Download citation
Download citation
link to html
The complex trans-[Mo(NCS)2(dppe)2] [dppe is ethane-1,2-diyl­bis­(di­phenyl­phosphane), C26H24P2] was obtained upon air oxidation of [N(n-Bu)4][Mo(NCS)(dppe)2(N2)] and the crystal structure of its toluene solvate, [Mo(NCS)2(C26H24P2)2]·C7H8, has been determined. The complex mol­ecule reveals a distorted octahedral coordination geometry, with two trans-oriented N-bonded thio­cyanate ligands. The Mo atom resides on a crystallographic center of symmetry.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536802020123/bt6200sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536802020123/bt6200Isup2.hkl
Contains datablock I

CCDC reference: 202280

Key indicators

  • Single-crystal X-ray study
  • T = 180 K
  • Mean [sigma](C-C) = 0.006 Å
  • Disorder in solvent or counterion
  • R factor = 0.040
  • wR factor = 0.101
  • Data-to-parameter ratio = 15.8

checkCIF results

No syntax errors found

ADDSYM reports no extra symmetry


Yellow Alert Alert Level C:
PLAT_202 Alert C Isotropic non-H Atoms in Anion/Solvent = 2 PLAT_302 Alert C Anion/Solvent Disorder ....................... 30.00 Perc.
0 Alert Level A = Potentially serious problem
0 Alert Level B = Potential problem
2 Alert Level C = Please check

Comment top

Recently, we have shown that the reactions of the dinitrogen complexes trans-[M(dppe)2(N2)2] [M = Mo, W; dppe is ethane-1,2-diylbis(diphenylphosphane), Ph2PCH2CH2PPh2] with the germanium(II) halides Cp*GeX (Cp* = C5Me5; X = Cl, Br, I) afford the germylyne complexes trans-[X(dppe)2MGe—(η1-Cp*)] (Filippou, Philippopoulos et al., 2000; Filippou, Portius et al., 2002). Furthermore, the tungsten derivative trans-[I(dppe)2WGe—(η1-Cp*)] was shown to undergo iodide/pseudohalide ligand exchange with an excess of M'Y (M' = Na, K; Y = CN, NCO, N3, NCS) to yield the germylyne complexes trans-[Y(dppe)2WGe—(η1-Cp*)] (Filippou, Philippopoulos et al., 2002). Looking for an alternative approach to the analogous molybdenum compounds, we prepared the anionic dinitrogen complex [N(n—Bu)4][Mo(NCS)(dppe)2(N2)], following the method of Chatt et al. (1980). Exposure of this complex to air was reported to give trans-[Mo(NCS)2(dppe)2], (1), which was characterized by IR spectroscopy and elemental analysis (Chatt et al., 1980). However, the molecular structure of (1) remained unknown until today. Dark-green single crystals of the toluene solvate of (1), viz. (1α), were obtained from a THF/toluene solution upon cooling from 293 to 238 K. The title compound, (1α), crystallizes in the same space group (P21/c) as the chloro complex trans-[MoCl2(dppe)2]·2C4H8O (Filippou, Portius et al., 2000). The 16 valence-electron complex (1) reveals a distorted octahedral geometry at the Mo atom, which bears two trans-arranged N-bonded thiocyanate ligands and lies on a crystallographic center of symmetry. Distortion is evidenced in the tilt of the axial isothiocyanate ligands with respect to the equatorial plane spanned by the four P atoms, the angle between the N—Mo—N' axis and the P4 plane being 82.9°. A similar tilt of the axial chloro ligands (80.5°) was observed in trans-[MoCl2(dppe)2]·2C4H8O (Filippou, Portius et al., 2000). The isothiocyanate ligands feature an almost linear Mo—N—C1—S array in (1α), with Mo—N—C1 and N—C1—S angles of 176.2 (3) and 178.0 (4)°, respectively. The Mo—N bonds of (1α) [2.086 (3) Å] are slightly shorter than those of the few other structurally characterized molybdenum(II) isothiocyanate complexes (Bino & Cotton, 1979; Müller & Mohan, 1981) and the mean Mo—P bond length of (1α) (2.503 Å) compares well with that of trans-[MoCl2(dppe)2]·2C4H8O (average Mo—P = 2.499 Å; Filippou, Portius et al., 2000) or trans-[MoCl2(dppe)2]·CH2Cl2 (average Mo—P = 2.497 Å; Nardelli et al., 1980).

Experimental top

A Schlenk tube was charged with a mixture of trans-[Mo(dppe)2(N2)2] (663 mg, 0.699 mmol) and [N(n—Bu)4](NCS) (211 mg, 0.702 mmol). THF (40 ml) was added to the mixture and the resulting clear orange solution was stirred at ambient temperature overnight under an N2 atmosphere. Within ca 20 min, the color of the solution changed to deep red. At the end of the reaction, the solution was concentrated to half of its volume and stored for 2 h at 237 K to afford a mixture of yellow and red–black crystalline material. The supernatant dark-red solution was decanted, treated with toluene (35 ml) and then stirred for 1–2 minutes in air. Dark-green single crystals of (1α) were obtained upon cooling the resulting yellow solution for 3 d at 237 K.

Refinement top

The disordered toluene solvate molecule occupies two close half-occupancy positions, which are related by inversion symmetry. Only five resolved atomic positions could be localized and refined isotropically with an adequate site-occupancy model. Restraints for distances and angles in the molecule were applied.

Structure description top

Recently, we have shown that the reactions of the dinitrogen complexes trans-[M(dppe)2(N2)2] [M = Mo, W; dppe is ethane-1,2-diylbis(diphenylphosphane), Ph2PCH2CH2PPh2] with the germanium(II) halides Cp*GeX (Cp* = C5Me5; X = Cl, Br, I) afford the germylyne complexes trans-[X(dppe)2MGe—(η1-Cp*)] (Filippou, Philippopoulos et al., 2000; Filippou, Portius et al., 2002). Furthermore, the tungsten derivative trans-[I(dppe)2WGe—(η1-Cp*)] was shown to undergo iodide/pseudohalide ligand exchange with an excess of M'Y (M' = Na, K; Y = CN, NCO, N3, NCS) to yield the germylyne complexes trans-[Y(dppe)2WGe—(η1-Cp*)] (Filippou, Philippopoulos et al., 2002). Looking for an alternative approach to the analogous molybdenum compounds, we prepared the anionic dinitrogen complex [N(n—Bu)4][Mo(NCS)(dppe)2(N2)], following the method of Chatt et al. (1980). Exposure of this complex to air was reported to give trans-[Mo(NCS)2(dppe)2], (1), which was characterized by IR spectroscopy and elemental analysis (Chatt et al., 1980). However, the molecular structure of (1) remained unknown until today. Dark-green single crystals of the toluene solvate of (1), viz. (1α), were obtained from a THF/toluene solution upon cooling from 293 to 238 K. The title compound, (1α), crystallizes in the same space group (P21/c) as the chloro complex trans-[MoCl2(dppe)2]·2C4H8O (Filippou, Portius et al., 2000). The 16 valence-electron complex (1) reveals a distorted octahedral geometry at the Mo atom, which bears two trans-arranged N-bonded thiocyanate ligands and lies on a crystallographic center of symmetry. Distortion is evidenced in the tilt of the axial isothiocyanate ligands with respect to the equatorial plane spanned by the four P atoms, the angle between the N—Mo—N' axis and the P4 plane being 82.9°. A similar tilt of the axial chloro ligands (80.5°) was observed in trans-[MoCl2(dppe)2]·2C4H8O (Filippou, Portius et al., 2000). The isothiocyanate ligands feature an almost linear Mo—N—C1—S array in (1α), with Mo—N—C1 and N—C1—S angles of 176.2 (3) and 178.0 (4)°, respectively. The Mo—N bonds of (1α) [2.086 (3) Å] are slightly shorter than those of the few other structurally characterized molybdenum(II) isothiocyanate complexes (Bino & Cotton, 1979; Müller & Mohan, 1981) and the mean Mo—P bond length of (1α) (2.503 Å) compares well with that of trans-[MoCl2(dppe)2]·2C4H8O (average Mo—P = 2.499 Å; Filippou, Portius et al., 2000) or trans-[MoCl2(dppe)2]·CH2Cl2 (average Mo—P = 2.497 Å; Nardelli et al., 1980).

Computing details top

Data collection: STADI4 (Stoe & Cie, 1997); cell refinement: STADI4; data reduction: X-RED (Stoe & Cie, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: DIAMOND (Brandenburg, 1999); software used to prepare material for publication: SHELXL97.

Figures top
[Figure 1] Fig. 1. The molecular structure of (1α), showing 50% probability displacement ellipsoids (DIAMOND; Brandenburg, 1999). Labels of atoms related by symmetry, all H atoms and the disordered solvent molecule have been omitted for clarity.
trans-Bis[ethane-1,2-diylbis(diphenylphosphane)-κ2P,P']bis(thiocyanato- κN)molybdenum(II) toluene solvate top
Crystal data top
[Mo(NCS)2(C26H24P2)2]·C7H8F(000) = 1140
Mr = 1101.02Dx = 1.374 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 9.6277 (13) ÅCell parameters from 72 reflections
b = 17.017 (2) Åθ = 14.0–14.8°
c = 16.755 (2) ŵ = 0.49 mm1
β = 104.172 (11)°T = 180 K
V = 2661.5 (6) Å3Block, black
Z = 20.68 × 0.62 × 0.48 mm
Data collection top
Stoe STADI-4
diffractometer
3796 reflections with I > 2σ(I)
Radiation source: fine-focus sealed X-ray tubeRint = 0.098
Planar graphite monochromatorθmax = 25.3°, θmin = 1.7°
2θ/ω scansh = 1111
Absorption correction: ψ scan
(North et al., 1968)
k = 020
Tmin = 0.733, Tmax = 0.800l = 220
4828 measured reflections3 standard reflections every 120 min
4820 independent reflections intensity decay: 3.8%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.101H-atom parameters constrained
S = 1.09 w = 1/[σ2(Fo2) + (0.0348P)2 + 3.8899P]
where P = (Fo2 + 2Fc2)/3
4820 reflections(Δ/σ)max = 0.001
306 parametersΔρmax = 0.74 e Å3
5 restraintsΔρmin = 0.43 e Å3
Crystal data top
[Mo(NCS)2(C26H24P2)2]·C7H8V = 2661.5 (6) Å3
Mr = 1101.02Z = 2
Monoclinic, P21/cMo Kα radiation
a = 9.6277 (13) ŵ = 0.49 mm1
b = 17.017 (2) ÅT = 180 K
c = 16.755 (2) Å0.68 × 0.62 × 0.48 mm
β = 104.172 (11)°
Data collection top
Stoe STADI-4
diffractometer
3796 reflections with I > 2σ(I)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.098
Tmin = 0.733, Tmax = 0.8003 standard reflections every 120 min
4828 measured reflections intensity decay: 3.8%
4820 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0405 restraints
wR(F2) = 0.101H-atom parameters constrained
S = 1.09Δρmax = 0.74 e Å3
4820 reflectionsΔρmin = 0.43 e Å3
306 parameters
Special details top

Experimental. During data collection the crystal was in cold N2 gas of a cryostream cooler (Oxford Cryosystems).

Measurement: 2Θ/ω-scan,ratio=1.0,width(ω)=1.75–1.9°

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C10.2192 (4)0.5707 (2)0.3717 (2)0.0354 (8)
C20.1881 (4)0.4709 (2)0.5650 (2)0.0334 (8)
H2A0.13090.47320.60670.040*
H2B0.13130.49560.51390.040*
C30.2181 (4)0.3853 (2)0.5480 (2)0.0353 (8)
H3A0.12830.36040.51660.042*
H3B0.24990.35700.60100.042*
C40.4313 (4)0.2789 (2)0.5255 (2)0.0321 (8)
C50.5761 (4)0.2663 (2)0.5518 (3)0.0487 (10)
H50.64070.30820.55030.058*
C60.6294 (5)0.1928 (3)0.5805 (3)0.0601 (12)
H60.72990.18480.59830.072*
C70.5374 (5)0.1321 (2)0.5830 (2)0.0513 (10)
H70.57360.08210.60340.062*
C80.3931 (5)0.1438 (2)0.5559 (3)0.0554 (11)
H80.32880.10170.55700.067*
C90.3409 (5)0.2157 (2)0.5272 (3)0.0513 (11)
H90.24040.22270.50800.062*
C100.2561 (4)0.3498 (2)0.3844 (2)0.0346 (8)
C110.3200 (5)0.3023 (2)0.3360 (2)0.0495 (10)
H110.41300.28150.35830.059*
C120.2495 (6)0.2850 (3)0.2557 (3)0.0707 (15)
H120.29430.25310.22270.085*
C130.1132 (7)0.3145 (3)0.2235 (3)0.0796 (17)
H130.06340.30150.16880.096*
C140.0493 (5)0.3627 (3)0.2705 (3)0.0675 (14)
H140.04340.38380.24790.081*
C150.1210 (4)0.3801 (2)0.3502 (2)0.0463 (10)
H150.07700.41340.38230.056*
C160.2873 (4)0.6237 (2)0.6201 (2)0.0353 (8)
C170.1865 (4)0.6597 (2)0.5570 (2)0.0414 (9)
H170.15200.63280.50630.050*
C180.1358 (4)0.7343 (2)0.5672 (3)0.0500 (10)
H180.06670.75810.52360.060*
C190.1849 (5)0.7742 (2)0.6402 (3)0.0557 (11)
H190.14990.82530.64700.067*
C200.2845 (5)0.7397 (3)0.7027 (3)0.0628 (13)
H200.31850.76700.75310.075*
C210.3366 (5)0.6646 (2)0.6931 (2)0.0499 (10)
H210.40620.64140.73690.060*
C220.4318 (4)0.4881 (2)0.7067 (2)0.0336 (8)
C230.5762 (4)0.5028 (2)0.7431 (2)0.0380 (8)
H230.63140.53340.71470.046*
C240.6390 (5)0.4731 (2)0.8202 (2)0.0514 (11)
H240.73710.48370.84480.062*
C250.5596 (6)0.4281 (3)0.8616 (3)0.0619 (13)
H250.60330.40690.91430.074*
C260.4171 (6)0.4140 (3)0.8264 (3)0.0594 (12)
H260.36270.38350.85520.071*
C270.3517 (5)0.4438 (2)0.7494 (2)0.0469 (10)
H270.25300.43410.72590.056*
C280.0776 (19)0.4379 (9)0.0514 (11)0.140 (6)*0.50
H280.10970.38720.06530.168*0.50
C290.1165 (9)0.5006 (6)0.0944 (6)0.144 (3)*
H29A0.17170.49880.13540.173*0.50
H29B0.14350.44980.10850.173*0.50
H29C0.12650.52290.14610.173*0.50
H29D0.22160.49580.07660.173*0.50
C300.0644 (19)0.5707 (9)0.0696 (11)0.151 (7)*0.50
H300.07600.61960.09650.181*0.50
C310.0004 (12)0.5598 (7)0.0069 (7)0.173 (4)*
H310.02700.60800.01470.208*
C320.0400 (14)0.5014 (10)0.0341 (8)0.097 (4)*0.50
N0.3213 (3)0.54434 (17)0.41527 (17)0.0307 (6)
P10.35788 (9)0.37521 (5)0.48864 (5)0.0279 (2)
P20.35653 (9)0.52638 (5)0.60272 (5)0.0290 (2)
S0.07691 (11)0.61012 (7)0.31294 (7)0.0554 (3)
Mo0.50000.50000.50000.02374 (11)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.040 (2)0.038 (2)0.0334 (19)0.0087 (16)0.0173 (17)0.0026 (16)
C20.0275 (17)0.0388 (19)0.0376 (19)0.0052 (14)0.0152 (15)0.0025 (15)
C30.0365 (19)0.039 (2)0.0348 (19)0.0106 (16)0.0161 (15)0.0037 (16)
C40.0371 (19)0.0317 (19)0.0278 (17)0.0042 (15)0.0086 (15)0.0012 (14)
C50.045 (2)0.034 (2)0.067 (3)0.0062 (18)0.015 (2)0.0027 (19)
C60.051 (3)0.043 (3)0.082 (3)0.010 (2)0.007 (2)0.009 (2)
C70.074 (3)0.034 (2)0.045 (2)0.001 (2)0.013 (2)0.0083 (18)
C80.067 (3)0.035 (2)0.063 (3)0.011 (2)0.013 (2)0.011 (2)
C90.048 (2)0.037 (2)0.066 (3)0.0104 (18)0.008 (2)0.011 (2)
C100.044 (2)0.0287 (18)0.0305 (18)0.0114 (16)0.0081 (16)0.0007 (14)
C110.071 (3)0.040 (2)0.036 (2)0.002 (2)0.010 (2)0.0059 (17)
C120.115 (4)0.054 (3)0.039 (2)0.003 (3)0.011 (3)0.013 (2)
C130.108 (4)0.076 (4)0.038 (3)0.018 (3)0.015 (3)0.008 (2)
C140.058 (3)0.082 (4)0.051 (3)0.011 (3)0.010 (2)0.007 (3)
C150.042 (2)0.052 (3)0.042 (2)0.0077 (19)0.0060 (18)0.0005 (19)
C160.0372 (19)0.0331 (19)0.042 (2)0.0023 (15)0.0226 (16)0.0024 (16)
C170.043 (2)0.038 (2)0.046 (2)0.0003 (17)0.0181 (18)0.0040 (17)
C180.049 (2)0.043 (2)0.061 (3)0.0055 (19)0.020 (2)0.000 (2)
C190.068 (3)0.035 (2)0.072 (3)0.001 (2)0.032 (3)0.009 (2)
C200.084 (3)0.048 (3)0.059 (3)0.001 (2)0.022 (3)0.019 (2)
C210.064 (3)0.045 (2)0.041 (2)0.000 (2)0.015 (2)0.0086 (18)
C220.047 (2)0.0286 (19)0.0268 (17)0.0003 (15)0.0128 (15)0.0038 (14)
C230.049 (2)0.040 (2)0.0264 (17)0.0051 (18)0.0120 (15)0.0041 (16)
C240.066 (3)0.052 (3)0.034 (2)0.020 (2)0.008 (2)0.0030 (18)
C250.104 (4)0.049 (3)0.033 (2)0.029 (3)0.020 (2)0.0110 (19)
C260.102 (4)0.043 (2)0.043 (2)0.006 (2)0.036 (3)0.0051 (19)
C270.068 (3)0.043 (2)0.037 (2)0.007 (2)0.026 (2)0.0024 (17)
N0.0336 (16)0.0329 (16)0.0277 (15)0.0038 (13)0.0117 (13)0.0018 (12)
P10.0312 (4)0.0272 (5)0.0270 (4)0.0060 (4)0.0104 (4)0.0012 (3)
P20.0311 (4)0.0319 (5)0.0266 (4)0.0042 (4)0.0119 (4)0.0035 (3)
S0.0364 (5)0.0718 (8)0.0558 (7)0.0041 (5)0.0072 (5)0.0259 (6)
Mo0.0257 (2)0.0247 (2)0.02231 (19)0.00377 (17)0.00874 (14)0.00124 (17)
Geometric parameters (Å, º) top
C1—N1.161 (4)C19—C201.367 (6)
C1—S1.624 (4)C19—H190.9500
C2—C31.526 (5)C20—C211.396 (6)
C2—P21.848 (3)C20—H200.9500
C2—H2A0.9900C21—H210.9500
C2—H2B0.9900C22—C271.394 (5)
C3—P11.867 (3)C22—C231.398 (5)
C3—H3A0.9900C22—P21.834 (3)
C3—H3B0.9900C23—C241.381 (5)
C4—C51.372 (5)C23—H230.9500
C4—C91.388 (5)C24—C251.384 (6)
C4—P11.831 (4)C24—H240.9500
C5—C61.393 (6)C25—C261.375 (7)
C5—H50.9500C25—H250.9500
C6—C71.368 (6)C26—C271.385 (6)
C6—H60.9500C26—H260.9500
C7—C81.366 (6)C27—H270.9500
C7—H70.9500C28—C31i1.371 (18)
C8—C91.365 (6)C28—C291.389 (13)
C8—H80.9500C28—H280.9638
C9—H90.9500C29—C321.389 (12)
C10—C151.386 (5)C29—C301.396 (13)
C10—C111.392 (5)C29—H29A0.9665
C10—P11.832 (3)C29—H29B0.9497
C11—C121.382 (6)C29—H29C0.9719
C11—H110.9500C29—H29D0.9853
C12—C131.385 (7)C30—C311.354 (14)
C12—H120.9500C30—C321.37 (2)
C13—C141.381 (7)C30—H300.9652
C13—H130.9500C31—C32i1.356 (16)
C14—C151.378 (6)C31—C28i1.371 (18)
C14—H140.9500C31—H310.9587
C15—H150.9500C32—C31i1.356 (16)
C16—C211.387 (5)N—Mo2.086 (3)
C16—C171.390 (5)P1—Mo2.5081 (9)
C16—P21.835 (4)P2—Mo2.4971 (9)
C17—C181.387 (5)Mo—Nii2.086 (3)
C17—H170.9500Mo—P2ii2.4971 (9)
C18—C191.377 (6)Mo—P1ii2.5081 (9)
C18—H180.9500
N—C1—S178.0 (4)C27—C22—C23119.3 (3)
C3—C2—P2111.2 (2)C27—C22—P2122.7 (3)
C3—C2—H2A109.4C23—C22—P2118.0 (3)
P2—C2—H2A109.4C24—C23—C22120.3 (4)
C3—C2—H2B109.4C24—C23—H23119.9
P2—C2—H2B109.4C22—C23—H23119.9
H2A—C2—H2B108.0C23—C24—C25120.2 (4)
C2—C3—P1112.4 (2)C23—C24—H24119.9
C2—C3—H3A109.1C25—C24—H24119.9
P1—C3—H3A109.1C26—C25—C24119.8 (4)
C2—C3—H3B109.1C26—C25—H25120.1
P1—C3—H3B109.1C24—C25—H25120.1
H3A—C3—H3B107.8C25—C26—C27121.0 (4)
C5—C4—C9117.8 (3)C25—C26—H26119.5
C5—C4—P1121.7 (3)C27—C26—H26119.5
C9—C4—P1120.5 (3)C26—C27—C22119.5 (4)
C4—C5—C6120.7 (4)C26—C27—H27120.2
C4—C5—H5119.7C22—C27—H27120.2
C6—C5—H5119.7C31i—C28—C29127.8 (15)
C7—C6—C5120.2 (4)C31i—C28—H28117.4
C7—C6—H6119.9C29—C28—H28114.8
C5—C6—H6119.9C32—C28—H29B105.8
C8—C7—C6119.5 (4)C28—C29—C30109.8 (10)
C8—C7—H7120.2C28—C29—H29A127.5
C6—C7—H7120.2C30—C29—H29A122.7
C9—C8—C7120.3 (4)C32—C29—H29B114.6
C9—C8—H8119.9C30—C29—H29C93.1
C7—C8—H8119.9H29B—C29—H29C92.3
C8—C9—C4121.6 (4)C28—C29—H29D99.6
C8—C9—H9119.2C32—C29—H29D118.0
C4—C9—H9119.2C30—C29—H29D113.5
C15—C10—C11118.6 (4)H29C—C29—H29D89.1
C15—C10—P1122.4 (3)C31—C30—C29112.3 (13)
C11—C10—P1118.9 (3)C31—C30—H30127.3
C12—C11—C10120.6 (4)C29—C30—H30120.4
C12—C11—H11119.7C32—C31—C28i125.2 (14)
C10—C11—H11119.7C30—C31—H31113.3
C11—C12—C13119.7 (5)C32i—C31—H31109.1
C11—C12—H12120.2C31i—C32—C29129.1 (16)
C13—C12—H12120.2C1—N—Mo176.2 (3)
C14—C13—C12120.3 (4)C4—P1—C10100.52 (16)
C14—C13—H13119.8C4—P1—C399.91 (16)
C12—C13—H13119.8C10—P1—C3104.00 (16)
C15—C14—C13119.5 (5)C4—P1—Mo125.01 (11)
C15—C14—H14120.2C10—P1—Mo115.26 (11)
C13—C14—H14120.2C3—P1—Mo109.43 (11)
C14—C15—C10121.2 (4)C22—P2—C16104.17 (16)
C14—C15—H15119.4C22—P2—C2104.63 (16)
C10—C15—H15119.4C16—P2—C2101.09 (16)
C21—C16—C17118.3 (4)C22—P2—Mo115.71 (11)
C21—C16—P2122.3 (3)C16—P2—Mo123.73 (11)
C17—C16—P2119.4 (3)C2—P2—Mo105.06 (11)
C18—C17—C16120.8 (4)Nii—Mo—N180.000 (1)
C18—C17—H17119.6Nii—Mo—P295.70 (8)
C16—C17—H17119.6N—Mo—P284.30 (8)
C19—C18—C17120.4 (4)Nii—Mo—P2ii84.30 (8)
C19—C18—H18119.8N—Mo—P2ii95.70 (8)
C17—C18—H18119.8P2—Mo—P2ii180.0
C20—C19—C18119.5 (4)Nii—Mo—P1ii84.88 (8)
C20—C19—H19120.2N—Mo—P1ii95.12 (8)
C18—C19—H19120.2P2—Mo—P1ii100.31 (3)
C19—C20—C21120.6 (4)P2ii—Mo—P1ii79.69 (3)
C19—C20—H20119.7Nii—Mo—P195.12 (8)
C21—C20—H20119.7N—Mo—P184.88 (8)
C16—C21—C20120.4 (4)P2—Mo—P179.69 (3)
C16—C21—H21119.8P2ii—Mo—P1100.31 (3)
C20—C21—H21119.8P1ii—Mo—P1180.0
P2—C2—C3—P146.3 (3)C11—C10—P1—Mo91.4 (3)
C9—C4—C5—C61.2 (6)C2—C3—P1—C4151.6 (3)
P1—C4—C5—C6179.2 (3)C2—C3—P1—C10104.9 (3)
C4—C5—C6—C70.2 (7)C2—C3—P1—Mo18.8 (3)
C5—C6—C7—C81.1 (7)C27—C22—P2—C1690.4 (3)
C6—C7—C8—C90.6 (7)C23—C22—P2—C1691.0 (3)
C7—C8—C9—C40.7 (7)C27—C22—P2—C215.3 (3)
C5—C4—C9—C81.6 (6)C23—C22—P2—C2163.3 (3)
P1—C4—C9—C8178.8 (3)C27—C22—P2—Mo130.4 (3)
C15—C10—C11—C120.7 (6)C23—C22—P2—Mo48.2 (3)
P1—C10—C11—C12176.8 (3)C21—C16—P2—C2222.0 (3)
C10—C11—C12—C130.8 (7)C17—C16—P2—C22160.9 (3)
C11—C12—C13—C141.8 (8)C21—C16—P2—C2130.3 (3)
C12—C13—C14—C151.3 (8)C17—C16—P2—C252.6 (3)
C13—C14—C15—C100.2 (7)C21—C16—P2—Mo113.0 (3)
C11—C10—C15—C141.2 (6)C17—C16—P2—Mo64.1 (3)
P1—C10—C15—C14177.2 (3)C3—C2—P2—C2270.5 (3)
C21—C16—C17—C180.6 (5)C3—C2—P2—C16178.5 (2)
P2—C16—C17—C18177.8 (3)C3—C2—P2—Mo51.8 (3)
C16—C17—C18—C190.2 (6)C22—P2—Mo—Nii8.71 (15)
C17—C18—C19—C200.1 (7)C16—P2—Mo—Nii121.69 (16)
C18—C19—C20—C210.1 (7)C2—P2—Mo—Nii123.53 (15)
C17—C16—C21—C200.7 (6)C22—P2—Mo—N171.29 (15)
P2—C16—C21—C20177.8 (3)C16—P2—Mo—N58.31 (16)
C19—C20—C21—C160.4 (7)C2—P2—Mo—N56.47 (15)
C27—C22—C23—C240.7 (5)C22—P2—Mo—P1ii94.52 (13)
P2—C22—C23—C24178.0 (3)C16—P2—Mo—P1ii35.88 (15)
C22—C23—C24—C250.5 (6)C2—P2—Mo—P1ii150.66 (12)
C23—C24—C25—C261.1 (6)C22—P2—Mo—P185.48 (13)
C24—C25—C26—C270.5 (7)C16—P2—Mo—P1144.12 (15)
C25—C26—C27—C220.6 (6)C2—P2—Mo—P129.34 (12)
C23—C22—C27—C261.2 (5)C4—P1—Mo—Nii14.26 (15)
P2—C22—C27—C26177.4 (3)C10—P1—Mo—Nii139.49 (15)
C5—C4—P1—C10121.5 (3)C3—P1—Mo—Nii103.77 (15)
C9—C4—P1—C1058.1 (3)C4—P1—Mo—N165.74 (15)
C5—C4—P1—C3132.1 (3)C10—P1—Mo—N40.51 (15)
C9—C4—P1—C348.3 (3)C3—P1—Mo—N76.23 (15)
C5—C4—P1—Mo9.8 (4)C4—P1—Mo—P2109.14 (14)
C9—C4—P1—Mo170.6 (3)C10—P1—Mo—P2125.63 (14)
C15—C10—P1—C4138.3 (3)C3—P1—Mo—P28.89 (13)
C11—C10—P1—C445.7 (3)C4—P1—Mo—P2ii70.86 (14)
C15—C10—P1—C335.2 (3)C10—P1—Mo—P2ii54.37 (14)
C11—C10—P1—C3148.8 (3)C3—P1—Mo—P2ii171.11 (13)
C15—C10—P1—Mo84.5 (3)
Symmetry codes: (i) x, y+1, z; (ii) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formula[Mo(NCS)2(C26H24P2)2]·C7H8
Mr1101.02
Crystal system, space groupMonoclinic, P21/c
Temperature (K)180
a, b, c (Å)9.6277 (13), 17.017 (2), 16.755 (2)
β (°) 104.172 (11)
V3)2661.5 (6)
Z2
Radiation typeMo Kα
µ (mm1)0.49
Crystal size (mm)0.68 × 0.62 × 0.48
Data collection
DiffractometerStoe STADI-4
Absorption correctionψ scan
(North et al., 1968)
Tmin, Tmax0.733, 0.800
No. of measured, independent and
observed [I > 2σ(I)] reflections
4828, 4820, 3796
Rint0.098
(sin θ/λ)max1)0.600
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.101, 1.09
No. of reflections4820
No. of parameters306
No. of restraints5
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.74, 0.43

Computer programs: STADI4 (Stoe & Cie, 1997), STADI4, X-RED (Stoe & Cie, 1997), SHELXS97 (Sheldrick, 1990), SHELXL97 (Sheldrick, 1997), DIAMOND (Brandenburg, 1999), SHELXL97.

 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds