Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
The cations and anions in the title compound, C18H22BN2+·CF3SO3, are connected by intermolecular C—H...O hydrogen bonds, with H...O distances between 2.34 and 2.60 Å, into layers parallel to the bc plane.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536801013083/bt6072sup1.cif
Contains datablocks default, II

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536801013083/bt6072IIsup2.hkl
Contains datablock II

CCDC reference: 172208

Key indicators

  • Single-crystal X-ray study
  • T = 146 K
  • Mean [sigma](C-C) = 0.002 Å
  • R factor = 0.038
  • wR factor = 0.097
  • Data-to-parameter ratio = 26.5

checkCIF results

No syntax errors found

ADDSYM reports no extra symmetry


Yellow Alert Alert Level C:
REFLT_03 From the CIF: _diffrn_reflns_theta_max 34.00 From the CIF: _reflns_number_total 6966 TEST2: Reflns within _diffrn_reflns_theta_max Count of symmetry unique reflns 7657 Completeness (_total/calc) 90.98% Alert C: < 95% complete PLAT_030 Alert C Refined Extinction parameter within range .... 3.12 Sigma
0 Alert Level A = Potentially serious problem
0 Alert Level B = Potential problem
2 Alert Level C = Please check

Comment top

2,2'-Bipyridylboronium ions, [I]+, are structurally related to the electron-acceptor diquat, which possesses an ethylene bridge instead of the BRR' unit and behaves as perfectly reversible two-step redox system (see scheme). [I]+ exhibits a similar electrochemical behavior as diquat. The degree of reversibility of the two reduction processes, however, depends on the solvent employed, as well as on the nature of the substituents R and R' (Hünig & Wehner, 1989). Currently, we are exploring the potential of 2,2'-bipyridylboronium cations as acceptor units in electron transfer salts and as redox catalysts (Fabrizi de Biani et al., 1997; Ding, Ma, Fabrizi de Biani et al., 2001; Ding, Ma, Bolte et al., 2001). In contrast to diquat, [I]+ is convenient to derivatize and can easily be incorporated into a wide variety of molecular aggregates. To generate electrochemically stable acceptor molecules possessing high solubility in organic solvents, we are currently investigating 2,2'-bipyridylboronium salts with bulky organic substituents at the boron center. In this context, the title derivative, [II], appeared to be particularly well suited. The corresponding hexafluorophosphate salt has already been shown to possess the desired electrochemical properties (Hünig & Wehner, 1989). Structural information about this molecule, however, is lacking. We report here the results of an X-ray crystal structure analysis of the trifluoromethanesulfonate salt, [II] (Fig. 1).

The dimensions of the 9-borabicyclo[3.3.1]nonane group are comparable to those found in related structures (Brock et al., 1992; Fraenk et al., 1999; Yalpani et al., 1990; Wrackmeyer et al., 1995). The B—C bond lengths are 1.6150 (16) and 1.6188 (16) Å. The B—N bond lengths are 1.6125 (14) and 1.6136 (14) Å. The angle between the two pyridyl planes is 2.88 (5)°. The bipyridyl group is slightly tilted with respect to the 9-borabicyclo[3.3.1]nonane group; the angle between the plane through N1/C5/C6/N2 and the plane bisecting C11—B—C15 is 8.5 (1)°. This tilting may result from crystal-packing effects. The B atom lies 0.114 (2) Å outside the plane through N1/C5/C6/N2. The molecule shows three short intramolecular H···H contacts: H1···H12A 2.02 Å, H10···H18A 2.03 Å and H13A···H17A 2.04 Å. The crystal packing shows seven intermolecular C—H···O contacts with H···O distances between 2.34 and 2.60 Å. Each cation is connected by these C—H···O contacts to three neighbouring anions and in a similar way. each anion is connected to three neighbouring cations, resulting in hydrogen-bonded layers of cations and anions parallel to the yz plane (Fig. 2). These layers are connected in the a direction by two very long intermolecular C—H···F contacts with H···F distances of 2.73 and 2.80 Å. These contacts are very weak. As a result, the crystals can easily be split along [100].

Experimental top

A toluene solution of 2,2'-bipyridine (3.90 g, 25.0 mmol) was added dropwise with stirring at 195 K to a solution of 9-boroniumbicyclo[3.3.1]nonane trifluoromethanesulfonate (6.74 g, 25.0 mmol) in 50 ml of hexane. The white precipitate gradually formed upon warming to ambient temperature and the resulting slurry was stirred for another 2 h. The white solid material was collected on a frit, extracted three times with toluene (10 ml) and dried in vacuo. The yield was 9.69 g (91%) of [II], melting point 503 K. Colourless crystals suitable for the X-ray measurements were obtained by slow evaporation of a solution in acetonitril at ambient temperature.

Refinement top

The H atoms were refined with fixed individual displacement parameters [U(H) = 1.2Ueq(C)] using a riding model with fixed distances: H—C(primary) = 1.00 Å, H—C(secondary) = 0.99 Å and H—C(aromatic) = 0.95 Å.

Computing details top

Data collection: SMART (Siemens, 1995); cell refinement: SMART; data reduction: SAINT (Siemens, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: XP in SHELXTL (Sheldrick, 1996); software used to prepare material for publication: SHELXL97.

Figures top
[Figure 1] Fig. 1. The structure of [II] with 50% probability displacement ellipsoids.
[Figure 2] Fig. 2. A layer of [II] with 0 < x < 0.5 viewed down a. Intermolecular C—H···O interactions are shown as dotted lines.
2,2'-bipyridyl-9-boroniumbicyclo[3.3.1]nonane trifluoromethanesulfonate top
Crystal data top
C18H22BN2+·CF3O3SZ = 2
Mr = 426.26F(000) = 444
Triclinic, P1Dx = 1.511 Mg m3
a = 9.2198 (19) ÅMo Kα radiation, λ = 0.71073 Å
b = 10.3158 (14) ÅCell parameters from 211 reflections
c = 10.7956 (11) Åθ = 3–23°
α = 112.511 (9)°µ = 0.23 mm1
β = 96.598 (10)°T = 146 K
γ = 93.007 (10)°Rod, colourless
V = 937.0 (3) Å30.50 × 0.28 × 0.27 mm
Data collection top
Siemens SMART CCD
diffractometer
6966 independent reflections
Radiation source: normal-focus sealed tube5659 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.029
ω scansθmax = 34.0°, θmin = 2.1°
Absorption correction: numerical
(SHELXTL; Sheldrick, 1996)
h = 1314
Tmin = 0.907, Tmax = 0.946k = 1616
21094 measured reflectionsl = 1616
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.038H-atom parameters constrained
wR(F2) = 0.098 w = 1/[σ2(Fo2) + (0.04P)2 + 0.3P]
where P = (Fo2 + 2Fc2)/3
S = 1.09(Δ/σ)max = 0.001
6966 reflectionsΔρmax = 0.46 e Å3
263 parametersΔρmin = 0.43 e Å3
0 restraintsExtinction correction: SHELXL97, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0050 (16)
Crystal data top
C18H22BN2+·CF3O3Sγ = 93.007 (10)°
Mr = 426.26V = 937.0 (3) Å3
Triclinic, P1Z = 2
a = 9.2198 (19) ÅMo Kα radiation
b = 10.3158 (14) ŵ = 0.23 mm1
c = 10.7956 (11) ÅT = 146 K
α = 112.511 (9)°0.50 × 0.28 × 0.27 mm
β = 96.598 (10)°
Data collection top
Siemens SMART CCD
diffractometer
6966 independent reflections
Absorption correction: numerical
(SHELXTL; Sheldrick, 1996)
5659 reflections with I > 2σ(I)
Tmin = 0.907, Tmax = 0.946Rint = 0.029
21094 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0380 restraints
wR(F2) = 0.098H-atom parameters constrained
S = 1.09Δρmax = 0.46 e Å3
6966 reflectionsΔρmin = 0.43 e Å3
263 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S0.28394 (3)0.10353 (3)0.37175 (2)0.01749 (7)
F10.03745 (9)0.02535 (10)0.20239 (8)0.0376 (2)
F20.01180 (9)0.14961 (9)0.40925 (8)0.03575 (19)
F30.05361 (9)0.06772 (9)0.35077 (10)0.0403 (2)
O10.34394 (9)0.01788 (9)0.28190 (9)0.02628 (18)
O20.29850 (11)0.22755 (9)0.34096 (9)0.02922 (19)
O30.31605 (9)0.13000 (9)0.51371 (8)0.02438 (17)
N10.28336 (10)0.85522 (9)0.84367 (9)0.01741 (16)
N20.29379 (10)0.66711 (9)0.63222 (9)0.01736 (16)
C10.27764 (13)0.94595 (11)0.97175 (11)0.0218 (2)
H10.26190.90991.03850.026*
C20.29428 (13)1.09040 (12)1.00780 (11)0.0229 (2)
H20.29011.15281.09850.027*
C30.31713 (13)1.14347 (11)0.91042 (11)0.0218 (2)
H30.32631.24240.93360.026*
C40.32648 (12)1.05147 (11)0.77939 (11)0.01944 (19)
H40.34391.08560.71170.023*
C50.30970 (11)0.90808 (11)0.75019 (10)0.01614 (18)
C60.31666 (11)0.79326 (11)0.62118 (10)0.01614 (18)
C70.34425 (12)0.80496 (12)0.50243 (10)0.01906 (19)
H70.35830.89470.49760.023*
C80.35079 (12)0.68192 (12)0.39057 (11)0.0213 (2)
H80.36970.68590.30740.026*
C90.32936 (13)0.55266 (12)0.40171 (11)0.0227 (2)
H90.33490.46760.32620.027*
C100.30001 (13)0.54798 (11)0.52281 (11)0.0211 (2)
H100.28390.45910.52910.025*
C110.35686 (11)0.60931 (11)0.85809 (10)0.01821 (19)
H110.46230.64080.86170.022*
C120.32218 (12)0.65299 (12)1.00477 (11)0.0219 (2)
H12A0.36790.75061.05850.026*
H12B0.36990.59111.04440.026*
C130.15756 (13)0.64706 (13)1.02178 (12)0.0240 (2)
H13A0.12570.55131.01540.029*
H13B0.14840.71401.11440.029*
C140.04999 (13)0.68084 (12)0.92023 (12)0.0227 (2)
H14A0.04950.63770.91730.027*
H14B0.04690.78430.95510.027*
C150.08620 (12)0.63007 (11)0.77404 (11)0.01934 (19)
H150.02140.67260.72230.023*
C160.06209 (12)0.46784 (12)0.70004 (12)0.0228 (2)
H16A0.03900.43560.70590.027*
H16B0.06930.44310.60300.027*
C170.16958 (13)0.38617 (11)0.75413 (12)0.0227 (2)
H17A0.14110.38490.83940.027*
H17B0.16040.28730.68760.027*
C180.33086 (12)0.44787 (11)0.78146 (11)0.0205 (2)
H18A0.36830.42230.69370.025*
H18B0.38880.40360.83470.025*
C190.08665 (13)0.04982 (13)0.33230 (12)0.0243 (2)
B0.25542 (13)0.68520 (12)0.77959 (11)0.0173 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S0.02033 (12)0.01653 (11)0.01514 (11)0.00096 (8)0.00277 (8)0.00576 (9)
F10.0285 (4)0.0526 (5)0.0231 (4)0.0030 (3)0.0050 (3)0.0080 (3)
F20.0262 (4)0.0459 (5)0.0323 (4)0.0149 (3)0.0085 (3)0.0097 (4)
F30.0342 (4)0.0343 (4)0.0538 (5)0.0090 (3)0.0073 (4)0.0199 (4)
O10.0263 (4)0.0250 (4)0.0232 (4)0.0069 (3)0.0065 (3)0.0033 (3)
O20.0419 (5)0.0211 (4)0.0271 (4)0.0020 (3)0.0047 (4)0.0130 (3)
O30.0289 (4)0.0274 (4)0.0159 (3)0.0019 (3)0.0016 (3)0.0081 (3)
N10.0208 (4)0.0160 (4)0.0159 (4)0.0001 (3)0.0040 (3)0.0067 (3)
N20.0185 (4)0.0168 (4)0.0169 (4)0.0010 (3)0.0029 (3)0.0067 (3)
C10.0303 (6)0.0190 (5)0.0167 (4)0.0001 (4)0.0055 (4)0.0075 (4)
C20.0315 (6)0.0176 (5)0.0176 (4)0.0003 (4)0.0048 (4)0.0049 (4)
C30.0276 (5)0.0161 (4)0.0208 (5)0.0006 (4)0.0029 (4)0.0068 (4)
C40.0226 (5)0.0178 (4)0.0191 (4)0.0001 (4)0.0030 (4)0.0088 (4)
C50.0160 (4)0.0174 (4)0.0158 (4)0.0005 (3)0.0025 (3)0.0075 (3)
C60.0148 (4)0.0180 (4)0.0160 (4)0.0009 (3)0.0024 (3)0.0073 (4)
C70.0185 (5)0.0224 (5)0.0183 (4)0.0022 (4)0.0035 (4)0.0099 (4)
C80.0217 (5)0.0263 (5)0.0167 (4)0.0035 (4)0.0044 (4)0.0087 (4)
C90.0249 (5)0.0239 (5)0.0167 (4)0.0041 (4)0.0037 (4)0.0047 (4)
C100.0250 (5)0.0178 (4)0.0188 (5)0.0017 (4)0.0024 (4)0.0056 (4)
C110.0167 (4)0.0189 (4)0.0197 (4)0.0003 (3)0.0019 (3)0.0089 (4)
C120.0250 (5)0.0225 (5)0.0190 (5)0.0010 (4)0.0014 (4)0.0097 (4)
C130.0275 (6)0.0254 (5)0.0220 (5)0.0011 (4)0.0071 (4)0.0115 (4)
C140.0219 (5)0.0222 (5)0.0273 (5)0.0032 (4)0.0084 (4)0.0118 (4)
C150.0187 (5)0.0189 (4)0.0224 (5)0.0022 (3)0.0027 (4)0.0103 (4)
C160.0184 (5)0.0210 (5)0.0269 (5)0.0022 (4)0.0000 (4)0.0087 (4)
C170.0231 (5)0.0163 (4)0.0288 (5)0.0002 (4)0.0039 (4)0.0091 (4)
C180.0197 (5)0.0190 (5)0.0243 (5)0.0038 (4)0.0031 (4)0.0098 (4)
C190.0224 (5)0.0261 (5)0.0222 (5)0.0024 (4)0.0026 (4)0.0073 (4)
B0.0219 (5)0.0144 (5)0.0162 (5)0.0006 (4)0.0040 (4)0.0063 (4)
Geometric parameters (Å, º) top
S—O31.4414 (8)C9—C101.3830 (15)
S—O11.4427 (9)C9—H90.9500
S—O21.4432 (9)C10—H100.9500
S—C191.8255 (13)C11—C181.5404 (15)
F1—C191.3443 (14)C11—C121.5485 (15)
F2—C191.3332 (14)C11—B1.6150 (16)
F3—C191.3279 (14)C11—H111.0000
N1—C11.3497 (14)C12—C131.5505 (17)
N1—C51.3560 (13)C12—H12A0.9900
N1—B1.6136 (14)C12—H12B0.9900
N2—C101.3492 (14)C13—C141.5446 (17)
N2—C61.3593 (13)C13—H13A0.9900
N2—B1.6125 (14)C13—H13B0.9900
C1—C21.3833 (15)C14—C151.5437 (16)
C1—H10.9500C14—H14A0.9900
C2—C31.3888 (16)C14—H14B0.9900
C2—H20.9500C15—C161.5442 (15)
C3—C41.3849 (15)C15—B1.6188 (16)
C3—H30.9500C15—H151.0000
C4—C51.3852 (14)C16—C171.5376 (16)
C4—H40.9500C16—H16A0.9900
C5—C61.4533 (14)C16—H16B0.9900
C6—C71.3832 (14)C17—C181.5361 (16)
C7—C81.3871 (15)C17—H17A0.9900
C7—H70.9500C17—H17B0.9900
C8—C91.3900 (16)C18—H18A0.9900
C8—H80.9500C18—H18B0.9900
O3—S—O1115.08 (5)C11—C12—H12B108.2
O3—S—O2114.73 (5)C13—C12—H12B108.2
O1—S—O2115.07 (6)H12A—C12—H12B107.3
O3—S—C19103.26 (5)C14—C13—C12116.99 (9)
O1—S—C19102.91 (6)C14—C13—H13A108.1
O2—S—C19103.39 (6)C12—C13—H13A108.1
C1—N1—C5118.74 (9)C14—C13—H13B108.1
C1—N1—B128.76 (9)C12—C13—H13B108.1
C5—N1—B112.44 (8)H13A—C13—H13B107.3
C10—N2—C6118.49 (9)C15—C14—C13115.76 (9)
C10—N2—B129.29 (9)C15—C14—H14A108.3
C6—N2—B112.16 (8)C13—C14—H14A108.3
N1—C1—C2121.34 (10)C15—C14—H14B108.3
N1—C1—H1119.3C13—C14—H14B108.3
C2—C1—H1119.3H14A—C14—H14B107.4
C1—C2—C3119.48 (10)C14—C15—C16112.32 (9)
C1—C2—H2120.3C14—C15—B108.61 (9)
C3—C2—H2120.3C16—C15—B109.77 (9)
C4—C3—C2119.70 (10)C14—C15—H15108.7
C4—C3—H3120.2C16—C15—H15108.7
C2—C3—H3120.2B—C15—H15108.7
C3—C4—C5117.90 (10)C17—C16—C15115.51 (9)
C3—C4—H4121.0C17—C16—H16A108.4
C5—C4—H4121.0C15—C16—H16A108.4
N1—C5—C4122.80 (10)C17—C16—H16B108.4
N1—C5—C6109.81 (9)C15—C16—H16B108.4
C4—C5—C6127.39 (9)H16A—C16—H16B107.5
N2—C6—C7122.99 (9)C18—C17—C16114.03 (9)
N2—C6—C5110.10 (9)C18—C17—H17A108.7
C7—C6—C5126.91 (9)C16—C17—H17A108.7
C6—C7—C8118.10 (10)C18—C17—H17B108.7
C6—C7—H7121.0C16—C17—H17B108.7
C8—C7—H7121.0H17A—C17—H17B107.6
C7—C8—C9119.18 (10)C17—C18—C11114.56 (9)
C7—C8—H8120.4C17—C18—H18A108.6
C9—C8—H8120.4C11—C18—H18A108.6
C10—C9—C8119.91 (10)C17—C18—H18B108.6
C10—C9—H9120.0C11—C18—H18B108.6
C8—C9—H9120.0H18A—C18—H18B107.6
N2—C10—C9121.31 (10)F3—C19—F2108.03 (10)
N2—C10—H10119.3F3—C19—F1107.56 (10)
C9—C10—H10119.3F2—C19—F1107.25 (10)
C18—C11—C12110.63 (9)F3—C19—S111.48 (8)
C18—C11—B110.10 (8)F2—C19—S111.53 (8)
C12—C11—B109.73 (9)F1—C19—S110.79 (8)
C18—C11—H11108.8N2—B—N195.07 (7)
C12—C11—H11108.8N2—B—C11115.65 (9)
B—C11—H11108.8N1—B—C11114.54 (8)
C11—C12—C13116.51 (9)N2—B—C15112.26 (8)
C11—C12—H12A108.2N1—B—C15111.87 (9)
C13—C12—H12A108.2C11—B—C15107.27 (8)
C5—N1—C1—C21.68 (17)C12—C11—C18—C1767.01 (12)
B—N1—C1—C2175.24 (11)B—C11—C18—C1754.45 (12)
N1—C1—C2—C30.10 (18)O3—S—C19—F362.31 (9)
C1—C2—C3—C41.54 (18)O1—S—C19—F357.74 (10)
C2—C3—C4—C51.16 (17)O2—S—C19—F3177.83 (8)
C1—N1—C5—C42.09 (16)O3—S—C19—F258.55 (9)
B—N1—C5—C4175.31 (9)O1—S—C19—F2178.59 (8)
C1—N1—C5—C6177.92 (9)O2—S—C19—F261.32 (10)
B—N1—C5—C64.67 (12)O3—S—C19—F1177.94 (8)
C3—C4—C5—N10.67 (16)O1—S—C19—F162.02 (10)
C3—C4—C5—C6179.35 (10)O2—S—C19—F158.07 (9)
C10—N2—C6—C70.81 (15)C10—N2—B—N1176.76 (10)
B—N2—C6—C7176.80 (9)C6—N2—B—N15.95 (10)
C10—N2—C6—C5178.34 (9)C10—N2—B—C1156.42 (14)
B—N2—C6—C54.05 (11)C6—N2—B—C11126.29 (9)
N1—C5—C6—N20.39 (12)C10—N2—B—C1567.11 (14)
C4—C5—C6—N2179.59 (10)C6—N2—B—C15110.18 (10)
N1—C5—C6—C7178.71 (10)C1—N1—B—N2176.71 (10)
C4—C5—C6—C71.30 (18)C5—N1—B—N26.21 (10)
N2—C6—C7—C80.96 (16)C1—N1—B—C1155.49 (15)
C5—C6—C7—C8178.04 (10)C5—N1—B—C11127.43 (10)
C6—C7—C8—C90.11 (16)C1—N1—B—C1566.84 (14)
C7—C8—C9—C100.85 (16)C5—N1—B—C15110.23 (10)
C6—N2—C10—C90.20 (16)C18—C11—B—N265.97 (11)
B—N2—C10—C9177.35 (10)C12—C11—B—N2172.04 (8)
C8—C9—C10—N21.03 (17)C18—C11—B—N1175.06 (8)
C18—C11—C12—C1375.09 (12)C12—C11—B—N162.95 (11)
B—C11—C12—C1346.58 (12)C18—C11—B—C1560.14 (11)
C11—C12—C13—C1433.03 (14)C12—C11—B—C1561.85 (11)
C12—C13—C14—C1535.72 (14)C14—C15—B—N2167.59 (8)
C13—C14—C15—C1670.04 (12)C16—C15—B—N269.26 (11)
C13—C14—C15—B51.57 (12)C14—C15—B—N162.09 (11)
C14—C15—C16—C1768.37 (13)C16—C15—B—N1174.76 (8)
B—C15—C16—C1752.57 (13)C14—C15—B—C1164.31 (11)
C15—C16—C17—C1845.03 (14)C16—C15—B—C1158.84 (11)
C16—C17—C18—C1145.66 (13)

Experimental details

Crystal data
Chemical formulaC18H22BN2+·CF3O3S
Mr426.26
Crystal system, space groupTriclinic, P1
Temperature (K)146
a, b, c (Å)9.2198 (19), 10.3158 (14), 10.7956 (11)
α, β, γ (°)112.511 (9), 96.598 (10), 93.007 (10)
V3)937.0 (3)
Z2
Radiation typeMo Kα
µ (mm1)0.23
Crystal size (mm)0.50 × 0.28 × 0.27
Data collection
DiffractometerSiemens SMART CCD
diffractometer
Absorption correctionNumerical
(SHELXTL; Sheldrick, 1996)
Tmin, Tmax0.907, 0.946
No. of measured, independent and
observed [I > 2σ(I)] reflections
21094, 6966, 5659
Rint0.029
(sin θ/λ)max1)0.787
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.098, 1.09
No. of reflections6966
No. of parameters263
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.46, 0.43

Computer programs: SMART (Siemens, 1995), SMART, SAINT (Siemens, 1995), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), XP in SHELXTL (Sheldrick, 1996), SHELXL97.

 

Subscribe to Acta Crystallographica Section E: Crystallographic Communications

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds