Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
The title compound, C25H18Cl2N5O6P3, consists of a non-planar trimeric phosphazene ring, one bulky 2,2′-methyl­enebis(4-nitro­phenoxy) side group, two cis-Cl atoms and two geminal phenyl groups. The P—Cl bond lengths are 1.9930 (12) and 1.9970 (12) Å, while the P—N and P—O distances are 1.568 (3)–1.617 (3) and 1.594 (2)–1.604 (2) Å. The core bond angles Cl—P—N, Cl—P—O, P—N—P, N—P—N and N—P—O are 106.9 (1)–110.2 (1), 97.9 (1)–102.5 (1), 118.8 (2)—123.1 (2), 115.6 (1)-118.7 (2) and 106.4 (1)–111.2 (1)°, respectively. In the 2,2′-methyl­enebis(4-nitro­phenoxy) side group, the phenyl rings are almost perpendicular to each other.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536801017056/bt6084sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536801017056/bt6084Isup2.hkl
Contains datablock I

CCDC reference: 176019

Key indicators

  • Single-crystal X-ray study
  • T = 293 K
  • Mean [sigma](C-C) = 0.005 Å
  • R factor = 0.067
  • wR factor = 0.258
  • Data-to-parameter ratio = 14.5

checkCIF results

No syntax errors found

ADDSYM reports no extra symmetry


Yellow Alert Alert Level C:
DIFMN_02 Alert C The minimum difference density is < -0.1*ZMAX*0.75 _refine_diff_density_min given = -1.280 Test value = -1.275 DIFMN_03 Alert C The minimum difference density is < -0.1*ZMAX*0.75 The relevant atom site should be identified. DIFMX_01 Alert C The maximum difference density is > 0.1*ZMAX*0.75 _refine_diff_density_max given = 1.280 Test value = 1.275 DIFMX_02 Alert C The minimum difference density is > 0.1*ZMAX*0.75 The relevant atom site should be identified. RFACR_01 Alert C The value of the weighted R factor is > 0.25 Weighted R factor given 0.258
0 Alert Level A = Potentially serious problem
0 Alert Level B = Potential problem
5 Alert Level C = Please check

Comment top

We have previously investigated the reactions of sodium 2,2'-methylenebis-(4-nitrophenoxide) and hexachlorocyclotriphosphazatriene, N3P3Cl6. When equal amounts of the reactants were reacted, the reaction yields two different products, namely the cis-ansa and spiro-isomers (Hökelek, Akduran, Yıldız et al., 2000). The title compound, (I), is the first cis-ansa-cyclophosphazene derivative, and was obtained from the reaction of N3P3Ph2Cl4 and 2,2'-methylenebis(4-nitrophenoxide).

N3P3Cl6 is the starting material for the preparation of trimeric phosphazene. The crystal structures of N3P3Cl6 (Bullen, 1971) and a few of its derivatives with bulky phenoxy groups, such as Cl4N3P3[(OC6H3)(NO2)CH2(OC6H3)(NO2)], (II) (Hökelek, Akduran, Yıldız et al., 2000), [Cl5N3P3(OC6H2-2,6-tBu2-4-Me], (III) (Hökelek et al., 1999), [Cl5N3P3(OC6H2-2,4,6-tBu3)], (IV) (Kılıç et al., 1996), [N3P3(OC6H4OCH2Ph-4)6], (V) (Allcock et al., 1996), [Cl5N3P3—P3N3Cl4(OC6H3-2,6-tBu2)], (VI) (Hökelek et al., 1994), [N3P3Cl4(OC6H3Cl2-o)2], (VII), and [N3P3Cl4(OC6H3Me2-o)2], (VIII) (Allcock, Ngo et al., 1992), have been reported.

The study of cyclic phosphazenes has attracted great interest with respect to their synthetic, spectroscopic and unusual structural properties (Shaw, 1980; Fincham et al., 1986; Krishnamurty & Woods, 1987). The bulky phenoxy derivatives of N3P3Cl6 (tri-P) and N4P4Cl8 (tetra-P) have potential uses in the synthesis of small-molecule organocyclophosphazenes with inorganic backbones and aryloxy side groups (Olshavsky & Allcock, 1995; Hökelek & Kılıç, 1990). Structural studies of tri-P and tetra-P derivatives, e.g. [Cl5N3P3(OC6H2O-2,4,6-Me)], (IX) (Hökelek, Akduran, Begeç et al., 2000), [Cl5N3P3(OC6H2-2,6-tBu2-4-Me)], (X) (Hökelek et al., 1999), and [Cl7N4P4(OC6H2-2,6-tBu2-4-Me)], (XI) (Hökelek et al., 1996), have been the focus of interest by our group. These organocyclophosphazenes are also useful models for the related linear organopolyphosphazenes (Allcock, Dembek et al., 1992). The organic, inorganic or organometallic side groups are highly effective in determining the specific physical or chemical properties of polyphosphazenes (Allcock et al., 1996).

Aziridino, pyrrolidino, and primary and other secondary aminophosphazene derivatives are also useful as cancer chemotherapeutic agents (Chernov et al., 1959; van der Huizen, 1984). A close relationship has been observed between the structures of the cyclophosphazene derivatives and cytostatic activity (van der Huizen, 1984). The electron donating groups in the tri-P and tetra-P phosphazenes seem to be essential for effective tumour-growth inhibition.

Compound (I) was studied to understand the influence of the highly hindered 2,2'-methylenebis(4-nitrophenoxy) side groups on the structure of the cyclic trimeric phosphazene ring (Fig. 1). The structure consists of a non-planar trimeric phosphazene ring and 2,2'-methylenebis(4-nitrophenoxy) group, together with two cis-Cl atoms and two geminal phenyl groups attached to the P2, P3 and P1 atoms, respectively. The three N atoms are displaced on opposite sides, + and -, with respect to the plane through the P atoms as follows: N1 - 0.024 (3), N2 + 0.239 (3) and N3 + 0.154 (3) Å.

In trimeric and tetrameric phosphazenes, the P—N bond lengths may be correlated with the orbital electronegativities of groups of atoms (Bullen & Tucker, 1972). In such structures, the lengths of the P—N bonds depend on the electronegativities of the substituents. In (I), the Cl atoms and 2,2'-methylenebis(4-nitrophenoxy) groups are slightly electron withdrawing, thus, the P—Cl and P—O bonds do not change considerably. In a given N3P3R6 structure, the lengths of the P—N bonds are generally equal, provided all of the substituents (R) are the same. If R is a difunctional bulky substituent (Kubono et al., 1994) or contains different substituents, the P—N bonds may show significant variations (Fincham et al., 1986; Contractor et al., 1985). When electron-donating groups are present, different P—N distances in the cyclotri(phosphazene) ring can be expected. In (I), there is a distinct difference between the electronegativities of the atoms attached to the P atoms; the P—N bond distances vary from 1.568 (3) to 1.617 (3) Å [average 1.589 (3) Å], while in a similar compound, (II), the P—N bond lengths are from 1.574 (3)–1.581 (3) Å [average 1.577 (3) Å]. In phosphazene derivatives, the P—N single and double bonds are generally in the ranges 1.63–1.69 and 1.57–1.60 Å, respectively (Allen et al., 1987). In (I), the shorter P—N bonds have appreciable double-bond character (Wagner & Vos, 1968), e.g. in related compounds, the corresponding mean bond lengths are: 1.576 (3) Å in (II), 1.573 (3) Å in (III), 1.58 (1) Å in (IV), 1.576 (5) Å in (VI), 1.572 (3) Å in [N3P3Cl4Ph(PPh2)], (XII) (Allcock et al., 1990), and 1.581 (3) Å in the starting material (N3P3Cl6; Bullen, 1971). The P—Cl and P—O bonds are almost equal, with mean values of 1.995 (1) and 1.599 (2) Å, respectively.

The P—N—P bond angles range from 118.8 (2) to 123.1 (2)° and, in addition, the N—P—N bond angles vary between 115.6 (1) and 118.7 (2)°. The endocyclic N1—P1—N3 angle [115.6 (1)°] is decreased and the N1—P2—N2 [118.1 (2)] and N2—P3—N3 [118.7 (2)°] angles are not changed significantly. On the other hand, the endocyclic P1—N1—P2 angle [123.1 (2)°] is increased and the P2—N2—P3 [118.8 (2)] and P1—N3—P3 [120.6 (2)°] angles are decreased, while the exocyclic C14—P1—C20 [105.8 (1)] and O1—P3—Cl1 [102.5 (1)°] angles are increased and the O6—P2—Cl2 angle [97.9 (1)°] is decreased with respect to the values [118.3 (2), 121.4 (3) and 101.2 (1)°, respectively] in the 3P3Cl6 starting material (Bullen, 1971). The O1—P3—N3 [106.4 (1)°] angle is smaller than the other O—P—N bond angles. These variations in the endo- and exocyclic bond angles may be due to both the electronic and/or steric interactions (Kılıç et al., 1996).

The Cl—P—N, Cl—P—O and N—P—O bond angles are in the ranges 106.9 (1)–110.2 (1) [average 108.6 (1)°], 97.9 (1)–102.5 (1) [average 100.2 (1)°] and 106.4 (1)–111.2 (1)° [average 109.5 (1)°], compared with the corresponding values in compound (II) of 108.7 (1)–109.9 (2) [average 109.2 (1)°], 99.4 (1)–103.6 (1) [average 101.5 (1)°] and 109.9 (2)–110.4 (2)° [average 110.2 (2)°].

In trimeric phosphazenes, it has been observed that endocyclic N—P—N angles about P decrease while exocyclic R—P—Cl angles increase (Contractor et al., 1985; Fincham et al., 1986; Hökelek et al., 1994; Kılıç et al., 1996), which are different from the case found in tetrameric phosphazenes containing bulky phenoxy groups (Allcock, Dembek et al., 1992; Hökelek et al., 1996; Hökelek & Kılıç, 1990). In (I), the N—P—N angles are larger and the O—P—Cl angles are smaller than the corresponding angles in N3P3Cl5(NPPh3), (XIII) [114.4 (1) and 107.2 (1)°; Fincham et al., 1986], N3P3Cl4(NPPh3)2, (XIV) [109.2 (4) and 110.9 (4)°; Fincham et al., 1986], (XII) [114.5 (2) and 106.7 (1)°] and (III) [115.1 (1) and 106.79 (9)°], which implies less electron donation to the N3P3 ring.

Experimental top

2,2'-Methylenebis(4-nitrophenol) (10.0 g, 34.4 mmol) in tetrahydrofuran (THF, 100 ml) was added slowly over a period of 30 min to a solution of NaH (1.65 g, 6.88 mmol) in THF (50 ml) with stirring at 298 K, with argon being passed over the reaction mixture. The solvent was removed under reduced pressure and the residue was dried. The sodium phenoxide (1.00 g, 2.99 mmol) were dissolved in benzene (50 ml). To this mixture, N3P3Ph2Cl4 (1.08 g, 2.99 mmol) in benzene (100 ml) at 253 K was added slowly and the resulting solution allowed to come to ambient temperature with constant stirring. After the mixture had been vigorously stirred and boiled under reflux for 36 h, the precipitated salt (NaCl) was filtered off and the solvent removed in vacuo. The cis-ansa product was separated by column chromatography. The crude product was crystallized from CH3CN [yield 0.92 g, 47%; m.p. 407 K (decomposed)].

Computing details top

Data collection: CAD-4 EXPRESS (Enraf-Nonius, 1994); cell refinement: CAD-4 EXPRESS; data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. An ORTEPII (Johnson, 1976) drawing of the title molecule with the atom-numbering scheme. The displacement ellipsoids are drawn at the 50% probability level.
(I) top
Crystal data top
C25H18Cl2N5O6P3Z = 2
Mr = 648.25F(000) = 660
Triclinic, P1Dx = 1.583 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 9.9482 (10) ÅCell parameters from 25 reflections
b = 11.2184 (10) Åθ = 10–11°
c = 12.8536 (10) ŵ = 0.47 mm1
α = 97.702 (7)°T = 293 K
β = 105.515 (7)°Rod-shaped, colorless
γ = 94.503 (7)°0.30 × 0.15 × 0.15 mm
V = 1359.9 (2) Å3
Data collection top
Enraf-Nonius CAD-4
diffractometer
4666 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.000
Graphite monochromatorθmax = 26.3°, θmin = 2.1°
non–profiled ω scansh = 1211
Absorption correction: part of the refinement model (ΔF)
(Walker & Stuart, 1983)
k = 1313
Tmin = 0.873, Tmax = 0.933l = 016
5465 measured reflections3 standard reflections every 120 min
5465 independent reflections intensity decay: 3%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.067Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.258H atoms treated by a mixture of independent and constrained refinement
S = 1.22 w = 1/[σ2(Fo2) + (0.2P)2]
where P = (Fo2 + 2Fc2)/3
5465 reflections(Δ/σ)max < 0.001
378 parametersΔρmax = 1.28 e Å3
0 restraintsΔρmin = 1.28 e Å3
Crystal data top
C25H18Cl2N5O6P3γ = 94.503 (7)°
Mr = 648.25V = 1359.9 (2) Å3
Triclinic, P1Z = 2
a = 9.9482 (10) ÅMo Kα radiation
b = 11.2184 (10) ŵ = 0.47 mm1
c = 12.8536 (10) ÅT = 293 K
α = 97.702 (7)°0.30 × 0.15 × 0.15 mm
β = 105.515 (7)°
Data collection top
Enraf-Nonius CAD-4
diffractometer
4666 reflections with I > 2σ(I)
Absorption correction: part of the refinement model (ΔF)
(Walker & Stuart, 1983)
Rint = 0.000
Tmin = 0.873, Tmax = 0.9333 standard reflections every 120 min
5465 measured reflections intensity decay: 3%
5465 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0670 restraints
wR(F2) = 0.258H atoms treated by a mixture of independent and constrained refinement
S = 1.22Δρmax = 1.28 e Å3
5465 reflectionsΔρmin = 1.28 e Å3
378 parameters
Special details top

Experimental. The dihedral angles between the phenyl ring planes [A(C1—C6), B(C8—C13), C(C14—C19), D(C20—C25)] are A/B = 86.6 (1), A/C = 42.1 (1), A/D = 87.7 (1), B/C = 69.0 (1), B/D = 12.1 (1) and C/D =80.2 (1)°.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.00104 (9)0.06640 (7)0.20570 (8)0.0416 (3)
Cl20.10545 (10)0.22777 (10)0.59595 (7)0.0502 (3)
P10.33519 (7)0.23358 (7)0.35573 (6)0.0280 (3)
P20.11364 (8)0.26001 (8)0.44888 (6)0.0310 (3)
P30.07091 (7)0.10904 (7)0.25471 (6)0.0277 (3)
O10.0084 (2)0.1688 (2)0.15326 (19)0.0324 (5)
O60.0324 (2)0.3780 (2)0.44544 (18)0.0356 (5)
N10.2701 (3)0.2927 (3)0.4495 (2)0.0351 (6)
N20.0210 (3)0.1519 (3)0.3594 (2)0.0328 (6)
N30.2316 (3)0.1299 (3)0.2633 (2)0.0319 (6)
N40.5676 (3)0.1429 (4)0.0954 (3)0.0553 (9)
O20.6381 (3)0.2160 (4)0.0684 (4)0.0881 (13)
O30.6110 (4)0.0623 (5)0.1717 (4)0.1136 (19)
N50.0581 (4)0.6352 (3)0.1066 (3)0.0534 (9)
O40.0478 (4)0.6306 (4)0.0303 (3)0.0798 (11)
O50.1709 (4)0.6903 (4)0.1127 (4)0.0822 (12)
C10.1530 (3)0.1569 (3)0.0995 (3)0.0300 (7)
C20.2397 (3)0.2341 (3)0.1380 (3)0.0315 (7)
C30.3779 (3)0.2261 (3)0.0707 (3)0.0373 (7)
H30.44010.27560.09150.045*
C40.4217 (3)0.1458 (3)0.0253 (3)0.0381 (8)
C50.3364 (4)0.0674 (3)0.0610 (3)0.0411 (8)
H50.36970.01210.12540.049*
C60.1988 (3)0.0755 (3)0.0042 (3)0.0369 (7)
H60.13740.02530.01690.044*
C70.1968 (3)0.3207 (3)0.2451 (3)0.0343 (7)
C80.0712 (3)0.4141 (3)0.2616 (3)0.0319 (7)
C90.0640 (4)0.4816 (3)0.1789 (3)0.0390 (8)
H90.13480.46840.11310.047*
C100.0494 (4)0.5680 (3)0.1963 (3)0.0399 (8)
C110.1549 (4)0.5952 (3)0.2931 (3)0.0419 (8)
H110.22930.65490.30220.050*
C120.1472 (4)0.5314 (3)0.3761 (3)0.0410 (8)
H120.21610.54820.44300.049*
C130.0352 (3)0.4416 (3)0.3588 (3)0.0318 (7)
C140.4929 (3)0.1756 (3)0.4228 (3)0.0317 (7)
C150.5250 (4)0.1669 (3)0.5331 (3)0.0378 (7)
H150.46570.19360.57390.045*
C160.6454 (4)0.1184 (4)0.5826 (3)0.0494 (10)
H160.66650.11150.65640.059*
C170.7342 (4)0.0801 (3)0.5211 (4)0.0453 (9)
H170.81640.04970.55460.054*
C180.7021 (4)0.0866 (4)0.4113 (4)0.0501 (10)
H180.76150.05920.37080.060*
C190.5815 (3)0.1338 (3)0.3607 (3)0.0400 (8)
H190.55930.13780.28640.048*
C200.3899 (3)0.3516 (3)0.2879 (3)0.0316 (7)
C210.4966 (4)0.4433 (3)0.3478 (3)0.0399 (8)
H210.54010.44230.42130.048*
C220.5367 (5)0.5352 (4)0.2969 (4)0.0545 (10)
H220.60640.59730.33650.065*
C230.4730 (5)0.5349 (4)0.1867 (4)0.0562 (11)
H230.50150.59610.15230.067*
C240.3696 (5)0.4462 (4)0.1290 (4)0.0538 (10)
H240.32690.44730.05540.065*
C250.3266 (4)0.3539 (3)0.1784 (3)0.0391 (8)
H250.25540.29340.13820.047*
H710.271 (4)0.377 (3)0.254 (3)0.034 (9)*
H720.168 (4)0.285 (4)0.314 (4)0.043 (11)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0380 (5)0.0385 (5)0.0493 (5)0.0022 (3)0.0121 (4)0.0128 (4)
Cl20.0474 (6)0.0793 (7)0.0343 (5)0.0136 (5)0.0197 (4)0.0255 (4)
P10.0174 (4)0.0401 (5)0.0296 (5)0.0073 (3)0.0081 (3)0.0118 (3)
P20.0236 (4)0.0473 (5)0.0283 (5)0.0106 (3)0.0122 (3)0.0136 (4)
P30.0176 (4)0.0377 (5)0.0319 (5)0.0076 (3)0.0091 (3)0.0128 (3)
O10.0183 (10)0.0473 (13)0.0361 (12)0.0091 (9)0.0086 (9)0.0178 (10)
O60.0309 (12)0.0531 (14)0.0310 (12)0.0170 (10)0.0160 (9)0.0137 (10)
N10.0236 (13)0.0504 (17)0.0335 (14)0.0090 (11)0.0100 (10)0.0076 (12)
N20.0199 (12)0.0483 (16)0.0363 (14)0.0079 (10)0.0135 (10)0.0138 (12)
N30.0156 (12)0.0504 (16)0.0334 (14)0.0098 (10)0.0099 (10)0.0099 (12)
N40.0278 (16)0.075 (2)0.054 (2)0.0099 (15)0.0024 (14)0.0068 (18)
O20.0342 (16)0.103 (3)0.104 (3)0.0299 (18)0.0129 (17)0.010 (2)
O30.050 (2)0.168 (4)0.083 (3)0.034 (2)0.022 (2)0.045 (3)
N50.066 (2)0.0454 (19)0.057 (2)0.0124 (16)0.0205 (18)0.0252 (15)
O40.082 (2)0.092 (3)0.067 (2)0.010 (2)0.0061 (19)0.051 (2)
O50.080 (2)0.077 (2)0.101 (3)0.0044 (19)0.032 (2)0.051 (2)
C10.0203 (14)0.0390 (16)0.0347 (16)0.0051 (11)0.0088 (12)0.0168 (13)
C20.0212 (14)0.0398 (17)0.0374 (17)0.0067 (12)0.0087 (12)0.0166 (13)
C30.0203 (14)0.0472 (19)0.0483 (19)0.0099 (12)0.0101 (13)0.0170 (15)
C40.0207 (15)0.050 (2)0.0429 (19)0.0054 (13)0.0025 (13)0.0171 (15)
C50.0325 (17)0.051 (2)0.0379 (18)0.0035 (14)0.0066 (14)0.0081 (15)
C60.0276 (16)0.050 (2)0.0370 (17)0.0118 (13)0.0104 (13)0.0123 (14)
C70.0241 (15)0.0477 (19)0.0368 (18)0.0117 (13)0.0134 (13)0.0127 (14)
C80.0272 (15)0.0380 (17)0.0349 (16)0.0115 (12)0.0120 (12)0.0107 (13)
C90.0359 (18)0.0425 (18)0.0402 (18)0.0125 (14)0.0079 (14)0.0137 (14)
C100.0444 (19)0.0359 (18)0.048 (2)0.0136 (14)0.0210 (16)0.0158 (14)
C110.0377 (19)0.0354 (18)0.052 (2)0.0006 (14)0.0134 (16)0.0064 (15)
C120.0346 (17)0.0435 (19)0.0425 (19)0.0092 (14)0.0065 (14)0.0047 (14)
C130.0315 (15)0.0351 (16)0.0334 (16)0.0109 (12)0.0136 (13)0.0083 (12)
C140.0198 (14)0.0377 (17)0.0392 (17)0.0036 (11)0.0072 (12)0.0148 (13)
C150.0357 (17)0.0390 (18)0.0381 (18)0.0046 (13)0.0071 (14)0.0110 (14)
C160.047 (2)0.049 (2)0.045 (2)0.0021 (16)0.0072 (16)0.0242 (17)
C170.0273 (17)0.0420 (19)0.062 (2)0.0040 (14)0.0019 (15)0.0218 (17)
C180.0225 (16)0.060 (2)0.077 (3)0.0148 (15)0.0177 (17)0.031 (2)
C190.0223 (15)0.056 (2)0.048 (2)0.0100 (13)0.0115 (14)0.0241 (16)
C200.0232 (14)0.0381 (17)0.0380 (17)0.0078 (12)0.0122 (12)0.0116 (13)
C210.0309 (17)0.045 (2)0.0435 (19)0.0038 (14)0.0098 (14)0.0086 (15)
C220.046 (2)0.048 (2)0.075 (3)0.0006 (17)0.024 (2)0.016 (2)
C230.054 (2)0.052 (2)0.075 (3)0.0086 (18)0.028 (2)0.033 (2)
C240.060 (3)0.063 (3)0.049 (2)0.018 (2)0.0189 (19)0.034 (2)
C250.0363 (18)0.0472 (19)0.0364 (17)0.0080 (14)0.0097 (14)0.0148 (14)
Geometric parameters (Å, º) top
Cl1—P31.9970 (12)C7—H721.00 (4)
Cl2—P21.9930 (12)C8—C131.384 (5)
P1—N11.607 (3)C8—C91.399 (5)
P1—N31.617 (3)C9—C101.377 (5)
P1—C141.792 (3)C9—H90.9300
P1—C201.806 (3)C10—C111.375 (5)
P2—N11.568 (3)C11—C121.377 (5)
P2—N21.589 (3)C11—H110.9300
P2—O61.604 (2)C12—C131.392 (5)
P3—N31.569 (2)C12—H120.9300
P3—N21.585 (3)C14—C151.386 (5)
P3—O11.594 (2)C14—C191.405 (5)
O1—C11.407 (4)C15—C161.387 (5)
O6—C131.405 (4)C15—H150.9300
N4—O21.195 (5)C16—C171.391 (6)
N4—O31.201 (5)C16—H160.9300
N4—C41.485 (4)C17—C181.374 (6)
N5—O51.217 (5)C17—H170.9300
N5—O41.225 (5)C18—C191.384 (5)
N5—C101.476 (5)C18—H180.9300
C1—C61.370 (5)C19—H190.9300
C1—C21.404 (4)C20—C251.384 (5)
C2—C31.403 (4)C20—C211.398 (5)
C2—C71.512 (5)C21—C221.381 (5)
C3—C41.371 (5)C21—H210.9300
C3—H30.9300C22—C231.388 (7)
C4—C51.385 (5)C22—H220.9300
C5—C61.390 (5)C23—C241.354 (7)
C5—H50.9300C23—H230.9300
C6—H60.9300C24—C251.382 (5)
C7—C81.516 (5)C24—H240.9300
C7—H711.02 (4)C25—H250.9300
N1—P1—N3115.58 (14)C13—C8—C7122.6 (3)
N1—P1—C14107.18 (15)C9—C8—C7119.9 (3)
N3—P1—C14110.77 (14)C10—C9—C8119.1 (3)
N1—P1—C20109.11 (15)C10—C9—H9120.5
N3—P1—C20107.95 (15)C8—C9—H9120.5
C14—P1—C20105.82 (14)C11—C10—C9123.4 (3)
N1—P2—N2118.13 (15)C11—C10—N5118.2 (3)
N1—P2—O6110.74 (15)C9—C10—N5118.4 (4)
N2—P2—O6109.57 (13)C10—C11—C12118.1 (3)
N1—P2—Cl2110.16 (12)C10—C11—H11121.0
N2—P2—Cl2108.42 (11)C12—C11—H11121.0
O6—P2—Cl297.92 (9)C11—C12—C13119.2 (3)
N3—P3—N2118.71 (15)C11—C12—H12120.4
N3—P3—O1106.37 (13)C13—C12—H12120.4
N2—P3—O1111.16 (13)C8—C13—C12122.8 (3)
N3—P3—Cl1110.07 (11)C8—C13—O6119.9 (3)
N2—P3—Cl1106.87 (11)C12—C13—O6117.3 (3)
O1—P3—Cl1102.49 (10)C15—C14—C19119.9 (3)
C1—O1—P3128.84 (19)C15—C14—P1121.0 (3)
C13—O6—P2115.58 (19)C19—C14—P1119.0 (3)
P2—N1—P1123.14 (19)C14—C15—C16120.1 (4)
P3—N2—P2118.80 (16)C14—C15—H15119.9
P3—N3—P1120.64 (17)C16—C15—H15119.9
O2—N4—O3123.7 (4)C15—C16—C17119.4 (4)
O2—N4—C4118.2 (4)C15—C16—H16120.3
O3—N4—C4118.0 (4)C17—C16—H16120.3
O5—N5—O4124.1 (4)C18—C17—C16120.8 (3)
O5—N5—C10117.7 (4)C18—C17—H17119.6
O4—N5—C10118.2 (4)C16—C17—H17119.6
C6—C1—C2123.2 (3)C17—C18—C19120.2 (4)
C6—C1—O1116.3 (3)C17—C18—H18119.9
C2—C1—O1120.2 (3)C19—C18—H18119.9
C3—C2—C1115.8 (3)C18—C19—C14119.4 (4)
C3—C2—C7118.8 (3)C18—C19—H19120.3
C1—C2—C7125.4 (3)C14—C19—H19120.3
C4—C3—C2120.4 (3)C25—C20—C21119.6 (3)
C4—C3—H3119.8C25—C20—P1121.2 (3)
C2—C3—H3119.8C21—C20—P1119.2 (3)
C3—C4—C5123.4 (3)C22—C21—C20119.5 (4)
C3—C4—N4118.5 (3)C22—C21—H21120.3
C5—C4—N4118.2 (3)C20—C21—H21120.3
C4—C5—C6116.8 (3)C21—C22—C23119.9 (4)
C4—C5—H5121.6C21—C22—H22120.0
C6—C5—H5121.6C23—C22—H22120.0
C1—C6—C5120.4 (3)C24—C23—C22120.4 (4)
C1—C6—H6119.8C24—C23—H23119.8
C5—C6—H6119.8C22—C23—H23119.8
C2—C7—C8116.0 (3)C23—C24—C25120.7 (4)
C2—C7—H71113 (2)C23—C24—H24119.6
C8—C7—H71100 (2)C25—C24—H24119.6
C2—C7—H72118 (2)C24—C25—C20119.9 (3)
C8—C7—H72101 (2)C24—C25—H25120.1
H71—C7—H72107 (3)C20—C25—H25120.1
C13—C8—C9117.3 (3)
N3—P3—O1—C1167.7 (3)C13—C8—C9—C102.3 (5)
N2—P3—O1—C161.7 (3)C7—C8—C9—C10178.5 (3)
Cl1—P3—O1—C152.2 (3)C8—C9—C10—C112.5 (6)
N1—P2—O6—C1355.1 (3)C8—C9—C10—N5177.7 (3)
N2—P2—O6—C1376.9 (3)O5—N5—C10—C1116.4 (6)
Cl2—P2—O6—C13170.3 (2)O4—N5—C10—C11164.6 (4)
N2—P2—N1—P17.7 (3)O5—N5—C10—C9163.8 (4)
O6—P2—N1—P1119.7 (2)O4—N5—C10—C915.2 (6)
Cl2—P2—N1—P1133.03 (18)C9—C10—C11—C120.8 (6)
N3—P1—N1—P24.0 (3)N5—C10—C11—C12179.3 (3)
C14—P1—N1—P2128.1 (2)C10—C11—C12—C130.9 (5)
C20—P1—N1—P2117.8 (2)C9—C8—C13—C120.6 (5)
N3—P3—N2—P226.2 (3)C7—C8—C13—C12176.7 (3)
O1—P3—N2—P297.58 (19)C9—C8—C13—O6179.0 (3)
Cl1—P3—N2—P2151.34 (15)C7—C8—C13—O62.9 (5)
N1—P2—N2—P318.6 (3)C11—C12—C13—C81.0 (5)
O6—P2—N2—P3109.47 (18)C11—C12—C13—O6179.4 (3)
Cl2—P2—N2—P3144.72 (15)P2—O6—C13—C891.7 (3)
N2—P3—N3—P122.9 (3)P2—O6—C13—C1288.7 (3)
O1—P3—N3—P1103.29 (19)N1—P1—C14—C1511.4 (3)
Cl1—P3—N3—P1146.39 (15)N3—P1—C14—C15115.5 (3)
N1—P1—N3—P311.5 (3)C20—P1—C14—C15127.8 (3)
C14—P1—N3—P3133.65 (18)N1—P1—C14—C19171.3 (3)
C20—P1—N3—P3110.93 (19)N3—P1—C14—C1961.8 (3)
P3—O1—C1—C698.9 (3)C20—P1—C14—C1955.0 (3)
P3—O1—C1—C287.0 (3)C19—C14—C15—C160.8 (5)
C6—C1—C2—C31.9 (5)P1—C14—C15—C16178.0 (3)
O1—C1—C2—C3171.7 (3)C14—C15—C16—C170.8 (6)
C6—C1—C2—C7176.6 (3)C15—C16—C17—C181.9 (6)
O1—C1—C2—C79.8 (5)C16—C17—C18—C191.3 (6)
C1—C2—C3—C40.7 (5)C17—C18—C19—C140.4 (6)
C7—C2—C3—C4177.9 (3)C15—C14—C19—C181.4 (5)
C2—C3—C4—C51.3 (5)P1—C14—C19—C18178.7 (3)
C2—C3—C4—N4178.3 (3)N1—P1—C20—C25115.7 (3)
O2—N4—C4—C34.5 (6)N3—P1—C20—C2510.6 (3)
O3—N4—C4—C3170.5 (5)C14—P1—C20—C25129.2 (3)
O2—N4—C4—C5175.1 (4)N1—P1—C20—C2163.2 (3)
O3—N4—C4—C59.9 (7)N3—P1—C20—C21170.5 (3)
C3—C4—C5—C62.0 (6)C14—P1—C20—C2151.8 (3)
N4—C4—C5—C6177.6 (3)C25—C20—C21—C220.4 (5)
C2—C1—C6—C51.2 (5)P1—C20—C21—C22178.6 (3)
O1—C1—C6—C5172.7 (3)C20—C21—C22—C231.1 (6)
C4—C5—C6—C10.8 (5)C21—C22—C23—C241.3 (7)
C3—C2—C7—C8123.8 (3)C22—C23—C24—C250.6 (7)
C1—C2—C7—C857.7 (4)C23—C24—C25—C200.1 (6)
C2—C7—C8—C13135.8 (3)C21—C20—C25—C240.3 (5)
C2—C7—C8—C948.2 (4)P1—C20—C25—C24179.2 (3)

Experimental details

Crystal data
Chemical formulaC25H18Cl2N5O6P3
Mr648.25
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)9.9482 (10), 11.2184 (10), 12.8536 (10)
α, β, γ (°)97.702 (7), 105.515 (7), 94.503 (7)
V3)1359.9 (2)
Z2
Radiation typeMo Kα
µ (mm1)0.47
Crystal size (mm)0.30 × 0.15 × 0.15
Data collection
DiffractometerEnraf-Nonius CAD-4
diffractometer
Absorption correctionPart of the refinement model (ΔF)
(Walker & Stuart, 1983)
Tmin, Tmax0.873, 0.933
No. of measured, independent and
observed [I > 2σ(I)] reflections
5465, 5465, 4666
Rint0.000
(sin θ/λ)max1)0.623
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.067, 0.258, 1.22
No. of reflections5465
No. of parameters378
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)1.28, 1.28

Computer programs: CAD-4 EXPRESS (Enraf-Nonius, 1994), CAD-4 EXPRESS, XCAD4 (Harms & Wocadlo, 1995), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).

Selected geometric parameters (Å, º) top
Cl1—P31.9970 (12)P2—N21.589 (3)
Cl2—P21.9930 (12)P2—O61.604 (2)
P1—N11.607 (3)P3—N31.569 (2)
P1—N31.617 (3)P3—N21.585 (3)
P1—C141.792 (3)P3—O11.594 (2)
P1—C201.806 (3)O1—C11.407 (4)
P2—N11.568 (3)O6—C131.405 (4)
N1—P1—N3115.58 (14)N3—P3—N2118.71 (15)
N1—P1—C14107.18 (15)N3—P3—O1106.37 (13)
N3—P1—C14110.77 (14)N2—P3—O1111.16 (13)
N1—P1—C20109.11 (15)N3—P3—Cl1110.07 (11)
N3—P1—C20107.95 (15)N2—P3—Cl1106.87 (11)
C14—P1—C20105.82 (14)O1—P3—Cl1102.49 (10)
N1—P2—N2118.13 (15)C1—O1—P3128.84 (19)
N1—P2—O6110.74 (15)C13—O6—P2115.58 (19)
N2—P2—O6109.57 (13)P2—N1—P1123.14 (19)
N1—P2—Cl2110.16 (12)P3—N2—P2118.80 (16)
N2—P2—Cl2108.42 (11)P3—N3—P1120.64 (17)
O6—P2—Cl297.92 (9)
 

Subscribe to Acta Crystallographica Section E: Crystallographic Communications

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds