Download citation
Download citation
link to html
In the title compound, 2 C5H12NO2S+·SO42-, the sulfate anions form strong hydrogen bonds with both the cations. A head-to-tail sequence is observed in both the mol­ecules. The three sulfate anions on threefold axes link the amino-N atom through normal hydrogen bonds.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536801012016/bt6061sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536801012016/bt6061Isup2.hkl
Contains datablock I

CCDC reference: 170914

Key indicators

  • Single-crystal X-ray study
  • T = 293 K
  • Mean [sigma](C-C) = 0.009 Å
  • Disorder in solvent or counterion
  • R factor = 0.051
  • wR factor = 0.147
  • Data-to-parameter ratio = 7.8

checkCIF results

No syntax errors found

ADDSYM reports no extra symmetry


Red Alert Alert Level A:
REFI_021 Alert A _refine_ls_abs_structure_details is missing Absolute structure method and Friedel-pair number. This should be present as the _refine_ls_abs_structure_Flack or Roger field has been filled out.
Amber Alert Alert Level B:
STRDE_01 Alert B A value for _refine_ls_abs_structure_flack has been given, without an explanantion in the _refine_ls_abs_structure_details field.
Yellow Alert Alert Level C:
PLAT_302 Alert C Anion/Solvent Disorder ....................... 6.00 Perc. General Notes
REFLT_03 From the CIF: _diffrn_reflns_theta_max 69.99 From the CIF: _reflns_number_total 1786 Count of symmetry unique reflns 1722 Completeness (_total/calc) 103.72% TEST3: Check Friedels for noncentro structure Estimate of Friedel pairs measured 64 Fraction of Friedel pairs measured 0.037 Are heavy atom types Z>Si present yes WARNING: Large fraction of Friedel related reflns may be needed to determine absolute structure
1 Alert Level A = Potentially serious problem
1 Alert Level B = Potential problem
1 Alert Level C = Please check

Comment top

Methionine is one of the few amino acids having sulfur; it also has straight-chain aliphatic α-amino acids. The crystal structure of DL-methionine (Mathieson, 1952), L-methionine (Torii & Iitaka, 1973), DL-methionine hydrochloride (Di Blasio et al., 1977), DL-methionine nitrate (Mostad & Natarajan, 1985) and bis(DL-methionine dihydrogen phosphate) (Asath Bahadur, 1992) have already been reported. In the present study, the structure of bis(DL-methioninium)sulfate (I) was determined.

The two crystallographically independent methionine cations (A and B) have similar geometries (Fig. 1). The Cγ and Sδ atoms of molecule B are disordered. The minor contributing disordered atoms are denoted as primed atoms. The conformation angle ψ2 is -148.5 (5) and 166.7 (4) for molecules A and B, respectively, which agrees well with bis(DL-methionine dihydrogen phosphate). The χ1 straight-chain conformation is in trans form [-154.7 (5) & -159.6 (9)] for both the A and B molecules. The χ2 conformation is in gauche I form [63.1 (7)°] for molecule A, and in trans [161.4 (10)°] and gauche I [75 (2)°] forms for the unprimed and primed atoms of molecule B. The χ3 conformation is in gauche I form [70.8 (7)°] for molecule A, and in gauche II [-82 (2)°] and gauche I [70 (2)°] forms for the unprimed and primed atoms of molecule B (Lakshminarayanan et al., 1967).

The carboxyl groups of the methionine cations A and B (Fig. 2 and Table 2) form strong hydrogen bonds with the sulfate anions. The three sulfate anions sitting on the threefold axis link the amino N atom of both the molecules (A and B) and stabilize the structure. Bifurcated hydrogen bonds are observed in the case of the amino N atom and the sulfate- and carboxyl-O atoms of both the A and B molecules (Jeffrey & Saenger, 1991). Both the A and B molecules are engaged in a head-to-tail sequence since the hydrogen bonds N11—H11B···O12(-y + 1, x-y - 1, z) and N21—H21B···O22(-y, x-y - 1,z), connect the amino acids along xy plane (Vijayan, 1988).

Experimental top

The title compound crystallized in aqueous solution of methionine and sulfuric acid in stoichiometric ratio of 2:1. The density of the sample was measured by flotation technique using a liquid mixture of carbon tetrachloride and xylene.

Refinement top

In molecule B, the atoms C24, S21 are disordered; the site-occupation factor for C24 and S21 is 0.58 (1), and for C24' and S21' is 0.42 (1). Since the geometry of these disordered atoms differs significantly from expected values, the distances were fixed by DFIX and the disordered group of atoms (with the associated H atoms) was treated using a split model. All H atoms were fixed by geometric restraints using HFIX, and allowed to ride on the preceding atom.

Computing details top

Data collection: CAD-4 Software (Enraf-Nonius, 1989); cell refinement: CAD-4 Software; data reduction: CAD-4 Software; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: PLATON (Spek, 1999); software used to prepare material for publication: SHELXL97.

Figures top
[Figure 1] Fig. 1. ORTEP (Johnson, 1976) plot of the molecular structures of the two independent DL-methionine cations showing the atomic numbering scheme with 50% probability displacement ellipsoids.
[Figure 2] Fig. 2. Packing diagram of the molecule viewed down the a axis
Bis(DL-Methioninium)sulfate top
Crystal data top
2C5H12NO2S+·SO42Dx = 1.459 Mg m3
Dm = 1.454 Mg m3
Dm measured by flotation
Mr = 396.49Cu Kα radiation, λ = 1.5418 Å
Trigonal, P3Cell parameters from 25 reflections
a = 10.281 (3) Åθ = 14.5–23.4°
c = 14.788 (6) ŵ = 4.12 mm1
V = 1353.5 (8) Å3T = 293 K
Z = 3Needle, colourless
F(000) = 6300.5 × 0.35 × 0.2 mm
Data collection top
Enraf-Nonius sealed tube
diffractometer
1690 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.066
Graphite monochromatorθmax = 70.0°, θmin = 5.0°
ω–2θ scansh = 012
Absorption correction: ψ scan
(North et al., 1968)
k = 1210
Tmin = 0.221, Tmax = 0.438l = 017
2818 measured reflections25 standard reflections every 3 reflections
1786 independent reflections intensity decay: none
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.051Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.147H-atom parameters not refined
S = 1.09 w = 1/[σ2(Fo2) + (0.1004P)2 + 0.3922P]
where P = (Fo2 + 2Fc2)/3
1786 reflections(Δ/σ)max < 0.001
229 parametersΔρmax = 0.60 e Å3
7 restraintsΔρmin = 0.51 e Å3
Crystal data top
2C5H12NO2S+·SO42Z = 3
Mr = 396.49Cu Kα radiation
Trigonal, P3µ = 4.12 mm1
a = 10.281 (3) ÅT = 293 K
c = 14.788 (6) Å0.5 × 0.35 × 0.2 mm
V = 1353.5 (8) Å3
Data collection top
Enraf-Nonius sealed tube
diffractometer
1690 reflections with I > 2σ(I)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.066
Tmin = 0.221, Tmax = 0.43825 standard reflections every 3 reflections
2818 measured reflections intensity decay: none
1786 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0517 restraints
wR(F2) = 0.147H-atom parameters not refined
S = 1.09Δρmax = 0.60 e Å3
1786 reflectionsΔρmin = 0.51 e Å3
229 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
S10.33330.66670.77391 (13)0.0310 (4)
O10.33330.66670.8717 (5)0.0434 (14)
O20.4427 (4)0.8170 (4)0.7397 (3)0.0438 (9)
S21.00001.00000.98814 (13)0.0305 (4)
O31.00001.00000.8912 (5)0.062 (2)
O40.8825 (4)0.8538 (4)1.0219 (3)0.0452 (9)
S30.66670.33330.86420 (13)0.0314 (4)
O50.66670.33330.9608 (5)0.0534 (17)
O60.5636 (6)0.1826 (5)0.8286 (4)0.0715 (14)
O111.0169 (5)0.3728 (5)0.6607 (3)0.0501 (9)
H111.08710.45060.68100.075*
O121.0378 (5)0.2760 (5)0.7908 (3)0.0515 (10)
N110.7559 (5)0.0500 (5)0.7821 (3)0.0437 (10)
H11A0.81980.04130.81880.066*
H11B0.67720.04060.77150.066*
H11C0.72490.10780.80800.066*
C110.9748 (6)0.2651 (6)0.7207 (4)0.0399 (11)
C120.8326 (6)0.1193 (5)0.6949 (4)0.0400 (10)
H120.86340.05240.66690.048*
C130.7291 (7)0.1375 (7)0.6291 (4)0.0532 (14)
H13A0.72960.23010.64280.064*
H13B0.62730.05500.63750.064*
C140.7749 (9)0.1408 (9)0.5302 (5)0.0708 (19)
H14A0.87680.22310.52240.085*
H14B0.71000.16090.49230.085*
S110.7659 (3)0.0287 (3)0.49214 (15)0.0864 (7)
C150.5623 (13)0.1487 (12)0.4901 (8)0.109 (4)
H15A0.53700.24750.47020.164*
H15B0.51980.10740.44930.164*
H15C0.52280.15450.54970.164*
O210.7156 (4)0.0723 (5)0.0797 (3)0.0503 (10)
H210.79360.07690.06240.075*
O220.6232 (5)0.0585 (5)0.0462 (3)0.0535 (10)
C210.6119 (6)0.0030 (6)0.0200 (4)0.0366 (10)
C220.4706 (5)0.0103 (5)0.0384 (3)0.0375 (10)
H220.49870.11480.05090.045*
N210.3763 (5)0.0402 (5)0.0446 (3)0.0411 (10)
H21A0.29250.03670.03530.062*
H21B0.35280.13390.05760.062*
H21C0.42700.01990.09050.062*
C230.3778 (7)0.0877 (9)0.1178 (4)0.0641 (18)
H23A0.37660.18260.11790.077*0.576 (10)
H23B0.27530.10740.11460.077*0.576 (10)
H23C0.29410.06980.12400.077*0.424 (10)
H23D0.33530.19050.09700.077*0.424 (10)
C240.4590 (16)0.007 (3)0.2046 (6)0.093 (7)0.576 (10)
H24A0.49080.11140.19380.112*0.576 (10)
H24B0.54790.00060.21650.112*0.576 (10)
C24'0.432 (3)0.086 (2)0.2133 (11)0.079 (7)0.424 (10)
H24C0.52740.08440.21260.095*0.424 (10)
H24D0.35950.17490.24620.095*0.424 (10)
S210.3392 (7)0.0573 (9)0.3016 (3)0.121 (3)0.576 (10)
S21'0.4523 (12)0.0817 (10)0.2647 (5)0.126 (4)0.424 (10)
C250.2501 (18)0.038 (2)0.2777 (9)0.166 (8)
H25A0.14590.03180.26650.250*0.576 (10)
H25B0.29430.09880.22500.250*0.576 (10)
H25C0.25930.10090.32800.250*0.576 (10)
H25D0.19940.04160.32100.250*0.424 (10)
H25E0.19980.00700.22040.250*0.424 (10)
H25F0.24920.12590.29830.250*0.424 (10)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0239 (5)0.0239 (5)0.0451 (10)0.0119 (3)0.0000.000
O10.042 (2)0.042 (2)0.047 (3)0.0208 (10)0.0000.000
O20.0301 (17)0.0283 (17)0.067 (2)0.0100 (14)0.0006 (15)0.0090 (16)
S20.0256 (5)0.0256 (5)0.0403 (9)0.0128 (3)0.0000.000
O30.071 (3)0.071 (3)0.043 (4)0.0353 (15)0.0000.000
O40.0293 (16)0.0269 (17)0.079 (3)0.0136 (14)0.0040 (16)0.0077 (17)
S30.0262 (5)0.0262 (5)0.0419 (10)0.0131 (3)0.0000.000
O50.059 (3)0.059 (3)0.042 (3)0.0295 (13)0.0000.000
O60.072 (3)0.035 (2)0.070 (3)0.002 (2)0.008 (2)0.003 (2)
O110.045 (2)0.038 (2)0.050 (2)0.0078 (16)0.0025 (17)0.0016 (17)
O120.044 (2)0.053 (2)0.059 (2)0.0254 (18)0.0045 (17)0.0022 (18)
N110.048 (3)0.031 (2)0.051 (3)0.0185 (19)0.0105 (19)0.0022 (18)
C110.042 (3)0.034 (2)0.047 (3)0.022 (2)0.006 (2)0.000 (2)
C120.040 (3)0.036 (2)0.044 (2)0.019 (2)0.008 (2)0.001 (2)
C130.042 (3)0.052 (3)0.058 (4)0.018 (2)0.005 (2)0.003 (3)
C140.070 (5)0.068 (4)0.060 (4)0.023 (4)0.007 (3)0.007 (3)
S110.0890 (15)0.0899 (15)0.0657 (11)0.0337 (12)0.0030 (10)0.0215 (11)
C150.104 (8)0.079 (6)0.099 (7)0.011 (6)0.015 (6)0.024 (5)
O210.0334 (19)0.066 (3)0.056 (2)0.0283 (19)0.0085 (16)0.021 (2)
O220.042 (2)0.073 (3)0.054 (2)0.035 (2)0.0054 (17)0.021 (2)
C210.030 (2)0.030 (2)0.045 (3)0.0121 (18)0.0041 (19)0.0045 (18)
C220.033 (2)0.037 (2)0.043 (2)0.019 (2)0.003 (2)0.003 (2)
N210.032 (2)0.049 (2)0.045 (2)0.0219 (19)0.0037 (17)0.0101 (18)
C230.053 (3)0.104 (5)0.043 (3)0.045 (4)0.017 (3)0.016 (3)
C240.078 (10)0.20 (2)0.018 (5)0.081 (14)0.005 (5)0.004 (8)
C24'0.098 (16)0.098 (16)0.066 (13)0.067 (14)0.017 (10)0.031 (11)
S210.143 (5)0.211 (7)0.0429 (18)0.114 (5)0.034 (2)0.043 (3)
S21'0.199 (10)0.139 (7)0.065 (4)0.103 (7)0.014 (4)0.021 (4)
C250.27 (2)0.225 (19)0.088 (8)0.19 (2)0.050 (11)0.015 (10)
Geometric parameters (Å, º) top
S1—O11.446 (7)C15—H15C0.9600
S1—O2i1.474 (3)O21—C211.289 (7)
S1—O21.474 (3)O21—H210.8200
S1—O2ii1.474 (3)O22—C211.202 (7)
S2—O31.433 (8)C21—C221.517 (7)
S2—O4iii1.466 (3)C22—N211.486 (7)
S2—O4iv1.466 (3)C22—C231.530 (8)
S2—O41.466 (3)C22—H220.9800
S3—O51.429 (8)N21—H21A0.8900
S3—O6v1.469 (4)N21—H21B0.8900
S3—O61.469 (4)N21—H21C0.8900
S3—O6vi1.469 (4)C23—C24'1.517 (16)
O11—C111.312 (7)C23—C241.574 (14)
O11—H110.8200C23—H23A0.9700
O12—C111.198 (7)C23—H23B0.9700
N11—C121.494 (7)C23—H23C0.9700
N11—H11A0.8900C23—H23D0.9700
N11—H11B0.8900C24—S211.787 (12)
N11—H11C0.8900C24—H24A0.9700
C11—C121.529 (7)C24—H24B0.9700
C12—C131.521 (8)C24'—S21'1.803 (17)
C12—H120.9800C24'—H24C0.9700
C13—C141.532 (10)C24'—H24D0.9700
C13—H13A0.9700S21—C251.678 (13)
C13—H13B0.9700S21'—C251.903 (15)
C14—S111.789 (9)C25—H25A0.9600
C14—H14A0.9700C25—H25B0.9600
C14—H14B0.9700C25—H25C0.9600
S11—C151.823 (12)C25—H25D0.9600
C15—H15A0.9600C25—H25E0.9600
C15—H15B0.9600C25—H25F0.9600
O1—S1—O2i110.08 (18)C22—N21—H21C109.5
O1—S1—O2110.08 (19)H21A—N21—H21C109.5
O2i—S1—O2108.85 (19)H21B—N21—H21C109.5
O1—S1—O2ii110.08 (18)C24'—C23—C22127.2 (12)
O2i—S1—O2ii108.85 (19)C24'—C23—C2432.4 (9)
O2—S1—O2ii108.85 (19)C22—C23—C24104.9 (8)
O3—S2—O4iii109.9 (2)C24'—C23—H23A80.0
O3—S2—O4iv109.9 (2)C22—C23—H23A110.8
O4iii—S2—O4iv109.1 (2)C24—C23—H23A110.8
O3—S2—O4109.9 (2)C24'—C23—H23B113.8
O4iii—S2—O4109.1 (2)C22—C23—H23B110.8
O4iv—S2—O4109.1 (2)C24—C23—H23B110.8
O5—S3—O6v111.0 (2)H23A—C23—H23B108.8
O5—S3—O6111.0 (2)C24'—C23—H23C105.5
O6v—S3—O6107.9 (2)C22—C23—H23C105.5
O5—S3—O6vi111.0 (2)C24—C23—H23C93.0
O6v—S3—O6vi107.9 (2)H23A—C23—H23C128.6
O6—S3—O6vi107.9 (2)H23B—C23—H23C21.6
C11—O11—H11109.5C24'—C23—H23D105.5
C12—N11—H11A109.5C22—C23—H23D105.5
C12—N11—H11B109.5C24—C23—H23D137.8
H11A—N11—H11B109.5H23A—C23—H23D29.8
C12—N11—H11C109.5H23B—C23—H23D84.6
H11A—N11—H11C109.5H23C—C23—H23D106.1
H11B—N11—H11C109.5C23—C24—S21111.9 (10)
O12—C11—O11124.9 (5)C23—C24—H24A109.2
O12—C11—C12121.0 (5)S21—C24—H24A109.2
O11—C11—C12114.1 (5)C23—C24—H24B109.2
N11—C12—C13112.0 (5)S21—C24—H24B109.2
N11—C12—C11105.7 (4)H24A—C24—H24B107.9
C13—C12—C11115.1 (4)C23—C24'—S21'105.4 (10)
N11—C12—H12107.9C23—C24'—H24C110.7
C13—C12—H12107.9S21'—C24'—H24C110.7
C11—C12—H12107.9C23—C24'—H24D110.7
C12—C13—C14112.7 (5)S21'—C24'—H24D110.7
C12—C13—H13A109.0H24C—C24'—H24D108.8
C14—C13—H13A109.0C25—S21—C2495.3 (9)
C12—C13—H13B109.0C24'—S21'—C25103.1 (11)
C14—C13—H13B109.0S21—C25—S21'46.4 (5)
H13A—C13—H13B107.8S21—C25—H25A109.5
C13—C14—S11114.5 (5)S21'—C25—H25A147.1
C13—C14—H14A108.6S21—C25—H25B109.5
S11—C14—H14A108.6S21'—C25—H25B70.1
C13—C14—H14B108.6H25A—C25—H25B109.5
S11—C14—H14B108.6S21—C25—H25C109.5
H14A—C14—H14B107.6S21'—C25—H25C101.0
C14—S11—C1598.5 (5)H25A—C25—H25C109.5
S11—C15—H15A109.5H25B—C25—H25C109.5
S11—C15—H15B109.5S21—C25—H25D65.6
H15A—C15—H15B109.5S21'—C25—H25D109.5
S11—C15—H15C109.5H25A—C25—H25D63.4
H15A—C15—H15C109.5H25B—C25—H25D167.0
H15B—C15—H15C109.5H25C—C25—H25D83.5
C21—O21—H21109.5S21—C25—H25E110.7
O22—C21—O21125.3 (5)S21'—C25—H25E109.5
O22—C21—C22121.2 (5)H25A—C25—H25E52.0
O21—C21—C22113.4 (4)H25B—C25—H25E60.0
N21—C22—C21108.0 (4)H25C—C25—H25E139.6
N21—C22—C23108.7 (4)H25D—C25—H25E109.5
C21—C22—C23113.7 (5)S21—C25—H25F138.5
N21—C22—H22108.8S21'—C25—H25F109.5
C21—C22—H22108.8H25A—C25—H25F102.9
C23—C22—H22108.8H25B—C25—H25F82.3
C22—N21—H21A109.5H25C—C25—H25F32.9
C22—N21—H21B109.5H25D—C25—H25F109.5
H21A—N21—H21B109.5H25E—C25—H25F109.5
O12—C11—C12—N1130.7 (6)N21—C22—C23—C24'173.9 (10)
O11—C11—C12—N11148.4 (5)C21—C22—C23—C24'53.6 (12)
O12—C11—C12—C13154.8 (5)N21—C22—C23—C24159.6 (9)
O11—C11—C12—C1324.3 (6)C21—C22—C23—C2480.1 (10)
N11—C12—C13—C14154.7 (5)C24'—C23—C24—S2160 (2)
C11—C12—C13—C1484.5 (6)C22—C23—C24—S21161.4 (10)
C12—C13—C14—S1163.1 (7)C22—C23—C24'—S21'74.6 (17)
C13—C14—S11—C1570.8 (7)C24—C23—C24'—S21'21.0 (12)
O22—C21—C22—N2111.1 (7)C23—C24—S21—C2582.4 (15)
O21—C21—C22—N21166.7 (4)C23—C24'—S21'—C2570.0 (15)
O22—C21—C22—C23109.5 (6)C24—S21—C25—S21'37.2 (7)
O21—C21—C22—C2372.6 (6)C24'—S21'—C25—S2147.2 (8)
Symmetry codes: (i) y+1, xy+1, z; (ii) x+y, x+1, z; (iii) x+y+1, x+2, z; (iv) y+2, xy+1, z; (v) y+1, xy, z; (vi) x+y+1, x+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O11—H11···O2iv0.821.792.569 (6)159
N11—H11A···O3vii0.892.363.233 (7)169
N11—H11B···O2vii0.892.162.964 (6)151
N11—H11B···O12viii0.892.332.816 (6)115
N11—H11C···O60.892.172.989 (8)153
N11—H11C···O6v0.892.493.209 (8)138
O21—H21···O4ix0.821.762.576 (5)171
N21—H21A···O4x0.892.112.956 (6)159
N21—H21B···O1xi0.892.223.079 (6)162
N21—H21B···O22xii0.892.653.083 (7)111
N21—H21C···O6xiii0.891.962.839 (7)168
Symmetry codes: (iv) y+2, xy+1, z; (v) y+1, xy, z; (vii) x, y1, z; (viii) y+1, xy1, z; (ix) x+y+1, x+1, z1; (x) y+1, xy, z1; (xi) x, y1, z1; (xii) y, xy1, z; (xiii) x, y, z1.

Experimental details

Crystal data
Chemical formula2C5H12NO2S+·SO42
Mr396.49
Crystal system, space groupTrigonal, P3
Temperature (K)293
a, c (Å)10.281 (3), 14.788 (6)
V3)1353.5 (8)
Z3
Radiation typeCu Kα
µ (mm1)4.12
Crystal size (mm)0.5 × 0.35 × 0.2
Data collection
DiffractometerEnraf-Nonius sealed tube
diffractometer
Absorption correctionψ scan
(North et al., 1968)
Tmin, Tmax0.221, 0.438
No. of measured, independent and
observed [I > 2σ(I)] reflections
2818, 1786, 1690
Rint0.066
(sin θ/λ)max1)0.609
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.051, 0.147, 1.09
No. of reflections1786
No. of parameters229
No. of restraints7
H-atom treatmentH-atom parameters not refined
Δρmax, Δρmin (e Å3)0.60, 0.51
Absolute structure parameter0.01 (3)

Computer programs: CAD-4 Software (Enraf-Nonius, 1989), CAD-4 Software, SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), PLATON (Spek, 1999), SHELXL97.

Selected geometric parameters (Å, º) top
O11—C111.312 (7)O21—C211.289 (7)
O12—C111.198 (7)O22—C211.202 (7)
O11—C11—C12—N11148.4 (5)C21—C22—C23—C24'53.6 (12)
N11—C12—C13—C14154.7 (5)N21—C22—C23—C24159.6 (9)
C11—C12—C13—C1484.5 (6)C21—C22—C23—C2480.1 (10)
C12—C13—C14—S1163.1 (7)C22—C23—C24—S21161.4 (10)
C13—C14—S11—C1570.8 (7)C22—C23—C24'—S21'74.6 (17)
O21—C21—C22—N21166.7 (4)C23—C24—S21—C2582.4 (15)
N21—C22—C23—C24'173.9 (10)C23—C24'—S21'—C2570.0 (15)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O11—H11···O2i0.821.792.569 (6)158.9
N11—H11A···O3ii0.892.363.233 (7)169.0
N11—H11B···O2ii0.892.162.964 (6)150.6
N11—H11B···O12iii0.892.332.816 (6)114.5
N11—H11C···O60.892.172.989 (8)152.8
N11—H11C···O6iv0.892.493.209 (8)138.0
O21—H21···O4v0.821.762.576 (5)170.8
N21—H21A···O4vi0.892.112.956 (6)159.1
N21—H21B···O1vii0.892.223.079 (6)162.4
N21—H21B···O22viii0.892.653.083 (7)110.8
N21—H21C···O6ix0.891.962.839 (7)167.8
Symmetry codes: (i) y+2, xy+1, z; (ii) x, y1, z; (iii) y+1, xy1, z; (iv) y+1, xy, z; (v) x+y+1, x+1, z1; (vi) y+1, xy, z1; (vii) x, y1, z1; (viii) y, xy1, z; (ix) x, y, z1.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds