Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
In the structure of the title compound, [CuBr2(C4H6N2)4], the copper(II) cations are coordinated by four 4-methyl­imidazole ligands and two bromide anions within a distorted octahedron. The Cu—Br distances are elongated due to Jahn–Teller distortion. The two crystallographically independent 4-methyl­imidazole ligands and the single independent Br are located in general positions, whereas the copper(II) cation is located on a centre of inversion. There are short N—H...Br contacts to the bromide ligands, indicating hydrogen bonding.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536802001629/bt6105sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536802001629/bt6105Isup2.hkl
Contains datablock I

CCDC reference: 180763

Key indicators

  • Single-crystal X-ray study
  • T = 293 K
  • Mean [sigma](C-C) = 0.005 Å
  • R factor = 0.038
  • wR factor = 0.104
  • Data-to-parameter ratio = 25.8

checkCIF results

No syntax errors found

GLOBAL _publ field problems



Red Alert Alert Level A:
PUBL_002 Alert A The contact author's address is missing, _publ_contact_author_address. ADDSYM reports no extra symmetry
Yellow Alert Alert Level C:
WEIGH_01 Alert C Extra text has been found in the _refine_ls_weighting_scheme field. This should be in the _refine_ls_weighting_details field. Weighting scheme given as calc w = 1/[\s^2^(Fo^2^)+(0.0461P)^2^+0.931 Weighting scheme identified as calc General Notes
ABSTM_02 The ratio of expected to reported Tmax/Tmin(RR') is < 0.90 Tmin and Tmax reported: 0.687 0.881 Tmin' and Tmax expected: 0.627 0.696 RR' = 0.865 Please check that your absorption correction is appropriate.
1 Alert Level A = Potentially serious problem
0 Alert Level B = Potential problem
1 Alert Level C = Please check

Computing details top

Data collection: SDP (Enraf-Nonius, 1985); cell refinement: SDP; data reduction: XCAD4 in SDP; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: XP in SHELXTL (Bruker, 1998); software used to prepare material for publication: CIFTAB in SHELXL97.

(I) top
Crystal data top
[CuBr2(C4H6N2)4]F(000) = 550
Mr = 551.79Dx = 1.626 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 8.2657 (9) ÅCell parameters from 78 reflections
b = 12.053 (1) Åθ = 10.0–17.5°
c = 11.338 (1) ŵ = 4.53 mm1
β = 94.06 (1)°T = 293 K
V = 1126.73 (18) Å3Block, blue
Z = 20.1 × 0.1 × 0.08 mm
Data collection top
Enraf-Nonius CAD-4
diffractometer
2136 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.039
Graphite monochromatorθmax = 30.1°, θmin = 2.5°
ω scansh = 011
Absorption correction: numerical
(X-SHAPE; Stoe & Cie, 1998)
k = 166
Tmin = 0.687, Tmax = 0.881l = 1515
5129 measured reflections3 standard reflections every 240 min
3300 independent reflections intensity decay: none
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.038Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.104H atoms treated by a mixture of independent and constrained refinement
S = 1.00Calculated w = 1/[σ2(Fo2) + (0.0461P)2 + 0.9319P]
where P = (Fo2 + 2Fc2)/3
3300 reflections(Δ/σ)max = 0.001
128 parametersΔρmax = 1.23 e Å3
0 restraintsΔρmin = 0.95 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Cu10.50000.50000.50000.04036 (16)
Br10.33099 (4)0.53646 (3)0.74605 (4)0.05020 (13)
N10.7068 (3)0.4539 (2)0.5916 (2)0.0372 (5)
C10.8428 (4)0.5093 (3)0.6033 (3)0.0417 (7)
H10.86070.57640.56590.050*
N20.9530 (3)0.4576 (2)0.6757 (3)0.0437 (6)
H21.05000.48020.69480.052*
C20.8843 (4)0.3628 (3)0.7139 (3)0.0455 (8)
C30.7326 (4)0.3607 (3)0.6611 (3)0.0462 (8)
H30.65690.30480.67030.055*
C40.9701 (6)0.2856 (4)0.8006 (5)0.0749 (14)
H4A1.07300.31690.82760.112*0.30 (6)
H4B0.98700.21560.76310.112*0.30 (6)
H4C0.90550.27480.86680.112*0.30 (6)
H4D0.90400.22130.81070.112*0.70 (6)
H4E0.99000.32260.87520.112*0.70 (6)
H4F1.07150.26340.77150.112*0.70 (6)
N30.5728 (3)0.6598 (2)0.5063 (2)0.0370 (6)
C110.5418 (4)0.7306 (3)0.5884 (3)0.0453 (8)
H110.48410.71400.65370.054*
N40.6040 (4)0.8307 (2)0.5666 (3)0.0480 (7)
H40.59660.88910.60950.058*
C120.6810 (4)0.8234 (3)0.4644 (3)0.0439 (8)
C130.6608 (4)0.7183 (3)0.4280 (3)0.0420 (7)
H130.70030.68900.35980.050*
C140.7616 (6)0.9219 (4)0.4144 (4)0.0701 (12)
H14A0.87020.90260.39730.105*0.57 (6)
H14B0.76480.98150.47070.105*0.57 (6)
H14C0.70180.94490.34290.105*0.57 (6)
H14D0.68760.98340.40990.105*0.43 (6)
H14E0.79310.90450.33660.105*0.43 (6)
H14F0.85610.94110.46430.105*0.43 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0383 (3)0.0265 (3)0.0536 (3)0.0072 (2)0.0157 (2)0.0029 (2)
Br10.04270 (19)0.0413 (2)0.0652 (2)0.00560 (14)0.00567 (15)0.01207 (16)
N10.0358 (12)0.0335 (14)0.0412 (14)0.0046 (11)0.0055 (10)0.0006 (11)
C10.0377 (16)0.0383 (17)0.0487 (18)0.0029 (13)0.0003 (13)0.0029 (14)
N20.0295 (12)0.0441 (16)0.0563 (17)0.0034 (11)0.0046 (11)0.0008 (13)
C20.0378 (16)0.0401 (18)0.057 (2)0.0005 (13)0.0094 (14)0.0030 (15)
C30.0389 (17)0.0377 (17)0.060 (2)0.0076 (13)0.0094 (15)0.0073 (15)
C40.058 (3)0.063 (3)0.099 (4)0.005 (2)0.029 (2)0.026 (2)
N30.0367 (13)0.0301 (13)0.0427 (15)0.0071 (10)0.0072 (11)0.0002 (11)
C110.051 (2)0.0389 (18)0.0470 (19)0.0088 (15)0.0070 (15)0.0018 (14)
N40.0564 (18)0.0332 (15)0.0542 (18)0.0072 (13)0.0028 (14)0.0083 (13)
C120.0436 (17)0.0371 (17)0.0495 (19)0.0079 (14)0.0074 (14)0.0060 (14)
C130.0491 (19)0.0389 (18)0.0377 (17)0.0058 (14)0.0007 (14)0.0004 (13)
C140.081 (3)0.054 (2)0.075 (3)0.026 (2)0.003 (2)0.018 (2)
Geometric parameters (Å, º) top
Cu1—N1i2.014 (3)C4—H4E0.9600
Cu1—N12.014 (3)C4—H4F0.9600
Cu1—N32.017 (2)N3—C111.302 (4)
Cu1—N3i2.017 (2)N3—C131.381 (4)
N1—C11.306 (4)C11—N41.341 (4)
N1—C31.381 (4)C11—H110.9300
C1—N21.337 (4)N4—C121.364 (5)
C1—H10.9300N4—H40.8600
N2—C21.360 (5)C12—C131.339 (5)
N2—H20.8600C12—C141.493 (5)
C2—C31.351 (4)C13—H130.9300
C2—C41.495 (5)C14—H14A0.9600
C3—H30.9300C14—H14B0.9600
C4—H4A0.9600C14—H14C0.9600
C4—H4B0.9600C14—H14D0.9600
C4—H4C0.9600C14—H14E0.9600
C4—H4D0.9600C14—H14F0.9600
N1i—Cu1—N1180.0H4C—C4—H4F141.1
N1i—Cu1—N389.70 (10)H4D—C4—H4F109.5
N1—Cu1—N390.30 (10)H4E—C4—H4F109.5
N1i—Cu1—N3i90.30 (10)C11—N3—C13105.3 (3)
N1—Cu1—N3i89.70 (10)C11—N3—Cu1125.3 (2)
N3—Cu1—N3i180.0C13—N3—Cu1129.4 (2)
C1—N1—C3105.1 (3)N3—C11—N4111.1 (3)
C1—N1—Cu1127.2 (2)N3—C11—H11124.4
C3—N1—Cu1127.6 (2)N4—C11—H11124.4
N1—C1—N2111.6 (3)C11—N4—C12107.8 (3)
N1—C1—H1124.2C11—N4—H4126.1
N2—C1—H1124.2C12—N4—H4126.1
C1—N2—C2107.8 (3)C13—C12—N4105.5 (3)
C1—N2—H2126.1C13—C12—C14133.2 (4)
C2—N2—H2126.1N4—C12—C14121.3 (3)
C3—C2—N2105.7 (3)C12—C13—N3110.2 (3)
C3—C2—C4131.4 (4)C12—C13—H13124.9
N2—C2—C4122.9 (3)N3—C13—H13124.9
C2—C3—N1109.8 (3)C12—C14—H14A109.5
C2—C3—H3125.1C12—C14—H14B109.5
N1—C3—H3125.1H14A—C14—H14B109.5
C2—C4—H4A109.5C12—C14—H14C109.5
C2—C4—H4B109.5H14A—C14—H14C109.5
H4A—C4—H4B109.5H14B—C14—H14C109.5
C2—C4—H4C109.5C12—C14—H14D109.5
H4A—C4—H4C109.5H14A—C14—H14D141.1
H4B—C4—H4C109.5H14B—C14—H14D56.3
C2—C4—H4D109.5H14C—C14—H14D56.3
H4A—C4—H4D141.1C12—C14—H14E109.5
H4B—C4—H4D56.3H14A—C14—H14E56.3
H4C—C4—H4D56.3H14B—C14—H14E141.1
C2—C4—H4E109.5H14C—C14—H14E56.3
H4A—C4—H4E56.3H14D—C14—H14E109.5
H4B—C4—H4E141.1C12—C14—H14F109.5
H4C—C4—H4E56.3H14A—C14—H14F56.3
H4D—C4—H4E109.5H14B—C14—H14F56.3
C2—C4—H4F109.5H14C—C14—H14F141.1
H4A—C4—H4F56.3H14D—C14—H14F109.5
H4B—C4—H4F56.3H14E—C14—H14F109.5
Symmetry code: (i) x+1, y+1, z+1.
 

Subscribe to Acta Crystallographica Section E: Crystallographic Communications

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds