Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
The title compound, C16H36N+·C28H36N4·F-·CH2Cl2, is a calix­[4]­pyrrole macrocycle acting as a fluoride receptor by means of hydrogen bonding. Geometric comparisons with the previously published non-isostructural chloride-bound analogue are presented.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536801012880/bt6058sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536801012880/bt6058Isup2.hkl
Contains datablock I

CCDC reference: 172198

Key indicators

  • Single-crystal X-ray study
  • T = 100 K
  • Mean [sigma](C-C) = 0.006 Å
  • Disorder in main residue
  • R factor = 0.074
  • wR factor = 0.216
  • Data-to-parameter ratio = 9.4

checkCIF results

No syntax errors found

ADDSYM reports no extra symmetry


Amber Alert Alert Level B:
PLAT_030 Alert B Refined Extinction parameter within range .... 2.30 Sigma
Yellow Alert Alert Level C:
SHFSU_01 Alert C The absolute value of parameter shift to su ratio > 0.05 Absolute value of the parameter shift to su ratio given 0.054 Additional refinement cycles may be required. PLAT_301 Alert C Main Residue Disorder ........................ 20.00 Perc. PLAT_302 Alert C Anion/Solvent Disorder ....................... 20.00 Perc. General Notes
FORMU_01 There is a discrepancy between the atom counts in the _chemical_formula_sum and _chemical_formula_moiety. This is usually due to the moiety formula being in the wrong format. Atom count from _chemical_formula_sum: C45 H64 Cl2 F1 N5 Atom count from _chemical_formula_moiety:C45 H74 Cl2 F1 N5 REFLT_03 From the CIF: _diffrn_reflns_theta_max 27.47 From the CIF: _reflns_number_total 2739 Count of symmetry unique reflns 2756 Completeness (_total/calc) 99.38% TEST3: Check Friedels for noncentro structure Estimate of Friedel pairs measured 0 Fraction of Friedel pairs measured 0.000 Are heavy atom types Z>Si present yes WARNING: Large fraction of Friedel related reflns may be needed to determine absolute structure
0 Alert Level A = Potentially serious problem
1 Alert Level B = Potential problem
3 Alert Level C = Please check

Comment top

The anion complexation properties of the calix[4]pyrrole family of macrocycles (Sessler & Gale, 2000) has been an area of continuing interest since the first paper describing anion complexation in these systems was published in 1996 (Gale et al., 1996). In this paper, we present the crystal structure of the fluoride complex, (I), of meso-octamethylcalix[4]pyrrole, a macrocycle regarded as the `parent' of this class of receptor due to its original synthesis by Baeyer in 1886 from acetone and pyrrole (Baeyer, 1886). This structure is of particular interest as calix[4]pyrroles are selective receptors for fluoride.

The structure of the title compound, (I), is meso-octamethyl-substituted calix[4]pyrrole coordinated to a fluoride anion, the charge of which is balanced by a tetrabutylammonium (TBA) cation, crystallizing with a dichloromethane (DCM) solvent (Fig. 1a shows the disordered TBA in its major component, whilst Fig. 1 b depicts the minor conformation). For clarity, Fig. 2 depicts solely the macrocycle–anion complex. The crystal structure of the TBA chloride complex of (I) was published in 1996 (Gale et al., 1996) (CSD refcode TEQKIJ; Allen & Kennard, 1993), but is not isostructural, as one might expect, to the structure reported herein. The structure of (I) therefore allows a comparison of the effects of chloride and fluoride binding to the parent macrocycle.

The macrocycle adopts a cone conformation in order to allow all four NH protons to hydrogen bond to the fluoride anion (Fig. 2). The average N···F separation is 2.767 (7) Å [3.303 (5) Å] and the average H···F interaction distance is 1.905 (7) Å [2.404 (6) Å], values in square brackets indicate the equivalent value for the chloride complex. The N···N cross-ring separations are N1···N1i = 4.688 (3) Å [4.723 (4) Å] and N2···N3 = 4.688 (3) Å [4.682 (5) Å] [symmetry code: (i) -x + 1, y, z], whilst the cavity formed by the meso-carbons is an average of 5.043 Å in length [5.07 Å] and 7.132 Å diagonally [7.169 Å]. These geometric parameters demonstrate a slight contraction of the fluoride-bound macrocycle with respect to that of the chloride complex. The meso-C atoms deviate from planarity with an average r.m.s. deviation from the plane of -0.2162 Å [-0.202 Å]. The dihedral angles formed between this plane and the pyrrole rings are 41.57 (5), 44.25 (5) and 40.03 (6)° [45.28 (6), 45.56 (7), 46.18 (5) and 41.05 (6)°] for the N1, N2 and N3 rings, respectively. The average dihedral angle between these planes is smaller for the fluoride versus the chloride complex, reflecting the smaller radius of F- and hence the need for the pyrrole rings to be less angled with respect to the macrocycle. An average angle of 109.47 (3)° on both unique meso-carbons (C5 and C10) indicates ideal tetrahedral geometry and hence absence of any strain imposed on the macrocycle due to coordination to the anion.

Experimental top

Compound (I) was synthesized according to literature methods (Gale et al., 1996). Crystals of the tetrabutylammonium fluoride complex of (I) were obtained by slow evaporation of a dichloromethane solution of (I) in the presence of excess tetrabutylammonium fluoride.

Refinement top

Disorder was found to be present in the TBA cation. The butyl arms of the TBA exhibit conformational disorder in the 1 and 3 positions with the major component 60% occupied.

Computing details top

Cell refinement: DENZO (Otwinowski & Minor, 1997) and COLLECT (Hooft, 1998); data reduction: DENZO and COLLECT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: PLATON (Spek, 1990) and CAMERON (Watkin et al., 1993).

Figures top
[Figure 1] Fig. 1. View of (I) (50% probability displacement ellipsoids), showing the disordered TBA in (a) the major component and (b) the minor component.
[Figure 2] Fig. 2. The meso-octamethylcalix[4]pyrrole complex with fluoride.
(I) top
Crystal data top
C16H36N+·C28H36N4·F·CH2Cl2Dx = 1.148 Mg m3
Mr = 764.91Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, Pmn21Cell parameters from 45620 reflections
a = 19.846 (4) Åθ = 2.9–27.5°
b = 10.653 (2) ŵ = 0.19 mm1
c = 10.469 (2) ÅT = 100 K
V = 2213.3 (8) Å3Block, colourless
Z = 20.18 × 0.16 × 0.16 mm
F(000) = 824
Data collection top
Nonius KappaCCD area-detector
diffractometer
2396 reflections with I > 2σ(I)
ϕ and ω scans to fill Ewald sphereRint = 0.020
Absorption correction: multi-scan
(SORTAV; Blessing, 1997)
θmax = 27.5°, θmin = 2.9°
Tmin = 0.967, Tmax = 0.971h = 2525
5325 measured reflectionsk = 130
2739 independent reflectionsl = 013
Refinement top
Refinement on F2 w = 1/[σ2(Fo2) + (0.1422P)2 + 0.5073P]
where P = (Fo2 + 2Fc2)/3
Least-squares matrix: full(Δ/σ)max = 0.054
R[F2 > 2σ(F2)] = 0.074Δρmax = 0.69 e Å3
wR(F2) = 0.216Δρmin = 0.73 e Å3
S = 1.09Extinction correction: SHELXL97, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
2739 reflectionsExtinction coefficient: 0.023 (10)
291 parametersAbsolute structure: Flack (1983)
7 restraintsAbsolute structure parameter: 0.0 (3)
H-atom parameters constrained
Crystal data top
C16H36N+·C28H36N4·F·CH2Cl2V = 2213.3 (8) Å3
Mr = 764.91Z = 2
Orthorhombic, Pmn21Mo Kα radiation
a = 19.846 (4) ŵ = 0.19 mm1
b = 10.653 (2) ÅT = 100 K
c = 10.469 (2) Å0.18 × 0.16 × 0.16 mm
Data collection top
Nonius KappaCCD area-detector
diffractometer
2739 independent reflections
Absorption correction: multi-scan
(SORTAV; Blessing, 1997)
2396 reflections with I > 2σ(I)
Tmin = 0.967, Tmax = 0.971Rint = 0.020
5325 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.074H-atom parameters constrained
wR(F2) = 0.216Δρmax = 0.69 e Å3
S = 1.09Δρmin = 0.73 e Å3
2739 reflectionsAbsolute structure: Flack (1983)
291 parametersAbsolute structure parameter: 0.0 (3)
7 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C230.50.6387 (14)0.9583 (10)0.124 (5)
H23A0.50.70810.89540.148*
H23B0.50.5590.90970.148*
Cl10.4255 (2)0.6468 (3)1.0462 (3)0.1823 (19)
C10.35361 (17)0.0451 (3)0.6689 (4)0.0314 (7)
C20.30480 (18)0.0584 (4)0.5779 (4)0.0389 (9)
H20.27630.00630.54650.047*
C30.3042 (2)0.1854 (4)0.5385 (4)0.0420 (9)
H30.27480.22140.47690.05*
C40.35389 (19)0.2475 (3)0.6053 (4)0.0337 (8)
C50.37307 (18)0.0667 (3)0.7510 (4)0.0312 (8)
C60.3705 (2)0.0278 (4)0.8931 (4)0.0413 (9)
H6A0.40410.03770.90920.062*
H6B0.38030.10090.94690.062*
H6C0.32550.00440.91350.062*
C70.32212 (19)0.1737 (4)0.7299 (5)0.0449 (10)
H7A0.27650.14290.74690.067*
H7B0.33240.24320.7880.067*
H7C0.3250.20310.64130.067*
C80.44301 (17)0.1155 (3)0.7193 (3)0.0260 (7)
C90.46408 (16)0.2248 (3)0.6618 (3)0.0260 (7)
H90.43580.28880.62810.031*
C100.3733 (2)0.3863 (4)0.6102 (4)0.0401 (9)
C110.3697 (3)0.4327 (4)0.7504 (4)0.0463 (10)
H11A0.40170.3850.80260.069*
H11B0.3240.42040.78340.069*
H11C0.38120.52220.75380.069*
C120.3210 (3)0.4598 (5)0.5309 (6)0.0608 (14)
H12A0.32890.55010.54080.091*
H12B0.27560.43920.56070.091*
H12C0.32540.43680.44060.091*
C130.4429 (2)0.4112 (3)0.5585 (4)0.0379 (9)
C140.4645 (2)0.4790 (4)0.4531 (4)0.0436 (9)
H140.43640.51850.39170.052*
N10.38363 (14)0.1611 (3)0.6846 (3)0.0302 (6)
H10.41690.17720.73760.036*
N20.50.0491 (3)0.7543 (4)0.0244 (8)
H2A0.50.02430.79290.029*
N30.50.3712 (4)0.6214 (4)0.0326 (9)
H3A0.50.32640.6920.039*
F10.50.2000 (2)0.8234 (3)0.0289 (6)
N40.50.0539 (4)0.2866 (4)0.0239 (8)
C150.4582 (3)0.0020 (6)0.3947 (6)0.0139 (12)0.4
H15A0.44440.0120.48440.017*0.4
H15B0.44440.07390.34680.017*0.4
C160.4110 (2)0.1152 (4)0.3420 (7)0.0603 (16)0.5
H16A0.43870.15950.27760.072*0.5
H16B0.40620.1740.41460.072*0.5
C170.3488 (4)0.1065 (8)0.2898 (8)0.0422 (16)0.6
H17A0.35340.09920.19590.051*0.6
H17B0.32690.02890.32120.051*0.6
C180.3001 (2)0.2269 (5)0.3229 (5)0.0505 (11)0.5
H18A0.32170.30430.29330.076*0.5
H18B0.25670.21660.27960.076*0.5
H18C0.29290.23150.41530.076*0.5
C190.4566 (3)0.1044 (6)0.1796 (6)0.0148 (12)0.4
H19A0.44350.0910.08940.018*0.4
H19B0.44350.02710.22570.018*0.4
C200.4060 (3)0.2131 (5)0.2323 (11)0.091 (3)0.5
H20A0.37420.18020.2970.11*0.5
H20B0.4310.28540.26810.11*0.5
C210.3684 (4)0.2486 (9)0.1004 (9)0.0516 (18)0.6
H21A0.4020.26150.03170.062*0.6
H21B0.33810.17940.07440.062*0.6
C220.3317 (3)0.3574 (6)0.1192 (6)0.0696 (15)0.5
H22A0.29610.34170.18210.104*0.5
H22B0.31130.38380.03830.104*0.5
H22C0.36150.42380.15070.104*0.5
C15'0.4551 (4)0.0459 (7)0.2263 (7)0.0414 (15)0.6
H15C0.4830.10880.1810.05*0.6
H15D0.42420.00680.16370.05*0.6
C16'0.4110 (2)0.1152 (4)0.3420 (7)0.0603 (16)0.5
C17'0.3463 (6)0.1661 (13)0.2460 (12)0.048 (3)0.4
H17C0.32480.09380.20270.058*0.4
H17D0.36370.22420.180.058*0.4
C18'0.3001 (2)0.2269 (5)0.3229 (5)0.0505 (11)0.5
C19'0.4577 (3)0.1589 (6)0.3477 (7)0.0384 (14)0.6
H19C0.48720.2270.37950.046*0.6
H19D0.43110.12560.42030.046*0.6
C20'0.4060 (3)0.2131 (5)0.2323 (11)0.091 (3)0.5
C21'0.4106 (5)0.2930 (9)0.1543 (10)0.037 (2)0.4
H21C0.43060.25770.07540.044*0.4
H21D0.4410.35990.1860.044*0.4
C22'0.3317 (3)0.3574 (6)0.1192 (6)0.0696 (15)0.5
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C230.220 (16)0.114 (9)0.037 (4)000.005 (5)
Cl10.292 (5)0.142 (3)0.113 (2)0.098 (3)0.046 (3)0.031 (2)
C10.0295 (15)0.0304 (16)0.0342 (17)0.0004 (12)0.0054 (15)0.0083 (15)
C20.0286 (15)0.043 (2)0.045 (2)0.0012 (14)0.0004 (16)0.0136 (17)
C30.0346 (18)0.054 (2)0.037 (2)0.0096 (16)0.0023 (16)0.0057 (18)
C40.0383 (17)0.0340 (18)0.0288 (17)0.0059 (14)0.0017 (15)0.0005 (14)
C50.0306 (15)0.0274 (15)0.0355 (19)0.0056 (13)0.0099 (14)0.0065 (15)
C60.054 (2)0.0348 (19)0.0353 (19)0.0041 (17)0.0201 (18)0.0035 (16)
C70.0359 (19)0.0333 (18)0.066 (3)0.0086 (15)0.020 (2)0.0056 (19)
C80.0324 (16)0.0214 (14)0.0243 (15)0.0034 (12)0.0048 (13)0.0002 (12)
C90.0338 (16)0.0206 (14)0.0237 (15)0.0053 (12)0.0011 (13)0.0006 (12)
C100.052 (2)0.0322 (18)0.0363 (19)0.0130 (16)0.0041 (18)0.0042 (16)
C110.066 (3)0.0252 (16)0.048 (2)0.0098 (17)0.012 (2)0.0052 (18)
C120.068 (3)0.050 (3)0.064 (3)0.021 (2)0.012 (3)0.012 (2)
C130.061 (2)0.0237 (15)0.0289 (17)0.0069 (15)0.0047 (17)0.0011 (14)
C140.073 (3)0.0278 (17)0.0302 (18)0.0047 (18)0.0076 (19)0.0036 (15)
N10.0308 (13)0.0302 (14)0.0297 (13)0.0022 (11)0.0033 (12)0.0019 (12)
N20.0308 (18)0.0199 (16)0.0225 (18)000.0044 (14)
N30.049 (2)0.0243 (18)0.0241 (19)000.0011 (16)
F10.0393 (14)0.0245 (12)0.0228 (13)000.0022 (11)
N40.0248 (16)0.0276 (18)0.0192 (18)000.0021 (15)
C150.015 (3)0.018 (3)0.008 (3)0.000 (2)0.004 (2)0.002 (2)
C160.036 (2)0.034 (2)0.111 (5)0.0078 (16)0.025 (3)0.000 (3)
C170.040 (3)0.041 (4)0.045 (4)0.004 (3)0.005 (3)0.015 (3)
C180.040 (2)0.065 (3)0.046 (2)0.0112 (19)0.0119 (19)0.007 (2)
C190.023 (3)0.012 (3)0.009 (3)0.001 (2)0.003 (3)0.001 (2)
C200.073 (4)0.038 (2)0.163 (8)0.020 (2)0.058 (5)0.011 (4)
C210.043 (4)0.063 (5)0.049 (4)0.002 (3)0.005 (4)0.004 (4)
C220.080 (4)0.076 (4)0.053 (3)0.008 (3)0.022 (3)0.014 (3)
C15'0.050 (4)0.039 (3)0.035 (3)0.005 (3)0.007 (3)0.002 (3)
C16'0.036 (2)0.034 (2)0.111 (5)0.0078 (16)0.025 (3)0.000 (3)
C17'0.061 (7)0.049 (6)0.035 (6)0.038 (6)0.008 (5)0.002 (5)
C18'0.040 (2)0.065 (3)0.046 (2)0.0112 (19)0.0119 (19)0.007 (2)
C19'0.042 (3)0.038 (3)0.034 (3)0.002 (3)0.004 (3)0.002 (3)
C20'0.073 (4)0.038 (2)0.163 (8)0.020 (2)0.058 (5)0.011 (4)
C21'0.042 (5)0.032 (5)0.035 (5)0.005 (4)0.001 (4)0.013 (4)
C22'0.080 (4)0.076 (4)0.053 (3)0.008 (3)0.022 (3)0.014 (3)
Geometric parameters (Å, º) top
C23—Cl11.745 (7)N2—H2A0.88
C23—Cl1i1.745 (7)N3—C13i1.378 (5)
C23—H23A0.99N3—H3A0.88
C23—H23B0.99N4—C15'1.525 (7)
C1—C21.366 (6)N4—C15'i1.525 (7)
C1—N11.382 (5)N4—C19'i1.538 (7)
C1—C51.518 (5)N4—C19'1.538 (7)
C2—C31.415 (6)C15—C161.623 (8)
C2—H20.95C15—C15i1.660 (12)
C3—C41.379 (6)C15—H15A0.99
C3—H30.95C15—H15B0.99
C4—N11.373 (5)C16—C171.353 (9)
C4—C101.529 (5)C16—H16A0.99
C5—C81.519 (5)C16—H16B0.99
C5—C71.539 (5)C17—C181.643 (9)
C5—C61.546 (6)C17—H17A0.99
C6—H6A0.98C17—H17B0.99
C6—H6B0.98C18—H18A0.98
C6—H6C0.98C18—H18B0.98
C7—H7A0.98C18—H18C0.98
C7—H7B0.98C19—C201.629 (9)
C7—H7C0.98C19—C19i1.722 (13)
C8—C91.376 (5)C19—H19A0.99
C8—N21.384 (4)C19—H19B0.99
C9—C9i1.426 (6)C20—C211.615 (12)
C9—H90.95C20—H20A0.99
C10—C131.508 (6)C20—H20B0.99
C10—C121.542 (6)C21—C221.384 (10)
C10—C111.550 (6)C21—H21A0.99
C11—H11A0.98C21—H21B0.99
C11—H11B0.98C22—H22A0.98
C11—H11C0.98C22—H22B0.98
C12—H12A0.98C22—H22C0.98
C12—H12B0.98C15'—H15C0.99
C12—H12C0.98C15'—H15D0.99
C13—N31.378 (5)C17'—H17C0.99
C13—C141.387 (6)C17'—H17D0.99
C14—C14i1.408 (10)C19'—H19C0.99
C14—H140.95C19'—H19D0.99
N1—H10.88C21'—H21C0.99
N2—C8i1.384 (4)C21'—H21D0.99
Cl1—C23—Cl1i116.0 (7)C13—C14—C14i108.0 (3)
Cl1—C23—H23A108.3C13—C14—H14126
Cl1i—C23—H23A108.3C14i—C14—H14126
Cl1—C23—H23B108.3C4—N1—C1110.1 (3)
Cl1i—C23—H23B108.3C4—N1—H1125
H23A—C23—H23B107.4C1—N1—H1125
C2—C1—N1107.2 (3)C8—N2—C8i109.6 (4)
C2—C1—C5131.0 (3)C8—N2—H2A125.2
N1—C1—C5121.7 (3)C8i—N2—H2A125.2
C1—C2—C3108.0 (3)C13—N3—C13i110.6 (4)
C1—C2—H2126C13—N3—H3A124.7
C3—C2—H2126C13i—N3—H3A124.7
C4—C3—C2107.8 (4)C15'—N4—C15'i71.5 (6)
C4—C3—H3126.1C15'—N4—C19'i177.2 (4)
C2—C3—H3126.1C15'i—N4—C19'i111.1 (4)
N1—C4—C3107.0 (3)C15'—N4—C19'111.1 (4)
N1—C4—C10121.4 (3)C15'i—N4—C19'177.2 (4)
C3—C4—C10131.4 (4)C19'i—N4—C19'66.2 (5)
C8—C5—C1112.2 (3)C16—C15—C15i125.2 (3)
C8—C5—C7108.4 (3)C16—C15—H15A106
C1—C5—C7109.4 (3)C15i—C15—H15A106
C8—C5—C6109.4 (3)C16—C15—H15B106
C1—C5—C6109.0 (3)C15i—C15—H15B106
C7—C5—C6108.4 (3)H15A—C15—H15B106.3
C5—C6—H6A109.5C17—C16—C15127.8 (5)
C5—C6—H6B109.5C17—C16—H16A105.4
H6A—C6—H6B109.5C15—C16—H16A105.4
C5—C6—H6C109.5C17—C16—H16B105.4
H6A—C6—H6C109.5C15—C16—H16B105.4
H6B—C6—H6C109.5H16A—C16—H16B106
C5—C7—H7A109.5C16—C17—C18113.5 (5)
C5—C7—H7B109.5C16—C17—H17A108.9
H7A—C7—H7B109.5C18—C17—H17A108.9
C5—C7—H7C109.5C16—C17—H17B108.9
H7A—C7—H7C109.5C18—C17—H17B108.9
H7B—C7—H7C109.5H17A—C17—H17B107.7
C9—C8—N2107.5 (3)C20—C19—C19i128.0 (3)
C9—C8—C5131.5 (3)C20—C19—H19A105.3
N2—C8—C5120.9 (3)C19i—C19—H19A105.3
C8—C9—C9i107.69 (19)C20—C19—H19B105.3
C8—C9—H9126.2C19i—C19—H19B105.3
C9i—C9—H9126.2H19A—C19—H19B106
C13—C10—C4112.8 (3)C21—C20—C1999.3 (7)
C13—C10—C12109.5 (4)C21—C20—H20A111.9
C4—C10—C12107.7 (4)C19—C20—H20A111.9
C13—C10—C11109.0 (4)C21—C20—H20B111.9
C4—C10—C11109.2 (3)C19—C20—H20B111.9
C12—C10—C11108.5 (4)H20A—C20—H20B109.6
C10—C11—H11A109.5C22—C21—C20108.5 (7)
C10—C11—H11B109.5C22—C21—H21A110
H11A—C11—H11B109.5C20—C21—H21A110
C10—C11—H11C109.5C22—C21—H21B110
H11A—C11—H11C109.5C20—C21—H21B110
H11B—C11—H11C109.5H21A—C21—H21B108.4
C10—C12—H12A109.5N4—C15'—H15C110
C10—C12—H12B109.5N4—C15'—H15D110
H12A—C12—H12B109.5H15C—C15'—H15D108.4
C10—C12—H12C109.5H17C—C17'—H17D108.5
H12A—C12—H12C109.5N4—C19'—H19C110.4
H12B—C12—H12C109.5N4—C19'—H19D110.4
N3—C13—C14106.7 (4)H19C—C19'—H19D108.6
N3—C13—C10121.8 (3)H21C—C21'—H21D108
C14—C13—C10131.4 (4)
Symmetry code: (i) x+1, y, z.

Experimental details

Crystal data
Chemical formulaC16H36N+·C28H36N4·F·CH2Cl2
Mr764.91
Crystal system, space groupOrthorhombic, Pmn21
Temperature (K)100
a, b, c (Å)19.846 (4), 10.653 (2), 10.469 (2)
V3)2213.3 (8)
Z2
Radiation typeMo Kα
µ (mm1)0.19
Crystal size (mm)0.18 × 0.16 × 0.16
Data collection
DiffractometerNonius KappaCCD area-detector
diffractometer
Absorption correctionMulti-scan
(SORTAV; Blessing, 1997)
Tmin, Tmax0.967, 0.971
No. of measured, independent and
observed [I > 2σ(I)] reflections
5325, 2739, 2396
Rint0.020
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.074, 0.216, 1.09
No. of reflections2739
No. of parameters291
No. of restraints7
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.69, 0.73
Absolute structureFlack (1983)
Absolute structure parameter0.0 (3)

Computer programs: DENZO (Otwinowski & Minor, 1997) and COLLECT (Hooft, 1998), DENZO and COLLECT, SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), PLATON (Spek, 1990) and CAMERON (Watkin et al., 1993).

 

Subscribe to Acta Crystallographica Section E: Crystallographic Communications

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds