Download citation
Download citation
link to html
The title compound, C12H19OP4, with a bulky group, exhibits one-dimensional hydrogen-bonded chains of bifurcated P—OH...O=P interactions. This one-dimensional chain structure with double P—OH...O=P hydrogen bonds is induced by the bulky iso­propyl groups.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S160053680101635X/bt6070sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S160053680101635X/bt6070Isup2.hkl
Contains datablock I

CCDC reference: 176002

Key indicators

  • Single-crystal X-ray study
  • T = 296 K
  • Mean [sigma](C-C) = 0.006 Å
  • R factor = 0.035
  • wR factor = 0.106
  • Data-to-parameter ratio = 14.2

checkCIF results

No syntax errors found

ADDSYM reports no extra symmetry General Notes
REFLT_03 From the CIF: _diffrn_reflns_theta_max 30.00 From the CIF: _reflns_number_total 2219 Count of symmetry unique reflns 2221 Completeness (_total/calc) 99.91% TEST3: Check Friedels for noncentro structure Estimate of Friedel pairs measured 0 Fraction of Friedel pairs measured 0.000 Are heavy atom types Z>Si present yes WARNING: Large fraction of Friedel related reflns may be needed to determine absolute structure

Comment top

Phosphate groups are attractive molecular building blocks in crystal engineering to form hydrogen-bond networks (Krishnamohan Sharma & Clearfield, 2000). Our attention has been focused on the control of crystal structures through the P—OH···OP hydrogen bond using a bulky phosphate compound. The title compound (Kosolapoff et al., 1968), (I), has a P1—O1—C1—C2 torsion angle of -97.2 (2)°. The O3 and O4 atoms form P—OH···OP hydrogen bonds with O2, which is an acceptor of bifurcated hydrogen bonds formed by the two neighbouring ligands. Thus, the title compound forms a one-dimensional chain.

Most of the reported hydrogen-bond networks in the dihydrogen phosphate or phosphonate state are characterized by single P—OH···OP hydrogen bonds (Weakly, 1976; Calvo & Berg, 1984; Tkachev et al., 1986). Only a few double P—OH···OP hydrogen-bond structures have been reported: o-hydroxyphenoxymethylphosphonic acid (Choi et al., 1994) and N-phenyl-1-methylamido-benzylphosphonic acid (Ignat'eva et al., 1989). The bulky isopropyl groups interrupt the formation of inter-column hydrogen bonds. Both of the P—OH atoms interact with intra-column phosphate O atoms. Thus, a one-dimensional chain structure with double P—OH···OP hydrogen bonds is induced by the bulky isopropyl groups.

Experimental top

The title compound was synthesized according to literature methods (Kosolapoff et al., 1968). The product was recrystallized from chloroform.

Refinement top

The torsion angles about the PO bonds of the two hydroxyl groups were refined.

Computing details top

Data collection: MSC/AFC Diffractometer Control Software (Molecular Structure Corporation, 1991); cell refinement: MSC/AFC Diffractometer Control Software; data reduction: TEXSAN (Molecular Structure Corporation, 1999); program(s) used to solve structure: SHELXS97 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: TEXSAN; software used to prepare material for publication: TEXSAN.

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound.
[Figure 2] Fig. 2. A view of the one-dimensional P—OH···O—P hydrogen bonds.
2,6-Diisopropylbenzene dihydrogen phosphate top
Crystal data top
C12H19O4PF(000) = 276
Mr = 258.24Dx = 1.217 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71069 Å
a = 10.0298 (15) ÅCell parameters from 25 reflections
b = 6.3718 (15) Åθ = 14.7–15.0°
c = 11.2238 (14) ŵ = 0.20 mm1
β = 100.685 (11)°T = 296 K
V = 704.9 (2) Å3Prismatic, colorless
Z = 20.30 × 0.20 × 0.20 mm
Data collection top
Rigaku AFC-5R
diffractometer
Rint = 0.014
Radiation source: fine-focus sealed tubeθmax = 30.0°, θmin = 2.5°
Graphite monochromatorh = 014
ω–2θ scansk = 80
2329 measured reflectionsl = 1515
2219 independent reflections3 standard reflections every 150 reflections
1627 reflections with I > 2σ(I) intensity decay: 0.7%
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.035H-atom parameters constrained
wR(F2) = 0.106 w = 1/[σ2(Fo2) + (0.0527P)2 + 0.1189P]
where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max < 0.001
2219 reflectionsΔρmax = 0.24 e Å3
156 parametersΔρmin = 0.25 e Å3
1 restraintAbsolute structure: Flack (1983)
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.11 (15)
Crystal data top
C12H19O4PV = 704.9 (2) Å3
Mr = 258.24Z = 2
Monoclinic, P21Mo Kα radiation
a = 10.0298 (15) ŵ = 0.20 mm1
b = 6.3718 (15) ÅT = 296 K
c = 11.2238 (14) Å0.30 × 0.20 × 0.20 mm
β = 100.685 (11)°
Data collection top
Rigaku AFC-5R
diffractometer
Rint = 0.014
2329 measured reflections3 standard reflections every 150 reflections
2219 independent reflections intensity decay: 0.7%
1627 reflections with I > 2σ(I)
Refinement top
R[F2 > 2σ(F2)] = 0.035H-atom parameters constrained
wR(F2) = 0.106Δρmax = 0.24 e Å3
S = 1.02Δρmin = 0.25 e Å3
2219 reflectionsAbsolute structure: Flack (1983)
156 parametersAbsolute structure parameter: 0.11 (15)
1 restraint
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
P10.12980 (6)0.50000 (10)0.02135 (6)0.03514 (14)
O10.24004 (17)0.3911 (3)0.11897 (16)0.0402 (4)
O20.1299 (2)0.3641 (4)0.09264 (16)0.0459 (5)
H10.09220.25200.08530.055*
O30.00615 (15)0.5133 (4)0.05675 (15)0.0393 (4)
O40.18713 (18)0.7165 (3)0.0045 (2)0.0495 (5)
H20.12430.79800.02720.059*
C10.2765 (3)0.4642 (5)0.2409 (2)0.0426 (7)
C20.3916 (3)0.5918 (6)0.2681 (3)0.0534 (7)
C30.4267 (4)0.6547 (7)0.3889 (3)0.0722 (11)
H30.50320.73820.41230.087*
C40.3524 (4)0.5976 (9)0.4740 (3)0.0772 (12)
H40.37600.64770.55290.093*
C50.2430 (4)0.4666 (8)0.4432 (3)0.0683 (11)
H50.19470.42650.50260.082*
C60.2021 (3)0.3919 (5)0.3256 (3)0.0489 (7)
C70.0894 (3)0.2318 (6)0.2952 (3)0.0557 (8)
H60.06960.21650.20680.067*
C80.1357 (5)0.0171 (9)0.3487 (4)0.0913 (13)
H70.21260.02940.31600.110*
H80.06310.08210.32830.110*
H90.16050.02830.43530.110*
C90.0412 (4)0.3002 (11)0.3344 (4)0.0979 (17)
H100.02440.32250.42050.117*
H110.10880.19300.31380.117*
H120.07300.42830.29380.117*
C100.4776 (3)0.6500 (7)0.1756 (4)0.0652 (9)
H130.42750.60740.09590.078*
C110.6099 (4)0.5235 (14)0.2002 (5)0.123 (2)
H140.66180.55320.13830.147*
H150.58930.37640.19970.147*
H160.66170.56180.27790.147*
C120.5022 (6)0.8825 (10)0.1704 (5)0.1106 (19)
H170.55080.92980.24760.133*
H180.41690.95460.15140.133*
H190.55480.91150.10900.133*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
P10.0326 (2)0.0288 (2)0.0447 (3)0.0002 (3)0.0091 (2)0.0030 (3)
O10.0358 (8)0.0375 (10)0.0473 (10)0.0068 (8)0.0076 (7)0.0016 (8)
O20.0539 (11)0.0419 (11)0.0453 (10)0.0028 (10)0.0182 (8)0.0003 (9)
O30.0332 (7)0.0328 (8)0.0533 (9)0.0009 (10)0.0117 (6)0.0017 (10)
O40.0357 (9)0.0335 (10)0.0795 (14)0.0028 (8)0.0114 (9)0.0118 (10)
C10.0434 (12)0.0427 (19)0.0402 (12)0.0122 (11)0.0041 (9)0.0031 (11)
C20.0433 (15)0.0496 (16)0.0622 (18)0.0025 (13)0.0033 (13)0.0018 (16)
C30.069 (2)0.067 (3)0.069 (2)0.000 (2)0.0191 (18)0.006 (2)
C40.102 (3)0.075 (3)0.0442 (17)0.012 (2)0.0115 (19)0.0050 (18)
C50.086 (2)0.074 (3)0.0443 (15)0.021 (2)0.0106 (15)0.0085 (17)
C60.0535 (15)0.0461 (17)0.0482 (14)0.0161 (14)0.0121 (12)0.0120 (14)
C70.0588 (18)0.0551 (18)0.0564 (17)0.0039 (16)0.0189 (14)0.0158 (16)
C80.112 (3)0.067 (3)0.093 (3)0.004 (3)0.014 (2)0.028 (3)
C90.068 (2)0.122 (5)0.113 (3)0.007 (3)0.041 (2)0.007 (4)
C100.0419 (15)0.069 (2)0.081 (2)0.0087 (17)0.0026 (15)0.001 (2)
C110.058 (2)0.131 (6)0.186 (5)0.019 (4)0.039 (3)0.037 (5)
C120.131 (5)0.085 (4)0.117 (4)0.022 (4)0.029 (4)0.017 (3)
Geometric parameters (Å, º) top
P1—O31.4917 (16)C7—C91.521 (5)
P1—O41.543 (2)C7—C81.531 (6)
P1—O21.545 (2)C7—H60.9800
P1—O11.5668 (18)C8—H70.9600
O1—C11.427 (3)C8—H80.9600
O2—H10.8200C8—H90.9600
O4—H20.8200C9—H100.9600
C1—C61.392 (4)C9—H110.9600
C1—C21.399 (4)C9—H120.9600
C2—C31.395 (5)C10—C121.505 (8)
C2—C101.513 (5)C10—C111.534 (7)
C3—C41.365 (6)C10—H130.9800
C3—H30.9300C11—H140.9600
C4—C51.371 (6)C11—H150.9600
C4—H40.9300C11—H160.9600
C5—C61.391 (5)C12—H170.9600
C5—H50.9300C12—H180.9600
C6—C71.514 (5)C12—H190.9600
O3—P1—O4112.98 (12)C8—C7—H6107.3
O3—P1—O2113.17 (11)C7—C8—H7109.5
O4—P1—O2106.75 (12)C7—C8—H8109.5
O3—P1—O1113.60 (10)H7—C8—H8109.5
O4—P1—O1106.74 (11)C7—C8—H9109.5
O2—P1—O1102.83 (11)H7—C8—H9109.5
C1—O1—P1123.23 (16)H8—C8—H9109.5
P1—O2—H1109.5C7—C9—H10109.5
P1—O4—H2109.5C7—C9—H11109.5
C6—C1—C2124.6 (3)H10—C9—H11109.5
C6—C1—O1118.2 (3)C7—C9—H12109.5
C2—C1—O1117.0 (2)H10—C9—H12109.5
C3—C2—C1115.4 (3)H11—C9—H12109.5
C3—C2—C10121.5 (3)C12—C10—C2112.7 (4)
C1—C2—C10123.0 (3)C12—C10—C11112.4 (5)
C4—C3—C2122.1 (4)C2—C10—C11109.4 (4)
C4—C3—H3119.0C12—C10—H13107.3
C2—C3—H3119.0C2—C10—H13107.3
C3—C4—C5120.1 (3)C11—C10—H13107.3
C3—C4—H4119.9C10—C11—H14109.5
C5—C4—H4119.9C10—C11—H15109.5
C4—C5—C6121.9 (3)H14—C11—H15109.5
C4—C5—H5119.1C10—C11—H16109.5
C6—C5—H5119.1H14—C11—H16109.5
C5—C6—C1115.7 (3)H15—C11—H16109.5
C5—C6—C7121.4 (3)C10—C12—H17109.5
C1—C6—C7122.8 (3)C10—C12—H18109.5
C6—C7—C9112.9 (4)H17—C12—H18109.5
C6—C7—C8110.7 (3)C10—C12—H19109.5
C9—C7—C8111.0 (4)H17—C12—H19109.5
C6—C7—H6107.3H18—C12—H19109.5
C9—C7—H6107.3
O3—P1—O1—C157.8 (2)C4—C5—C6—C7174.3 (4)
O4—P1—O1—C167.4 (2)C2—C1—C6—C54.4 (5)
O2—P1—O1—C1179.56 (19)O1—C1—C6—C5179.4 (3)
P1—O1—C1—C687.5 (3)C2—C1—C6—C7171.9 (3)
P1—O1—C1—C297.2 (3)O1—C1—C6—C73.0 (4)
C6—C1—C2—C33.0 (5)C5—C6—C7—C954.5 (4)
O1—C1—C2—C3178.0 (3)C1—C6—C7—C9129.4 (3)
C6—C1—C2—C10173.9 (3)C5—C6—C7—C870.6 (4)
O1—C1—C2—C101.1 (5)C1—C6—C7—C8105.5 (4)
C1—C2—C3—C40.9 (6)C3—C2—C10—C1254.1 (5)
C10—C2—C3—C4177.9 (4)C1—C2—C10—C12129.1 (4)
C2—C3—C4—C53.1 (7)C3—C2—C10—C1171.8 (5)
C3—C4—C5—C61.5 (7)C1—C2—C10—C11105.0 (5)
C4—C5—C6—C12.1 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H1···O3i0.821.812.624 (3)175
O4—H2···O3ii0.821.802.611 (3)169
Symmetry codes: (i) x, y1/2, z; (ii) x, y+1/2, z.

Experimental details

Crystal data
Chemical formulaC12H19O4P
Mr258.24
Crystal system, space groupMonoclinic, P21
Temperature (K)296
a, b, c (Å)10.0298 (15), 6.3718 (15), 11.2238 (14)
β (°) 100.685 (11)
V3)704.9 (2)
Z2
Radiation typeMo Kα
µ (mm1)0.20
Crystal size (mm)0.30 × 0.20 × 0.20
Data collection
DiffractometerRigaku AFC-5R
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
2329, 2219, 1627
Rint0.014
(sin θ/λ)max1)0.704
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.035, 0.106, 1.02
No. of reflections2219
No. of parameters156
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.24, 0.25
Absolute structureFlack (1983)
Absolute structure parameter0.11 (15)

Computer programs: MSC/AFC Diffractometer Control Software (Molecular Structure Corporation, 1991), MSC/AFC Diffractometer Control Software, TEXSAN (Molecular Structure Corporation, 1999), SHELXS97 (Sheldrick, 1990), SHELXL97 (Sheldrick, 1997), TEXSAN.

Selected geometric parameters (Å, º) top
P1—O31.4917 (16)P1—O21.545 (2)
P1—O41.543 (2)P1—O11.5668 (18)
O3—P1—O4112.98 (12)O4—P1—O1106.74 (11)
O3—P1—O2113.17 (11)O2—P1—O1102.83 (11)
O4—P1—O2106.75 (12)C1—O1—P1123.23 (16)
O3—P1—O1113.60 (10)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H1···O3i0.821.812.624 (3)175.1
O4—H2···O3ii0.821.802.611 (3)168.6
Symmetry codes: (i) x, y1/2, z; (ii) x, y+1/2, z.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds