Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
The new rubidium niobium sulfide, Rb6Nb4S24.4O0.6, consists of discrete [Nb4S24.4O0.6]6- anions and Rb+ cations. Every Nb5+ ion is in a sevenfold coordination by sulfide ions in a strongly distorted pentagonal bipyramid, forming a Nb2S11 unit. Two of these units are interconnected by an S3 fragment, yielding the complete anion. The anions are stacked parallel to the crystallographic b axis and are separated by the Rb+ ions.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536802023437/bt6220sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536802023437/bt6220Isup2.hkl
Contains datablock I

Key indicators

  • Single-crystal X-ray study
  • T = 293 K
  • Mean [sigma](S-S) = 0.002 Å
  • R factor = 0.031
  • wR factor = 0.077
  • Data-to-parameter ratio = 22.5

checkCIF results

No syntax errors found

ADDSYM reports no extra symmetry


Yellow Alert Alert Level C:
PLAT_213 Alert C Atom S13 has ADP max/min Ratio ........... 3.10 prolate General Notes
GOODF_01 _refine_ls_goodness_of_fit_obs is an old dataname which has been superseded by _refine_ls_goodness_of_fit_ref
0 Alert Level A = Potentially serious problem
0 Alert Level B = Potential problem
1 Alert Level C = Please check

Comment top

In recent years, our interest was focused onto investigations in the A/M/Q system (with A = alkaline metal; M = Nb, Ta; Q = O, S, Se). In many compounds, the M2Q11 unit is the general structural motif (Bensch et al., 1999). These M2Q11 units occur as monomeric units or are connected either directly or via additional chalcogenide ligands to form dimers or polymers. In a preliminary report (Krause et al., 2000), the main features of Rb6Nb4S25 were given. Here we report the details of the synthesis and characterization of this new ternary niobium polysulfide. Each Nb5+ ion is in a sevenfold coordination forming a strongly distorted pentagonal bipyramid (see Fig. 1). Neglecting the O atom the coordination mode of the resulting [Nb4S25]6− anion can be described as [(Nb22-η2,η1-S2)3(η2-S2)(S)2)22η1,η1-S5)]6−. Each Nb atom has a short bond to the axial S2− of 2.172 (2) Å (Nb1—S1) and 2.2150 (15) Å (Nb2—S10). Five Nb—S separations are found scattering around 2.4 Å [2.4587 (15), 2.4567 (15), 2.4416 (13), 2.4578 (14) and 2.5859 (15) %A for Nb1—S, and 2.4951 (15), 2.4637 (15), 2.4382 (14) and 2.4647 (14) Å for Nb2—S]. In a trans position to the short Nb—S bonds, long interatomic Nb—S distances of 2.9380 (15) Å (Nb1—S8) and 2.8605 (15) Å (Nb2—S5) are observed to a S atom of a η2-S22− anion attached to the neighbored Nb atom. As expected, the longer Nb—S distance (Nb1—S8) is in trans position to the shorter terminal Nb—S bond (Nb1—S1). Atom S1 showed larger anisotropic displacement parameters than the other S atoms. In the IR spectrum, a weak Nb—O absorption band was observed. Hence, during the structure refinement it was assumed that S1 is partially occupied by oxygen. The refined site-occupation factors for S1/O was 0.7/0.3, yielding the final composition Rb6Nb4S24.4O0.6. The partial substitution of S1 by O may be responsible for the slight disorder of the Rb3 atom (see below). It is noted that the title compound is not isostructural to the potassium niobium compound K6Nb4S25 (Bensch & Dürichen, 1996a), but is isostructural with Rb6Ta4S25 (Stoll et al., 2000). The main difference between the anions in both structures is a different conformation around the S3 unit. It can be assumed that the difference is induced by the larger Rb+ cation. The S—S distances in the S22− anions are between 2.0475 (19) and 2.0912 (19) Å (average 2.073 Å) and are typical for S—S single bonds. The two Nb atoms are displaced from the pentagonal planes composed of S atoms towards the terminal S atom by 0.5702 Å (Nb1) and 0.4949 Å (Nb2). Between these planes an angle of 49.9° is found. The Nb—Nb distance amounts to 3.574 (2) Å which is too long for any metal-to-metal interaction [radius: 0.69 Å for Nb5+ (CN7)] (Shannon, 1976). All values agree well with those reported for Rb6Ta4S25 (Stoll et al., 2000) and A6Nb4S22 (A = K, Rb, Cs; Bensch & Dürichen, 1996b; Stoll et al., 2002). The three crystallographically independent rubidium cations are in an irregular sulfur environment. Using a cutoff of 4%A the mean Rb—S distances are 3.534 for Rb1 (CN9), 3.545 for Rb2 (CN12) and 3.553 Å for Rb3 (CN 10). These values are in good agreement with the sum of the ionic radii [1.84 Å for S2− and 1.66 Å for Rb1+ (CN10)] (Shannon, 1976). Rb3 is slightly disordered which influences particularly the displacement parameters of S1 (see Fig. 1). During refinement the sum of the site-occupation factor of Rb3 and Rb3' was fixed to 1.00. We note that the RB3'—S1 distance is rather short, but can be explained on the basis of the partial substitution of S1 by O (see above).

Fitting the [Nb4S24.4O0.6]6− anion of the title compound onto the [Ta4S25]6− anion of the isotypic Rb6Ta4S25 compound (Stoll et al., 2000), a mean deviation of only 0.0239 Å is obtained, demonstrating that the geometry of the anion is only slightly influenced by replacing niobium with tantalum and by the small amount of oxygen. The thermal behavior of Rb6Nb4S24.4O0.6 was investigated using differential scanning calorimetry (DSC). Analogous to Rb6Ta4S25 (Stoll et al., 2000), the compound decomposes to form the sulfur-poorer compound Rb6Nb4S22 (Bensch & Dürichen, 1996b) at above 743 K.

Experimental top

The compound Rb6Nb4S24.4O0.6 was prepared by the reaction of Rb2S3, Nb and S in the ratio 2:1:12. Rb2S3 was prepared from stoichiometric amounts of Rb and S in liquid ammonia under an argon atmosphere. The starting materials were thoroughly mixed in a dry box and sealed into a Pyrex-glass ampoule, which was evacuated to 10−3 Pa. The ampoule was heated at 673 K for 4 d, cooled down to 373 K at 3 K h−1 and then to room temperature at 12 K h−1. The resulting melt was washed with dry dimethylformamide and the residue was dried in vacuo. It consists of orange–red polyhedra which are slightly contaminated with a yellow powder that has thus far not been identified. The crystals are stable in air for several weeks.

In the MIR spectra of Rb6Nb4S24.4O0.6 the vibrations of the short Nb—S bonds occur at 477.3 and 460.5 cm−1. These values are comparable with those of K6Nb4S25 (Bensch & Dürichen, 1996a) which are found at 478.0 and 459.0 cm−1. In the transformed UV-vis reflectance spectrum, the band gap was determined to be 1.98 eV being in agreement with the observed color of Rb6Nb4S24.4O0.6.

Computing details top

Data collection: IPDS Program Package (Stoe & Cie, 1998); cell refinement: IPDS Program Package; data reduction: IPDS Program Package; program(s) used to solve structure: SHELXS97 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: XP in SHELXTL (Bruker, 1998); software used to prepare material for publication: CIFTAB in SHELXTL.

Figures top
[Figure 1] Fig. 1. The dimeric [Nb4S25]6− anion in Rb6Nb4S25. Ellipsoids are drawn at the 50% probability level. The dashed lines represent the long Nb—S contacts. The O atom is not shown.
[Figure 2] Fig. 2. Crystal structure of Rb6Nb4S25 viewed parallel to the crystallographic b axis. The O atoms are not displayed.
Rubidium-niobium-sulfide-oxide top
Crystal data top
Nb4O0.60Rb6S24.40F(000) = 3125
Mr = 1676.32Dx = 3.004 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
a = 36.868 (7) ÅCell parameters from 7956 reflections
b = 8.1185 (16) Åθ = 3–27.2°
c = 12.515 (3) ŵ = 10.42 mm1
β = 98.36 (3)°T = 293 K
V = 3706.1 (13) Å3Polyhedra, red–orange
Z = 40.13 × 0.10 × 0.09 mm
Data collection top
Stoe Imaging Plate Diffraction System
diffractometer
3889 independent reflections
Radiation source: fine-focus sealed tube3296 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.064
ϕ scansθmax = 26.9°, θmin = 2.6°
Absorption correction: numerical
(X-SHAPE; Stoe & Cie, 1998)
h = 4646
Tmin = 0.187, Tmax = 0.327k = 1010
15576 measured reflectionsl = 1515
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.031 w = 1/[σ2(Fo2) + (0.039P)2 + 14.4654P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.077(Δ/σ)max = 0.001
S = 1.05Δρmax = 2.23 e Å3
3889 reflectionsΔρmin = 1.79 e Å3
173 parametersExtinction correction: SHELXL97, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.00047 (5)
Crystal data top
Nb4O0.60Rb6S24.40V = 3706.1 (13) Å3
Mr = 1676.32Z = 4
Monoclinic, C2/cMo Kα radiation
a = 36.868 (7) ŵ = 10.42 mm1
b = 8.1185 (16) ÅT = 293 K
c = 12.515 (3) Å0.13 × 0.10 × 0.09 mm
β = 98.36 (3)°
Data collection top
Stoe Imaging Plate Diffraction System
diffractometer
3889 independent reflections
Absorption correction: numerical
(X-SHAPE; Stoe & Cie, 1998)
3296 reflections with I > 2σ(I)
Tmin = 0.187, Tmax = 0.327Rint = 0.064
15576 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0310 restraints
wR(F2) = 0.077 w = 1/[σ2(Fo2) + (0.039P)2 + 14.4654P]
where P = (Fo2 + 2Fc2)/3
S = 1.05Δρmax = 2.23 e Å3
3889 reflectionsΔρmin = 1.79 e Å3
173 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Nb10.322280 (11)0.81020 (5)0.41301 (3)0.00807 (11)
Nb20.412692 (11)0.80707 (5)0.56174 (3)0.00710 (11)
Rb10.465279 (14)0.80358 (6)0.89973 (4)0.01875 (13)
Rb20.37457 (2)0.72140 (6)0.13896 (4)0.02191 (13)
Rb30.28952 (3)0.3603 (2)0.23800 (12)0.0201 (2)0.83
Rb3'0.2774 (2)0.3648 (10)0.2498 (6)0.0234 (13)0.17
S10.29866 (6)0.7901 (3)0.2418 (2)0.0151 (4)0.70
O10.3053 (5)0.776 (2)0.2800 (14)0.026 (5)*0.30
S20.27125 (3)0.91977 (14)0.49803 (10)0.0140 (2)
S30.30780 (4)1.09511 (14)0.45776 (11)0.0175 (3)
S40.31440 (3)0.53773 (13)0.48903 (9)0.0109 (2)
S50.36520 (3)0.57691 (14)0.43761 (9)0.0112 (2)
S60.38255 (3)0.96915 (15)0.40401 (9)0.0144 (2)
S70.42486 (4)0.8145 (2)0.37338 (10)0.0190 (3)
S80.35683 (3)0.87277 (13)0.63600 (9)0.0084 (2)
S90.38673 (3)0.68049 (13)0.71287 (9)0.0101 (2)
S100.45191 (3)0.99429 (15)0.63773 (9)0.0146 (2)
S110.45600 (3)0.5656 (2)0.56259 (11)0.0174 (3)
S120.45596 (4)0.4776 (2)0.71882 (12)0.0210 (3)
S130.50000.3224 (2)0.75000.0244 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Nb10.0090 (2)0.0084 (2)0.0056 (2)0.00232 (14)0.00291 (15)0.00181 (14)
Nb20.0086 (2)0.0070 (2)0.0051 (2)0.00118 (14)0.00094 (14)0.00104 (13)
Rb10.0163 (2)0.0199 (3)0.0194 (2)0.0038 (2)0.0004 (2)0.0024 (2)
Rb20.0290 (3)0.0077 (2)0.0234 (3)0.0007 (2)0.0150 (2)0.0010 (2)
Rb30.0190 (7)0.0301 (4)0.0102 (4)0.0009 (5)0.0013 (5)0.0002 (3)
Rb40.020 (3)0.034 (2)0.013 (2)0.007 (3)0.007 (2)0.004 (2)
S10.0124 (9)0.0241 (10)0.0080 (9)0.0030 (7)0.0016 (8)0.0016 (8)
S20.0108 (6)0.0123 (5)0.0175 (6)0.0003 (4)0.0027 (5)0.0021 (4)
S30.0185 (6)0.0064 (5)0.0245 (6)0.0008 (4)0.0078 (5)0.0033 (5)
S40.0137 (6)0.0071 (5)0.0111 (5)0.0022 (4)0.0008 (4)0.0001 (4)
S50.0119 (5)0.0126 (5)0.0084 (5)0.0012 (4)0.0008 (4)0.0040 (4)
S60.0153 (6)0.0172 (6)0.0093 (5)0.0074 (5)0.0036 (4)0.0057 (4)
S70.0170 (6)0.0317 (7)0.0092 (5)0.0084 (5)0.0045 (5)0.0047 (5)
S80.0102 (5)0.0063 (5)0.0080 (5)0.0012 (4)0.0012 (4)0.0012 (4)
S90.0144 (6)0.0071 (5)0.0082 (5)0.0001 (4)0.0008 (4)0.0019 (4)
S100.0141 (6)0.0149 (6)0.0139 (6)0.0044 (4)0.0013 (5)0.0038 (4)
S110.0132 (6)0.0156 (6)0.0229 (6)0.0033 (4)0.0007 (5)0.0072 (5)
S120.0117 (6)0.0149 (6)0.0358 (7)0.0037 (5)0.0012 (5)0.0070 (5)
S130.0105 (8)0.0063 (8)0.0521 (13)0.0000.0096 (8)0.000
Geometric parameters (Å, º) top
Nb1—O11.71 (2)Rb3—S53.885 (2)
Nb1—S12.198 (2)Rb3'—S1vii2.885 (6)
Nb1—S42.4419 (12)Rb3'—O1vii3.10 (2)
Nb1—S32.4568 (13)Rb3'—S2vii3.379 (8)
Nb1—S52.4585 (12)Rb3'—S43.407 (8)
Nb1—S22.4587 (13)Rb3'—S3viii3.460 (8)
Nb1—S62.5862 (13)Rb3'—O13.50 (2)
Nb1—S82.9386 (14)Rb3'—S13.546 (9)
Nb1—Rb3'i3.959 (7)Rb3'—S4vi3.799 (7)
Nb1—Rb24.2336 (13)Rb3'—S2vi3.887 (8)
Nb1—Rb3i4.297 (2)Rb3'—S8vi3.942 (6)
Nb1—Rb34.339 (2)Rb3'—Nb1vii3.959 (7)
Nb2—S102.2149 (13)S1—Rb3'i2.885 (6)
Nb2—S82.4386 (12)S1—Rb3i3.346 (2)
Nb2—S72.4635 (13)O1—Rb3'i3.10 (2)
Nb2—S92.4650 (12)O1—Rb3i3.54 (2)
Nb2—S62.4951 (13)S2—S32.072 (2)
Nb2—S112.5275 (13)S2—Rb3'i3.379 (8)
Nb2—S52.8600 (13)S2—Rb3i3.472 (2)
Nb2—Rb2ii4.2378 (10)S2—Rb3v3.749 (2)
Nb2—Rb1iii4.3594 (9)S2—Rb3'v3.887 (8)
Nb2—Rb14.3896 (14)S3—Rb2ii3.435 (2)
Rb1—S7ii3.4355 (15)S3—Rb3'ix3.460 (8)
Rb1—S11iv3.4614 (15)S3—Rb3ix3.481 (2)
Rb1—S123.467 (2)S4—S52.091 (2)
Rb1—S10ii3.4978 (14)S4—Rb2v3.4144 (15)
Rb1—S10iv3.5148 (15)S4—Rb3v3.474 (2)
Rb1—S6ii3.5717 (14)S4—Rb3'v3.799 (7)
Rb1—S93.590 (2)S5—Nb22.8600 (13)
Rb1—S103.5948 (15)S5—Rb2v3.4758 (13)
Rb1—S11v3.6682 (14)S6—S72.081 (2)
Rb1—Nb2ii4.3593 (9)S6—Nb22.4951 (13)
Rb1—Nb24.3896 (14)S6—Rb1iii3.5717 (14)
Rb2—S13.294 (2)S6—Rb2ii3.9109 (15)
Rb2—S73.322 (2)S7—Nb22.4635 (13)
Rb2—O13.34 (2)S7—Rb1iii3.4355 (15)
Rb2—S8iii3.3583 (13)S8—S92.066 (2)
Rb2—S9vi3.4031 (13)S8—Nb22.4386 (13)
Rb2—S4vi3.4144 (15)S8—Rb2ii3.3583 (13)
Rb2—S12vi3.426 (2)S8—Rb3v3.505 (2)
Rb2—S3iii3.435 (2)S8—Rb3'v3.942 (6)
Rb2—S5vi3.4758 (13)S9—Nb22.4650 (12)
Rb2—S10iii3.6703 (15)S9—Rb2v3.4031 (13)
Rb2—S63.8539 (15)S9—Rb3v3.658 (2)
Rb2—S6iii3.9109 (15)S10—Nb22.2149 (13)
Rb3—S1vii3.346 (2)S10—Rb1iii3.4978 (14)
Rb3—O13.45 (2)S10—Rb1iv3.5148 (15)
Rb3—S43.457 (2)S10—Rb2ii3.6702 (15)
Rb3—S2vii3.472 (2)S11—S122.082 (2)
Rb3—S4vi3.474 (2)S11—Nb22.5275 (13)
Rb3—S3viii3.481 (2)S11—Rb1iv3.4614 (15)
Rb3—S13.505 (3)S11—Rb1vi3.6682 (14)
Rb3—S8vi3.505 (2)S12—S132.048 (2)
Rb3—O1vii3.54 (2)S12—Rb2v3.426 (2)
Rb3—S9vi3.658 (2)S13—S12iv2.048 (2)
Rb3—S2vi3.749 (2)
O1—Nb1—S4100.6 (6)S4—Rb3—S9vi88.97 (5)
S1—Nb1—S4105.06 (6)S2vii—Rb3—S9vi117.30 (5)
O1—Nb1—S3108.3 (6)S4vi—Rb3—S9vi63.56 (4)
S1—Nb1—S3102.91 (6)S3viii—Rb3—S9vi86.12 (5)
S4—Nb1—S3136.22 (5)S1—Rb3—S9vi89.88 (5)
O1—Nb1—S597.7 (6)S8vi—Rb3—S9vi33.44 (3)
S1—Nb1—S5102.80 (7)O1vii—Rb3—S9vi161.5 (3)
S4—Nb1—S550.53 (4)S1vii—Rb3—S2vi83.89 (6)
S3—Nb1—S5148.65 (4)O1—Rb3—S2vi136.2 (3)
O1—Nb1—S2106.5 (6)S4—Rb3—S2vi166.87 (6)
S1—Nb1—S2103.23 (6)S2vii—Rb3—S2vi51.99 (4)
S4—Nb1—S290.99 (4)S4vi—Rb3—S2vi57.73 (4)
S3—Nb1—S249.87 (4)S3viii—Rb3—S2vi104.44 (5)
S5—Nb1—S2138.04 (4)S1—Rb3—S2vi128.35 (6)
O1—Nb1—S6103.6 (6)S8vi—Rb3—S2vi55.61 (4)
S1—Nb1—S6102.46 (6)O1vii—Rb3—S2vi76.7 (3)
S4—Nb1—S6128.36 (4)S9vi—Rb3—S2vi86.59 (4)
S3—Nb1—S675.92 (4)S1vii—Rb3—S5130.05 (6)
S5—Nb1—S681.28 (4)O1—Rb3—S551.0 (3)
S2—Nb1—S6123.69 (4)S4—Rb3—S532.44 (3)
O1—Nb1—S8175.7 (6)S2vii—Rb3—S5142.99 (6)
S1—Nb1—S8173.71 (6)S4vi—Rb3—S5102.15 (4)
S4—Nb1—S881.16 (4)S3viii—Rb3—S574.54 (4)
S3—Nb1—S872.50 (4)S1—Rb3—S558.80 (5)
S5—Nb1—S880.33 (4)S8vi—Rb3—S589.90 (4)
S2—Nb1—S877.28 (4)O1vii—Rb3—S5137.7 (3)
S6—Nb1—S872.46 (4)S9vi—Rb3—S558.35 (3)
O1—Nb1—Rb3'i48.5 (6)S2vi—Rb3—S5144.92 (4)
S1—Nb1—Rb3'i45.58 (11)S1vii—Rb3'—S2vii70.9 (2)
S4—Nb1—Rb3'i98.50 (12)O1vii—Rb3'—S2vii62.6 (4)
S3—Nb1—Rb3'i78.21 (12)S1vii—Rb3'—S4108.8 (2)
S5—Nb1—Rb3'i133.08 (12)O1vii—Rb3'—S4117.6 (4)
S2—Nb1—Rb3'i58.05 (10)S2vii—Rb3'—S4147.5 (3)
S6—Nb1—Rb3'i131.36 (12)S1vii—Rb3'—S3viii92.9 (2)
S8—Nb1—Rb3'i135.33 (10)O1vii—Rb3'—S3viii98.5 (4)
O1—Nb1—Rb248.0 (6)S2vii—Rb3'—S3viii147.6 (3)
S1—Nb1—Rb250.24 (5)S4—Rb3'—S3viii63.60 (14)
S4—Nb1—Rb2104.80 (3)S1vii—Rb3'—O1117.9 (4)
S3—Nb1—Rb2118.99 (3)O1vii—Rb3'—O1120.2 (5)
S5—Nb1—Rb267.02 (3)S2vii—Rb3'—O194.7 (4)
S2—Nb1—Rb2151.57 (3)S4—Rb3'—O155.8 (3)
S6—Nb1—Rb263.53 (3)S3viii—Rb3'—O1117.7 (4)
S8—Nb1—Rb2127.83 (3)S1vii—Rb3'—S1115.2 (2)
Rb3'i—Nb1—Rb295.73 (10)O1vii—Rb3'—S1116.2 (4)
O1—Nb1—Rb3i52.9 (6)S2vii—Rb3'—S186.3 (2)
S1—Nb1—Rb3i50.17 (6)S4—Rb3'—S163.99 (15)
S4—Nb1—Rb3i95.52 (4)S3viii—Rb3'—S1126.1 (2)
S3—Nb1—Rb3i77.57 (4)S1vii—Rb3'—S4vi123.2 (2)
S5—Nb1—Rb3i133.38 (4)O1vii—Rb3'—S4vi114.5 (4)
S2—Nb1—Rb3i53.88 (4)S2vii—Rb3'—S4vi52.61 (11)
S6—Nb1—Rb3i135.15 (4)S4—Rb3'—S4vi121.4 (2)
S8—Nb1—Rb3i131.07 (4)S3viii—Rb3'—S4vi131.3 (2)
Rb2—Nb1—Rb3i100.40 (3)O1—Rb3'—S4vi76.0 (3)
O1—Nb1—Rb348.5 (6)S1—Rb3'—S4vi70.39 (13)
S1—Nb1—Rb353.40 (6)S1vii—Rb3'—S2vi87.8 (2)
S4—Nb1—Rb352.70 (4)O1vii—Rb3'—S2vi79.8 (4)
S3—Nb1—Rb3148.63 (4)S2vii—Rb3'—S2vi51.23 (11)
S5—Nb1—Rb362.72 (4)S4—Rb3'—S2vi157.8 (2)
S2—Nb1—Rb3110.40 (3)S3viii—Rb3'—S2vi102.0 (2)
S6—Nb1—Rb3125.16 (4)O1—Rb3'—S2vi129.5 (3)
S8—Nb1—Rb3132.48 (3)S1—Rb3'—S2vi122.9 (2)
Rb2—Nb1—Rb364.77 (2)S4vi—Rb3'—S2vi54.08 (10)
Rb3i—Nb1—Rb371.27 (2)S1vii—Rb3'—S8vi133.4 (3)
S10—Nb2—S8102.77 (4)O1vii—Rb3'—S8vi127.7 (4)
S10—Nb2—S7101.30 (5)S2vii—Rb3'—S8vi93.2 (2)
S8—Nb2—S7129.84 (5)S4—Rb3'—S8vi107.2 (2)
S10—Nb2—S9104.99 (5)S3viii—Rb3'—S8vi77.63 (15)
S8—Nb2—S949.84 (4)O1—Rb3'—S8vi106.5 (3)
S7—Nb2—S9152.80 (4)S1—Rb3'—S8vi106.70 (14)
S10—Nb2—S699.54 (5)S4vi—Rb3'—S8vi54.06 (8)
S8—Nb2—S683.25 (4)S2vi—Rb3'—S8vi51.33 (10)
S7—Nb2—S649.62 (5)S1vii—Rb3'—Nb1vii32.96 (9)
S9—Nb2—S6130.46 (4)O1vii—Rb3'—Nb1vii24.5 (3)
S10—Nb2—S1199.09 (5)S2vii—Rb3'—Nb1vii38.12 (8)
S8—Nb2—S11137.40 (4)S4—Rb3'—Nb1vii136.2 (2)
S7—Nb2—S1179.64 (5)S3viii—Rb3'—Nb1vii119.4 (2)
S9—Nb2—S1189.36 (5)O1—Rb3'—Nb1vii113.5 (4)
S6—Nb2—S11128.38 (5)S1—Rb3'—Nb1vii106.7 (2)
S10—Nb2—S5172.52 (4)S4vi—Rb3'—Nb1vii90.2 (2)
S8—Nb2—S582.28 (4)S2vi—Rb3'—Nb1vii64.90 (12)
S7—Nb2—S571.24 (4)S8vi—Rb3'—Nb1vii116.2 (2)
S9—Nb2—S582.48 (4)S1vii—Rb3'—Nb1117.5 (2)
S6—Nb2—S575.39 (4)O1vii—Rb3'—Nb1123.3 (4)
S11—Nb2—S580.33 (4)S2vii—Rb3'—Nb1115.8 (2)
S10—Nb2—Rb2ii59.97 (4)S4—Rb3'—Nb133.92 (8)
S8—Nb2—Rb2ii52.34 (3)S3viii—Rb3'—Nb196.5 (2)
S7—Nb2—Rb2ii107.98 (4)O1—Rb3'—Nb121.9 (3)
S9—Nb2—Rb2ii91.32 (3)S1—Rb3'—Nb130.10 (8)
S6—Nb2—Rb2ii65.14 (3)S4vi—Rb3'—Nb194.0 (2)
S11—Nb2—Rb2ii158.43 (3)S2vi—Rb3'—Nb1147.8 (2)
S5—Nb2—Rb2ii121.13 (3)S8vi—Rb3'—Nb1108.89 (14)
S10—Nb2—Rb1iii52.80 (3)Nb1vii—Rb3'—Nb1126.5 (2)
S8—Nb2—Rb1iii118.42 (3)O1—S1—Rb3'i110 (2)
S7—Nb2—Rb1iii51.84 (3)Nb1—S1—Rb3'i101.5 (2)
S9—Nb2—Rb1iii155.19 (3)O1—S1—Rb291 (2)
S6—Nb2—Rb1iii55.02 (3)Nb1—S1—Rb298.90 (8)
S11—Nb2—Rb1iii103.95 (4)Rb3'i—S1—Rb2159.2 (2)
S5—Nb2—Rb1iii119.98 (3)O1—S1—Rb3i108 (2)
Rb2ii—Nb2—Rb1iii68.63 (2)Nb1—S1—Rb3i99.53 (8)
S10—Nb2—Rb154.64 (4)Rb2—S1—Rb3i161.51 (9)
S8—Nb2—Rb185.03 (4)O1—S1—Rb380 (2)
S7—Nb2—Rb1143.70 (4)Nb1—S1—Rb396.37 (8)
S9—Nb2—Rb154.85 (3)Rb2—S1—Rb384.92 (5)
S6—Nb2—Rb1148.14 (3)Rb3i—S1—Rb394.48 (6)
S11—Nb2—Rb178.50 (4)O1—S1—Rb3'80 (2)
S5—Nb2—Rb1131.99 (3)Nb1—S1—Rb3'95.89 (14)
Rb2ii—Nb2—Rb184.303 (15)Rb3'i—S1—Rb3'89.1 (2)
Rb1iii—Nb2—Rb1106.79 (2)Rb2—S1—Rb3'92.86 (10)
S7ii—Rb1—S11iv149.36 (3)S1—O1—Nb1157 (3)
S7ii—Rb1—S12128.74 (4)S1—O1—Rb3'i60.9 (19)
S11iv—Rb1—S1270.40 (4)Nb1—O1—Rb3'i107.1 (8)
S7ii—Rb1—S10ii62.96 (3)S1—O1—Rb281 (2)
S11iv—Rb1—S10ii111.41 (4)Nb1—O1—Rb2109.6 (8)
S12—Rb1—S10ii154.33 (3)Rb3'i—O1—Rb2141.4 (6)
S7ii—Rb1—S10iv87.86 (3)S1—O1—Rb392 (2)
S11iv—Rb1—S10iv62.40 (3)Nb1—O1—Rb3109.7 (7)
S12—Rb1—S10iv104.76 (4)Rb2—O1—Rb385.1 (4)
S10ii—Rb1—S10iv98.02 (4)S1—O1—Rb3'91 (2)
S7ii—Rb1—S6ii34.48 (3)Nb1—O1—Rb3'108.7 (7)
S11iv—Rb1—S6ii170.84 (3)Rb3'i—O1—Rb3'86.6 (5)
S12—Rb1—S6ii113.59 (4)Rb2—O1—Rb3'93.0 (4)
S10ii—Rb1—S6ii61.22 (4)S1—O1—Rb3i65 (2)
S10iv—Rb1—S6ii122.32 (3)Nb1—O1—Rb3i104.4 (7)
S7ii—Rb1—S983.75 (3)Rb2—O1—Rb3i144.8 (6)
S11iv—Rb1—S9120.96 (4)Rb3—O1—Rb3i92.1 (4)
S12—Rb1—S950.81 (3)S3—S2—Nb165.02 (5)
S10ii—Rb1—S9119.03 (3)S3—S2—Rb3'i98.31 (13)
S10iv—Rb1—S9132.06 (3)Nb1—S2—Rb3'i83.82 (10)
S6ii—Rb1—S962.86 (3)S3—S2—Rb3i104.52 (6)
S7ii—Rb1—S1061.55 (3)Nb1—S2—Rb3i91.22 (4)
S11iv—Rb1—S10111.45 (4)S3—S2—Rb3v124.33 (6)
S12—Rb1—S1075.26 (3)Nb1—S2—Rb3v93.87 (4)
S10ii—Rb1—S10123.86 (2)Rb3i—S2—Rb3v128.01 (4)
S10iv—Rb1—S1072.25 (4)S3—S2—Rb3'v129.95 (12)
S6ii—Rb1—S1077.70 (4)Nb1—S2—Rb3'v100.23 (10)
S9—Rb1—S1062.29 (3)Rb3'i—S2—Rb3'v128.77 (11)
S7ii—Rb1—S11v135.77 (3)S2—S3—Nb165.12 (5)
S11iv—Rb1—S11v67.19 (4)S2—S3—Rb2ii124.50 (6)
S12—Rb1—S11v74.39 (4)Nb1—S3—Rb2ii113.59 (4)
S10ii—Rb1—S11v82.77 (3)S2—S3—Rb3'ix117.81 (12)
S10iv—Rb1—S11v125.94 (3)Nb1—S3—Rb3'ix118.80 (14)
S6ii—Rb1—S11v105.36 (4)Rb2ii—S3—Rb3'ix110.17 (14)
S9—Rb1—S11v90.17 (3)S2—S3—Rb3ix123.99 (7)
S10—Rb1—S11v147.91 (3)Nb1—S3—Rb3ix115.20 (5)
S7ii—Rb1—Nb2ii34.32 (2)Rb2ii—S3—Rb3ix106.93 (5)
S11iv—Rb1—Nb2ii139.66 (3)S5—S4—Nb165.15 (5)
S12—Rb1—Nb2ii148.06 (3)S5—S4—Rb3'93.12 (10)
S10ii—Rb1—Nb2ii30.29 (2)Nb1—S4—Rb3'94.94 (14)
S10iv—Rb1—Nb2ii101.32 (3)S5—S4—Rb2v73.94 (5)
S6ii—Rb1—Nb2ii34.91 (2)Nb1—S4—Rb2v131.88 (5)
S9—Rb1—Nb2ii97.68 (2)Rb3'—S4—Rb2v111.97 (14)
S10—Rb1—Nb2ii95.78 (3)S5—S4—Rb385.12 (5)
S11v—Rb1—Nb2ii104.49 (3)Nb1—S4—Rb393.11 (5)
S7ii—Rb1—Nb277.12 (3)Rb2v—S4—Rb3107.95 (4)
S11iv—Rb1—Nb2112.27 (3)S5—S4—Rb3v127.21 (6)
S12—Rb1—Nb252.24 (2)Nb1—S4—Rb3v101.27 (5)
S10ii—Rb1—Nb2136.09 (3)Rb2v—S4—Rb3v83.63 (4)
S10iv—Rb1—Nb298.00 (3)Rb3—S4—Rb3v147.65 (5)
S6ii—Rb1—Nb275.68 (3)S5—S4—Rb3'v133.01 (12)
S9—Rb1—Nb234.16 (2)Nb1—S4—Rb3'v102.94 (13)
S10—Rb1—Nb230.17 (2)Rb3'—S4—Rb3'v133.9 (2)
S11v—Rb1—Nb2118.48 (3)Rb2v—S4—Rb3'v86.67 (12)
Nb2ii—Rb1—Nb2106.23 (2)S4—S5—Nb164.33 (5)
S7ii—Rb1—Nb277.12 (3)S4—S5—Nb2115.92 (6)
S11iv—Rb1—Nb2112.27 (3)Nb1—S5—Nb284.08 (4)
S12—Rb1—Nb252.24 (2)S4—S5—Nb2115.92 (6)
S10ii—Rb1—Nb2136.09 (3)Nb1—S5—Nb284.08 (4)
S10iv—Rb1—Nb298.00 (3)S4—S5—Rb2v70.73 (5)
S6ii—Rb1—Nb275.68 (3)Nb1—S5—Rb2v128.45 (5)
S9—Rb1—Nb234.16 (2)Nb2—S5—Rb2v94.18 (4)
S10—Rb1—Nb230.17 (2)Nb2—S5—Rb2v94.18 (4)
S11v—Rb1—Nb2118.48 (3)S4—S5—Rb362.44 (5)
Nb2ii—Rb1—Nb2106.23 (2)Nb1—S5—Rb383.06 (4)
Nb2—Rb1—Nb20.000 (15)Nb2—S5—Rb3166.12 (5)
S1—Rb2—S790.75 (5)Nb2—S5—Rb3166.12 (5)
S7—Rb2—O182.8 (3)Rb2v—S5—Rb397.89 (4)
S1—Rb2—S8iii70.30 (4)S4—S5—Rb2122.52 (6)
S7—Rb2—S8iii82.50 (3)Nb1—S5—Rb278.32 (4)
O1—Rb2—S8iii73.3 (3)Nb2—S5—Rb2100.82 (4)
S1—Rb2—S9vi98.16 (5)Nb2—S5—Rb2100.82 (4)
S7—Rb2—S9vi86.76 (3)Rb2v—S5—Rb2150.82 (3)
O1—Rb2—S9vi93.7 (3)Rb3—S5—Rb271.44 (3)
S8iii—Rb2—S9vi164.02 (3)S7—S6—Nb264.40 (5)
S1—Rb2—S4vi78.35 (5)S7—S6—Nb264.40 (5)
S7—Rb2—S4vi149.33 (3)S7—S6—Nb1112.25 (6)
O1—Rb2—S4vi83.5 (3)Nb2—S6—Nb189.37 (4)
S8iii—Rb2—S4vi119.24 (3)Nb2—S6—Nb189.37 (4)
S9vi—Rb2—S4vi66.92 (3)S7—S6—Rb1iii69.17 (5)
S1—Rb2—S12vi136.35 (5)Nb2—S6—Rb1iii90.07 (4)
S7—Rb2—S12vi59.80 (4)Nb2—S6—Rb1iii90.07 (4)
O1—Rb2—S12vi127.8 (3)Nb1—S6—Rb1iii178.02 (5)
S8iii—Rb2—S12vi128.82 (3)S7—S6—Rb259.47 (5)
S9vi—Rb2—S12vi52.66 (3)Nb2—S6—Rb2112.04 (4)
S4vi—Rb2—S12vi109.95 (4)Nb2—S6—Rb2112.04 (4)
S1—Rb2—S3iii67.45 (5)Nb1—S6—Rb279.54 (4)
S7—Rb2—S3iii137.63 (4)Rb1iii—S6—Rb2102.43 (4)
O1—Rb2—S3iii76.2 (3)S7—S6—Rb2ii131.79 (6)
S8iii—Rb2—S3iii56.46 (3)Nb2—S6—Rb2ii79.48 (4)
S9vi—Rb2—S3iii130.44 (3)Nb2—S6—Rb2ii79.48 (4)
S4vi—Rb2—S3iii63.79 (3)Nb1—S6—Rb2ii97.40 (4)
S12vi—Rb2—S3iii155.54 (4)Rb1iii—S6—Rb2ii80.63 (3)
S1—Rb2—S5vi113.63 (5)Rb2—S6—Rb2ii167.89 (4)
S7—Rb2—S5vi141.51 (4)S6—S7—Nb265.98 (5)
O1—Rb2—S5vi118.2 (3)S6—S7—Nb265.98 (5)
S8iii—Rb2—S5vi132.60 (3)S6—S7—Rb287.88 (6)
S9vi—Rb2—S5vi61.60 (3)Nb2—S7—Rb2133.14 (5)
S4vi—Rb2—S5vi35.33 (3)Nb2—S7—Rb2133.14 (5)
S12vi—Rb2—S5vi82.73 (4)S6—S7—Rb1iii76.34 (5)
S3iii—Rb2—S5vi80.64 (3)Nb2—S7—Rb1iii93.84 (4)
S1—Rb2—S10iii126.86 (4)Nb2—S7—Rb1iii93.84 (4)
S7—Rb2—S10iii61.74 (3)Rb2—S7—Rb1iii117.95 (4)
O1—Rb2—S10iii125.0 (3)S9—S8—Nb265.74 (5)
S8iii—Rb2—S10iii62.17 (3)S9—S8—Nb265.74 (5)
S9vi—Rb2—S10iii122.17 (3)S9—S8—Nb1116.09 (6)
S4vi—Rb2—S10iii145.92 (3)Nb2—S8—Nb182.75 (4)
S12vi—Rb2—S10iii69.51 (3)Nb2—S8—Nb182.75 (4)
S3iii—Rb2—S10iii101.95 (4)S9—S8—Rb2ii130.26 (6)
S5vi—Rb2—S10iii115.50 (4)Nb2—S8—Rb2ii92.57 (4)
S1—Rb2—S662.48 (5)Nb2—S8—Rb2ii92.57 (4)
S7—Rb2—S632.66 (3)Nb1—S8—Rb2ii103.70 (3)
O1—Rb2—S656.3 (3)S9—S8—Rb3v77.33 (5)
S8iii—Rb2—S659.19 (3)Nb2—S8—Rb3v134.63 (5)
S9vi—Rb2—S6106.01 (3)Nb2—S8—Rb3v134.63 (5)
S4vi—Rb2—S6139.18 (3)Nb1—S8—Rb3v91.17 (4)
S12vi—Rb2—S692.35 (4)Rb2ii—S8—Rb3v132.28 (4)
S3iii—Rb2—S6107.43 (4)S9—S8—Rb3'v80.57 (12)
S5vi—Rb2—S6167.10 (3)Nb2—S8—Rb3'v138.05 (12)
S10iii—Rb2—S673.34 (3)Nb2—S8—Rb3'v138.05 (12)
S1—Rb2—S6iii110.25 (5)Nb1—S8—Rb3'v90.94 (12)
S7—Rb2—S6iii115.13 (3)Rb2ii—S8—Rb3'v129.04 (12)
O1—Rb2—S6iii117.3 (3)S8—S9—Nb264.42 (4)
S8iii—Rb2—S6iii52.94 (3)S8—S9—Nb264.42 (4)
S9vi—Rb2—S6iii143.03 (3)S8—S9—Rb2v123.88 (6)
S4vi—Rb2—S6iii95.54 (3)Nb2—S9—Rb2v103.98 (4)
S12vi—Rb2—S6iii111.34 (4)Nb2—S9—Rb2v103.98 (4)
S3iii—Rb2—S6iii49.46 (3)S8—S9—Rb1114.73 (5)
S5vi—Rb2—S6iii85.00 (3)Nb2—S9—Rb190.99 (4)
S10iii—Rb2—S6iii56.60 (3)Nb2—S9—Rb190.99 (4)
S6—Rb2—S6iii107.89 (2)Rb2v—S9—Rb1120.39 (3)
S1vii—Rb3—O1107.4 (3)S8—S9—Rb3v69.23 (5)
S1vii—Rb3—S497.75 (6)Nb2—S9—Rb3v126.75 (5)
O1—Rb3—S455.8 (3)Nb2—S9—Rb3v126.75 (5)
S1vii—Rb3—S2vii64.78 (5)Rb2v—S9—Rb3v81.06 (4)
O1—Rb3—S2vii93.8 (3)Rb1—S9—Rb3v132.60 (4)
S4—Rb3—S2vii140.22 (5)Nb2—S10—Rb1iii96.91 (4)
S1vii—Rb3—S4vi119.62 (7)Nb2—S10—Rb1iii96.91 (4)
O1—Rb3—S4vi81.0 (3)Nb2—S10—Rb1iv99.55 (4)
S4—Rb3—S4vi130.26 (5)Nb2—S10—Rb1iv99.55 (4)
S2vii—Rb3—S4vi54.94 (4)Rb1iii—S10—Rb1iv81.98 (4)
S1vii—Rb3—S3viii85.05 (6)Nb2—S10—Rb195.19 (5)
O1—Rb3—S3viii118.4 (3)Nb2—S10—Rb195.19 (5)
S4—Rb3—S3viii62.89 (4)Rb1iii—S10—Rb1163.99 (4)
S2vii—Rb3—S3viii141.73 (6)Rb1iv—S10—Rb185.72 (4)
S4vi—Rb3—S3viii144.11 (5)Nb2—S10—Rb2ii88.53 (4)
S1vii—Rb3—S1105.13 (6)Nb2—S10—Rb2ii88.53 (4)
S4—Rb3—S163.92 (5)Rb1iii—S10—Rb2ii85.08 (4)
S2vii—Rb3—S185.53 (6)Rb1iv—S10—Rb2ii165.46 (4)
S4vi—Rb3—S174.80 (5)Rb1—S10—Rb2ii105.70 (4)
S3viii—Rb3—S1126.71 (7)S12—S11—Nb2100.56 (6)
S1vii—Rb3—S8vi133.04 (7)S12—S11—Nb2100.56 (6)
O1—Rb3—S8vi118.1 (3)S12—S11—Rb1iv100.29 (6)
S4—Rb3—S8vi116.59 (5)Nb2—S11—Rb1iv94.83 (4)
S2vii—Rb3—S8vi99.71 (5)Nb2—S11—Rb1iv94.83 (4)
S4vi—Rb3—S8vi60.58 (4)S12—S11—Rb1vi104.75 (6)
S3viii—Rb3—S8vi83.56 (5)Nb2—S11—Rb1vi137.84 (5)
S1—Rb3—S8vi118.08 (5)Nb2—S11—Rb1vi137.84 (5)
O1—Rb3—O1vii110.0 (4)Rb1iv—S11—Rb1vi112.81 (4)
S4—Rb3—O1vii105.5 (3)S13—S12—S11106.33 (7)
S2vii—Rb3—O1vii57.5 (3)S13—S12—Rb2v113.69 (7)
S4vi—Rb3—O1vii112.1 (3)S11—S12—Rb2v90.45 (6)
S3viii—Rb3—O1vii90.4 (3)S13—S12—Rb1110.16 (7)
S1—Rb3—O1vii106.6 (3)S11—S12—Rb1109.76 (6)
S8vi—Rb3—O1vii128.1 (3)Rb2v—S12—Rb1123.36 (4)
S1vii—Rb3—S9vi164.99 (7)S12iv—S13—S12104.03 (11)
O1—Rb3—S9vi87.5 (3)
Symmetry codes: (i) x+1/2, y+1/2, z+1/2; (ii) x, y+2, z+1/2; (iii) x, y+2, z1/2; (iv) x+1, y, z+3/2; (v) x, y+1, z+1/2; (vi) x, y+1, z1/2; (vii) x+1/2, y1/2, z+1/2; (viii) x, y1, z; (ix) x, y+1, z.

Experimental details

Crystal data
Chemical formulaNb4O0.60Rb6S24.40
Mr1676.32
Crystal system, space groupMonoclinic, C2/c
Temperature (K)293
a, b, c (Å)36.868 (7), 8.1185 (16), 12.515 (3)
β (°) 98.36 (3)
V3)3706.1 (13)
Z4
Radiation typeMo Kα
µ (mm1)10.42
Crystal size (mm)0.13 × 0.10 × 0.09
Data collection
DiffractometerStoe Imaging Plate Diffraction System
diffractometer
Absorption correctionNumerical
(X-SHAPE; Stoe & Cie, 1998)
Tmin, Tmax0.187, 0.327
No. of measured, independent and
observed [I > 2σ(I)] reflections
15576, 3889, 3296
Rint0.064
(sin θ/λ)max1)0.637
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.031, 0.077, 1.05
No. of reflections3889
No. of parameters173
w = 1/[σ2(Fo2) + (0.039P)2 + 14.4654P]
where P = (Fo2 + 2Fc2)/3
Δρmax, Δρmin (e Å3)2.23, 1.79

Computer programs: IPDS Program Package (Stoe & Cie, 1998), IPDS Program Package, SHELXS97 (Sheldrick, 1990), SHELXL97 (Sheldrick, 1997), XP in SHELXTL (Bruker, 1998), CIFTAB in SHELXTL.

Selected bond lengths (Å) top
Nb1—O11.71 (2)Rb2—S10iv3.6703 (15)
Nb1—S12.198 (2)Rb2—S63.8539 (15)
Nb1—S42.4419 (12)Rb2—S6iv3.9109 (15)
Nb1—S32.4568 (13)Rb3—S1vi3.346 (2)
Nb1—S52.4585 (12)Rb3—O13.45 (2)
Nb1—S22.4587 (13)Rb3—S43.457 (2)
Nb1—S62.5862 (13)Rb3—S2vi3.472 (2)
Nb1—S82.9386 (14)Rb3—S4v3.474 (2)
Nb2—S102.2149 (13)Rb3—S3vii3.481 (2)
Nb2—S82.4386 (12)Rb3—S13.505 (3)
Nb2—S72.4635 (13)Rb3—S8v3.505 (2)
Nb2—S92.4650 (12)Rb3—O1vi3.54 (2)
Nb2—S62.4951 (13)Rb3—S9v3.658 (2)
Nb2—S112.5275 (13)Rb3—S2v3.749 (2)
Nb2—S52.8600 (13)Rb3—S53.885 (2)
Rb1—S7i3.4355 (15)Rb3'—S1vi2.885 (6)
Rb1—S11ii3.4614 (15)Rb3'—O1vi3.10 (2)
Rb1—S123.467 (2)Rb3'—S2vi3.379 (8)
Rb1—S10i3.4978 (14)Rb3'—S43.407 (8)
Rb1—S10ii3.5148 (15)Rb3'—S3vii3.460 (8)
Rb1—S6i3.5717 (14)Rb3'—O13.50 (2)
Rb1—S93.590 (2)Rb3'—S13.546 (9)
Rb1—S103.5948 (15)Rb3'—S4v3.799 (7)
Rb1—S11iii3.6682 (14)Rb3'—S2v3.887 (8)
Rb2—S13.294 (2)Rb3'—S8v3.942 (6)
Rb2—S73.322 (2)Rb3'—Nb1vi3.959 (7)
Rb2—O13.34 (2)S2—S32.072 (2)
Rb2—S8iv3.3583 (13)S4—S52.091 (2)
Rb2—S9v3.4031 (13)S6—S72.081 (2)
Rb2—S4v3.4144 (15)S8—S92.066 (2)
Rb2—S12v3.426 (2)S11—S122.082 (2)
Rb2—S3iv3.435 (2)S12—S132.048 (2)
Rb2—S5v3.4758 (13)
Symmetry codes: (i) x, y+2, z+1/2; (ii) x+1, y, z+3/2; (iii) x, y+1, z+1/2; (iv) x, y+2, z1/2; (v) x, y+1, z1/2; (vi) x+1/2, y1/2, z+1/2; (vii) x, y1, z.
 

Subscribe to Acta Crystallographica Section E: Crystallographic Communications

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds