O252.7768 (16)C1—O71.297 (3)
K1—O28i2.7801 (16)O7—H301.2266
O9—K1—O25106.43 (6)O9—K1—O2292.87 (6)
O9—K1—O2891.94 (6)O25—K1—O2260.12 (6)
O25—K1—O2860.15 (5)O28—K1—O22118.87 (5)
Symmetry code: (i) x, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O7—H30···O7ii1.226 (4)1.226 (4)2.453 (4)180
Symmetry code: (ii) x, y+1, z+2.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds