Download citation
Download citation
link to html
The title compound, [Ni(C4H10N5)2], was prepared from an aqueous KOH solution. The coordination geometry around the Ni atom is planar, with the central metal bonded to four ligand N atoms in two bidentate ligands. The deprotonation of the ligand causes an increase of the π-conjugation in the C—N—C system, reducing the bond angle at the N atom to 118.46 (16)°.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536802007869/bt6135sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536802007869/bt6135Isup2.hkl
Contains datablock I

CCDC reference: 189292

Key indicators

  • Single-crystal X-ray study
  • T = 173 K
  • Mean [sigma](N-C) = 0.003 Å
  • R factor = 0.030
  • wR factor = 0.072
  • Data-to-parameter ratio = 14.4

checkCIF results

No syntax errors found

ADDSYM reports no extra symmetry


Yellow Alert Alert Level C:
PLAT_420 Alert C D-H Without Acceptor N(2) - H(12) ? PLAT_420 Alert C D-H Without Acceptor N(5) - H(15B) ? General Notes
FORMU_01 There is a discrepancy between the atom counts in the _chemical_formula_sum and _chemical_formula_moiety. This is usually due to the moiety formula being in the wrong format. Atom count from _chemical_formula_sum: C8 H20 N10 Ni1 Atom count from _chemical_formula_moiety:C4 H10 N5 Ni1
0 Alert Level A = Potentially serious problem
0 Alert Level B = Potential problem
2 Alert Level C = Please check

Computing details top

Data collection: MSC/AFC Diffractometer Control Software (Molecular Structure Corporation, 1994); cell refinement: MSC/AFC Diffractometer Control Software; data reduction: SHELXS97 (Sheldrick, 1997); program(s) used to solve structure: SHELXS97; program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: XP (Siemens, 1990); software used to prepare material for publication: SHELXL97.

Bis(1,1-dimethylbiguande)nickel(II) top
Crystal data top
[Ni(C4H10N5)2]F(000) = 332
Mr = 315.05Dx = 1.620 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 1564 reflections
a = 6.412 (1) Åθ = 2.9–27.5°
b = 9.032 (2) ŵ = 1.51 mm1
c = 11.239 (2) ÅT = 173 K
β = 97.05 (3)°Block, orange
V = 646.0 (2) Å30.40 × 0.30 × 0.20 mm
Z = 2
Data collection top
Rigaku R-AXIS RAPID IP
diffractometer
1494 independent reflections
Radiation source: fine-focus sealed tube1159 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.039
Detector resolution: 100x100 microns pixels mm-1θmax = 27.5°, θmin = 2.9°
Oscillation scansh = 08
Absorption correction: empirical (using intensity measurements)
(ABSCOR; Higashi, 1995)
k = 011
Tmin = 0.540, Tmax = 0.740l = 1414
1564 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.030Hydrogen site location: hydrogen atoms are generated by HFIX instructions
wR(F2) = 0.072H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.0409P)2]
where P = (Fo2 + 2Fc2)/3
1467 reflections(Δ/σ)max = 0.001
102 parametersΔρmax = 0.39 e Å3
0 restraintsΔρmin = 0.55 e Å3
Special details top

Experimental. ABSCOR BY T·Higashi 8 march,1995

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ni10.50000.00000.00000.01623 (12)
N10.4634 (2)0.00804 (18)0.16042 (15)0.0199 (3)
N20.7070 (3)0.14347 (19)0.02827 (15)0.0208 (4)
N30.9247 (3)0.32489 (19)0.12657 (14)0.0226 (4)
N40.6763 (2)0.21581 (18)0.22815 (14)0.0191 (4)
N50.4849 (3)0.0950 (2)0.35585 (16)0.0274 (4)
C10.5382 (3)0.1054 (2)0.24156 (17)0.0180 (4)
C20.7654 (3)0.2216 (2)0.12635 (17)0.0183 (4)
C31.0568 (3)0.3188 (3)0.03008 (19)0.0301 (5)
H3A1.12460.22160.03000.045*
H3B1.16450.39610.04230.045*
H3C0.97010.33470.04690.045*
C41.0354 (3)0.3761 (2)0.24075 (19)0.0287 (5)
H4A0.93430.39020.29850.043*
H4B1.10580.47010.22850.043*
H4C1.14000.30210.27170.043*
H110.399 (5)0.056 (4)0.194 (3)0.080*
H120.784 (5)0.156 (3)0.023 (3)0.080*
H15A0.519 (5)0.174 (4)0.396 (3)0.080*
H15B0.378 (6)0.047 (4)0.363 (3)0.080*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni10.01645 (17)0.01617 (19)0.01637 (19)0.00273 (14)0.00321 (12)0.00093 (14)
N10.0190 (7)0.0204 (8)0.0208 (8)0.0047 (7)0.0042 (6)0.0008 (7)
N20.0224 (8)0.0228 (9)0.0180 (8)0.0048 (7)0.0056 (6)0.0019 (7)
N30.0223 (8)0.0274 (9)0.0188 (8)0.0091 (7)0.0061 (6)0.0028 (7)
N40.0188 (8)0.0185 (8)0.0203 (9)0.0005 (6)0.0041 (6)0.0025 (7)
N50.0318 (10)0.0295 (10)0.0230 (10)0.0092 (8)0.0115 (8)0.0061 (8)
C10.0166 (9)0.0191 (9)0.0186 (9)0.0031 (7)0.0036 (7)0.0004 (8)
C20.0161 (9)0.0150 (9)0.0238 (10)0.0006 (7)0.0023 (7)0.0020 (8)
C30.0290 (11)0.0330 (12)0.0303 (12)0.0123 (9)0.0118 (9)0.0048 (10)
C40.0237 (10)0.0364 (12)0.0253 (11)0.0131 (9)0.0006 (8)0.0033 (10)
Geometric parameters (Å, º) top
Ni1—N11.8480 (17)N4—C21.341 (2)
Ni1—N1i1.8480 (17)N4—C11.354 (2)
Ni1—N2i1.8543 (16)N5—C11.372 (2)
Ni1—N21.8543 (16)N5—H15A0.86 (3)
N1—C11.314 (2)N5—H15B0.83 (4)
N1—H110.83 (3)C3—H3A0.9800
N2—C21.324 (2)C3—H3B0.9800
N2—H120.81 (3)C3—H3C0.9800
N3—C21.383 (2)C4—H4A0.9800
N3—C31.457 (2)C4—H4B0.9800
N3—C41.463 (3)C4—H4C0.9800
N1i—Ni1—N1180.0N1—C1—N4127.12 (17)
N1i—Ni1—N291.18 (7)N1—C1—N5119.47 (18)
N1—Ni1—N288.82 (7)N4—C1—N5113.32 (17)
N1i—Ni1—N2i88.82 (7)N2—C2—N4125.66 (17)
N1—Ni1—N2i91.18 (7)N2—C2—N3119.64 (17)
N2—Ni1—N2i180.0N4—C2—N3114.63 (17)
C1—N1—Ni1128.60 (13)N3—C3—H3A109.5
C1—N1—H11108 (2)N3—C3—H3B109.5
Ni1—N1—H11124 (2)H3A—C3—H3B109.5
C2—N2—Ni1129.70 (14)N3—C3—H3C109.5
C2—N2—H12112 (2)H3A—C3—H3C109.5
Ni1—N2—H12118 (2)H3B—C3—H3C109.5
C2—N3—C3118.05 (17)N3—C4—H4A109.5
C2—N3—C4119.55 (16)N3—C4—H4B109.5
C3—N3—C4113.65 (17)H4A—C4—H4B109.5
C2—N4—C1118.46 (16)N3—C4—H4C109.5
C1—N5—H15A111 (2)H4A—C4—H4C109.5
C1—N5—H15B116 (3)H4B—C4—H4C109.5
H15A—N5—H15B123 (3)
N2i—Ni1—N1—C1168.71 (17)Ni1—N2—C2—N42.8 (3)
N2—Ni1—N1—C111.29 (17)Ni1—N2—C2—N3179.43 (14)
N1i—Ni1—N2—C2172.91 (18)C1—N4—C2—N211.5 (3)
N1—Ni1—N2—C27.09 (18)C1—N4—C2—N3171.65 (16)
N1i—Ni1—N2—C2172.91 (18)C3—N3—C2—N214.8 (3)
Ni1—N1—C1—N46.5 (3)C4—N3—C2—N2160.38 (18)
Ni1—N1—C1—N5177.29 (14)C3—N3—C2—N4168.15 (18)
C2—N4—C1—N17.0 (3)C4—N3—C2—N422.6 (3)
C2—N4—C1—N5169.45 (17)
Symmetry code: (i) x+1, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N5—H15A···N2ii0.86 (3)2.43 (3)3.269 (3)164 (3)
N1—H11···N4iii0.83 (3)2.31 (4)3.100 (2)159 (3)
Symmetry codes: (ii) x, y+1/2, z+1/2; (iii) x+1, y1/2, z+1/2.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds