Download citation
Download citation
link to html
In the title compound, C16H14O3, the furan ring makes an angle of 22.0 (1)° with the plane of the four non-bridgehead C atoms of the six-membered ring. The mol­ecules are linked by a short C—H...O interaction to form helical chains parallel to the b axis.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536803001028/bt6228sup1.cif
Contains datablocks 2, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536803001028/bt62282sup2.hkl
Contains datablock 2

CCDC reference: 204700

Key indicators

  • Single-crystal X-ray study
  • T = 178 K
  • Mean [sigma](C-C) = 0.003 Å
  • R factor = 0.046
  • wR factor = 0.133
  • Data-to-parameter ratio = 16.6

checkCIF results

No syntax errors found

ADDSYM reports no extra symmetry








Comment top

In our studies of the addition of highly reactive triple-bond dienophiles to strained aromatic compounds, we prepared the dinitrile (1) by the addition of cyanoacetylene to [2.2](2,5)furanoparacyclophane (Hopf & Witulski, 1995; Witulski, 1992). To utilize this adduct for further transformations, we have reduced the nitrile to the bis-aldehyde, (2) (Witulski, 1992).

The structure of (2) is shown in Fig. 1. The six-membered ring shows the flattened boat form typical of paracyclophanes, with atom C3 lying 0.160 (3) Å and C6 0.170 (3) Å out of the plane of the other four atoms. The interplanar angles between these four atoms and the furan ring (r.m.s. deviation 0.02 Å) is 22.0 (1)°.

The packing is determined by a short C1—H1b···O3 interaction (Table 2), which links adjacent molecules related by the 21 screw axis to form helical chains with an overall direction parallel to the y axis (Fig. 2). There are two such chains per cell.

Experimental top

The title compound was prepared according to Witulski (1992) and was recrystallized from chloroform/pentane.

Refinement top

H atoms were included using a riding model with fixed C—H bond lengths (sp2 C—H = 0.95 Å and CH2 = 0.98 Å); Uiso(H) values were fixed at 1.2 times the Ueq values of the parent atom.

Computing details top

Data collection: P3 (Nicolet, 1987); cell refinement: P3; data reduction: XDISK (Nicolet, 1987); program(s) used to solve structure: SHELXS97 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: XP (Siemens, 1994); software used to prepare material for publication: SHELXL97.

Figures top
[Figure 1] Fig. 1. The molecule of compound (2) in the crystal. Ellipsoids represent 30% probability levels and H-atom radii are arbitrary.
[Figure 2] Fig. 2. Packing diagram of compound (2). Hydrogen bonds are indicated by dashed lines. H atoms not involved in hydrogen bonding have been omitted. The view direction is perpendicular to [101].
[2.2](2,5)Furanoparacyclophane-12,13-dicarbaldehyde top
Crystal data top
C16H14O3F(000) = 536
Mr = 254.27Dx = 1.350 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 13.813 (3) ÅCell parameters from 50 reflections
b = 8.909 (3) Åθ = 10–11°
c = 10.658 (3) ŵ = 0.09 mm1
β = 107.44 (2)°T = 178 K
V = 1251.3 (6) Å3Prism, colourless
Z = 40.7 × 0.4 × 0.4 mm
Data collection top
Nicolet R3
diffractometer
Rint = 0.020
Radiation source: fine-focus sealed tubeθmax = 27.6°, θmin = 3.1°
Graphite monochromatorh = 1717
ω scansk = 111
3018 measured reflectionsl = 013
2857 independent reflections3 standard reflections every 147 reflections
1807 reflections with I > 2σ(I) intensity decay: none
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.046Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.133H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0502P)2 + 0.8067P]
where P = (Fo2 + 2Fc2)/3
2857 reflections(Δ/σ)max = 0.001
172 parametersΔρmax = 0.20 e Å3
0 restraintsΔρmin = 0.25 e Å3
Crystal data top
C16H14O3V = 1251.3 (6) Å3
Mr = 254.27Z = 4
Monoclinic, P21/cMo Kα radiation
a = 13.813 (3) ŵ = 0.09 mm1
b = 8.909 (3) ÅT = 178 K
c = 10.658 (3) Å0.7 × 0.4 × 0.4 mm
β = 107.44 (2)°
Data collection top
Nicolet R3
diffractometer
Rint = 0.020
3018 measured reflections3 standard reflections every 147 reflections
2857 independent reflections intensity decay: none
1807 reflections with I > 2σ(I)
Refinement top
R[F2 > 2σ(F2)] = 0.0460 restraints
wR(F2) = 0.133H-atom parameters constrained
S = 1.02Δρmax = 0.20 e Å3
2857 reflectionsΔρmin = 0.25 e Å3
172 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Least-squares planes (x,y,z in crystal coordinates) and deviations from them (* indicates atom used to define plane)

13.2332 (0.0058) x + 0.0653 (0.0081) y − 5.9743 (0.0082) z = 2.0430 (0.0058)

* 0.0274 (0.0010) O1 * −0.0223 (0.0011) C11 * 0.0086 (0.0011) C12 * 0.0080 (0.0011) C13 * −0.0217 (0.0011) C14

Rms deviation of fitted atoms = 0.0193

− 13.2926 (0.0065) x + 2.4116 (0.0098) y + 3.3331 (0.0111) z = 0.9787 (0.0087)

Angle to previous plane (with approximate e.s.d.) = 21.99 (0.06)

* 0.0005 (0.0010) C7 * −0.0005 (0.0010) C8 * 0.0005 (0.0010) C4 * −0.0005 (0.0010) C5 − 0.1600 (0.0029) C3 − 0.1695 (0.0029) C6

Rms deviation of fitted atoms = 0.0005

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.36297 (15)0.7009 (2)0.5030 (2)0.0305 (5)
H1A0.37110.76820.43290.037*
H1B0.42420.71130.57990.037*
C20.26770 (17)0.7519 (3)0.5432 (2)0.0357 (5)
H2A0.27500.72060.63470.043*
H2B0.26140.86260.53820.043*
C30.17481 (15)0.6804 (2)0.4505 (2)0.0299 (5)
C40.14551 (15)0.5396 (2)0.4837 (2)0.0307 (5)
H40.15520.51490.57330.037*
C50.10238 (15)0.4359 (2)0.3864 (2)0.0319 (5)
H50.08220.34040.40950.038*
C60.08832 (14)0.4708 (3)0.2543 (2)0.0314 (5)
C70.09492 (15)0.6218 (3)0.2224 (2)0.0339 (5)
H70.06960.65340.13350.041*
C80.13823 (16)0.7255 (2)0.3199 (2)0.0330 (5)
H80.14300.82780.29730.040*
C90.09989 (16)0.3466 (3)0.1640 (2)0.0378 (5)
H9A0.05680.36700.07310.045*
H9B0.07830.24980.19280.045*
C100.21438 (15)0.3378 (2)0.16808 (18)0.0288 (4)
H10A0.22900.23540.14250.035*
H10B0.22610.40870.10260.035*
C110.28641 (14)0.3739 (2)0.30027 (18)0.0238 (4)
C120.33825 (14)0.2944 (2)0.40904 (18)0.0256 (4)
C130.38312 (14)0.4047 (2)0.50973 (18)0.0269 (4)
C140.35553 (14)0.5427 (2)0.45512 (18)0.0250 (4)
C150.34562 (17)0.1312 (2)0.4167 (2)0.0351 (5)
H150.38950.08870.49490.042*
C160.44465 (15)0.3810 (3)0.6452 (2)0.0348 (5)
H160.46650.46720.69880.042*
O10.30085 (9)0.52387 (15)0.32557 (12)0.0236 (3)
O20.30005 (15)0.04553 (19)0.33102 (17)0.0506 (5)
O30.47008 (12)0.2588 (2)0.69465 (15)0.0484 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0300 (10)0.0294 (11)0.0316 (10)0.0066 (9)0.0082 (8)0.0055 (9)
C20.0429 (12)0.0313 (11)0.0356 (11)0.0013 (10)0.0162 (10)0.0089 (9)
C30.0292 (10)0.0301 (11)0.0347 (11)0.0053 (8)0.0157 (8)0.0033 (9)
C40.0315 (10)0.0350 (12)0.0292 (10)0.0012 (9)0.0145 (8)0.0002 (9)
C50.0251 (10)0.0359 (12)0.0370 (11)0.0036 (9)0.0128 (8)0.0004 (9)
C60.0180 (9)0.0420 (12)0.0322 (10)0.0006 (9)0.0046 (8)0.0026 (9)
C70.0240 (10)0.0452 (13)0.0310 (10)0.0100 (9)0.0061 (8)0.0078 (10)
C80.0308 (10)0.0285 (11)0.0433 (12)0.0099 (9)0.0167 (9)0.0073 (9)
C90.0285 (11)0.0492 (14)0.0330 (11)0.0058 (10)0.0051 (9)0.0065 (10)
C100.0303 (10)0.0311 (11)0.0248 (9)0.0031 (9)0.0078 (8)0.0031 (8)
C110.0239 (9)0.0221 (9)0.0282 (9)0.0008 (8)0.0120 (8)0.0020 (8)
C120.0250 (9)0.0254 (10)0.0288 (10)0.0017 (8)0.0116 (8)0.0004 (8)
C130.0216 (9)0.0337 (11)0.0268 (9)0.0010 (8)0.0092 (7)0.0018 (8)
C140.0207 (9)0.0299 (10)0.0253 (9)0.0021 (8)0.0081 (7)0.0010 (8)
C150.0405 (12)0.0284 (11)0.0387 (12)0.0055 (9)0.0154 (10)0.0063 (10)
C160.0257 (10)0.0479 (14)0.0303 (11)0.0016 (10)0.0077 (8)0.0050 (10)
O10.0235 (7)0.0221 (7)0.0249 (7)0.0005 (5)0.0067 (5)0.0008 (5)
O20.0725 (13)0.0277 (9)0.0516 (10)0.0050 (8)0.0184 (9)0.0010 (8)
O30.0423 (9)0.0620 (12)0.0379 (9)0.0109 (8)0.0076 (7)0.0179 (9)
Geometric parameters (Å, º) top
C1—C141.492 (3)C9—C101.571 (3)
C1—C21.568 (3)C9—H9A0.9900
C1—H1A0.9900C9—H9B0.9900
C1—H1B0.9900C10—C111.496 (3)
C2—C31.506 (3)C10—H10A0.9900
C2—H2A0.9900C10—H10B0.9900
C2—H2B0.9900C11—C121.364 (3)
C3—C81.390 (3)C11—O11.366 (2)
C3—C41.396 (3)C12—C131.450 (3)
C4—C51.383 (3)C12—C151.458 (3)
C4—H40.9500C13—C141.365 (3)
C5—C61.397 (3)C13—C161.455 (3)
C5—H50.9500C14—O11.371 (2)
C6—C71.397 (3)C15—O21.212 (3)
C6—C91.507 (3)C15—H150.9500
C7—C81.385 (3)C16—O31.215 (3)
C7—H70.9500C16—H160.9500
C8—H80.9500
C14—C1—C2112.93 (16)C6—C9—H9A110.0
C14—C1—H1A109.0C10—C9—H9A110.0
C2—C1—H1A109.0C6—C9—H9B110.0
C14—C1—H1B109.0C10—C9—H9B110.0
C2—C1—H1B109.0H9A—C9—H9B108.4
H1A—C1—H1B107.8C11—C10—C9113.29 (16)
C3—C2—C1108.54 (16)C11—C10—H10A108.9
C3—C2—H2A110.0C9—C10—H10A108.9
C1—C2—H2A110.0C11—C10—H10B108.9
C3—C2—H2B110.0C9—C10—H10B108.9
C1—C2—H2B110.0H10A—C10—H10B107.7
H2A—C2—H2B108.4C12—C11—O1109.37 (16)
C8—C3—C4117.8 (2)C12—C11—C10136.10 (19)
C8—C3—C2121.16 (19)O1—C11—C10114.35 (16)
C4—C3—C2117.94 (19)C11—C12—C13106.02 (18)
C5—C4—C3120.21 (19)C11—C12—C15125.13 (19)
C5—C4—H4119.9C13—C12—C15128.84 (19)
C3—C4—H4119.9C14—C13—C12107.00 (17)
C4—C5—C6120.3 (2)C14—C13—C16124.02 (19)
C4—C5—H5119.8C12—C13—C16129.0 (2)
C6—C5—H5119.8C13—C14—O1108.56 (16)
C7—C6—C5117.4 (2)C13—C14—C1136.33 (18)
C7—C6—C9121.65 (19)O1—C14—C1114.88 (16)
C5—C6—C9118.1 (2)O2—C15—C12125.0 (2)
C8—C7—C6120.33 (19)O2—C15—H15117.5
C8—C7—H7119.8C12—C15—H15117.5
C6—C7—H7119.8O3—C16—C13124.6 (2)
C7—C8—C3120.3 (2)O3—C16—H16117.7
C7—C8—H8119.9C13—C16—H16117.7
C3—C8—H8119.9C11—O1—C14108.80 (14)
C6—C9—C10108.50 (17)
C14—C1—C2—C336.1 (2)O1—C11—C12—C15176.28 (17)
C1—C2—C3—C870.4 (2)C10—C11—C12—C158.9 (4)
C1—C2—C3—C489.4 (2)C11—C12—C13—C140.1 (2)
C8—C3—C4—C515.0 (3)C15—C12—C13—C14179.26 (19)
C2—C3—C4—C5145.5 (2)C11—C12—C13—C16178.82 (18)
C3—C4—C5—C60.4 (3)C15—C12—C13—C161.9 (3)
C4—C5—C6—C715.7 (3)C12—C13—C14—O12.9 (2)
C4—C5—C6—C9145.5 (2)C16—C13—C14—O1178.10 (16)
C5—C6—C7—C815.7 (3)C12—C13—C14—C1171.1 (2)
C9—C6—C7—C8144.7 (2)C16—C13—C14—C17.9 (3)
C6—C7—C8—C30.5 (3)C2—C1—C14—C1391.1 (3)
C4—C3—C8—C714.9 (3)C2—C1—C14—O182.6 (2)
C2—C3—C8—C7145.0 (2)C11—C12—C15—O26.3 (3)
C7—C6—C9—C1071.9 (2)C13—C12—C15—O2174.5 (2)
C5—C6—C9—C1088.4 (2)C14—C13—C16—O3179.6 (2)
C6—C9—C10—C1134.6 (2)C12—C13—C16—O31.7 (3)
C9—C10—C11—C1292.9 (3)C12—C11—O1—C145.0 (2)
C9—C10—C11—O181.8 (2)C10—C11—O1—C14171.08 (15)
O1—C11—C12—C133.1 (2)C13—C14—O1—C114.91 (19)
C10—C11—C12—C13171.8 (2)C1—C14—O1—C11170.53 (15)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1B···O3i0.992.453.393 (3)160
Symmetry code: (i) x+1, y+1/2, z+3/2.

Experimental details

Crystal data
Chemical formulaC16H14O3
Mr254.27
Crystal system, space groupMonoclinic, P21/c
Temperature (K)178
a, b, c (Å)13.813 (3), 8.909 (3), 10.658 (3)
β (°) 107.44 (2)
V3)1251.3 (6)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.7 × 0.4 × 0.4
Data collection
DiffractometerNicolet R3
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
3018, 2857, 1807
Rint0.020
(sin θ/λ)max1)0.651
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.046, 0.133, 1.02
No. of reflections2857
No. of parameters172
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.20, 0.25

Computer programs: P3 (Nicolet, 1987), P3, XDISK (Nicolet, 1987), SHELXS97 (Sheldrick, 1990), SHELXL97 (Sheldrick, 1997), XP (Siemens, 1994), SHELXL97.

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1B···O3i0.992.453.393 (3)160
Symmetry code: (i) x+1, y+1/2, z+3/2.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds