Download citation
Download citation
link to html
In the coordination complex μ-oxalato-bis­[(iso­cyanato-N)(tetra­methyl­ethyl­enedi­amine)copper(II)], [Cu2(NCO)2(C2O4)(C6H16N2)2], the CuII ions are five-coordinated. One CuII ion bridges to another centrosymmetry-related CuII ion through C2O42−, forming a plane with an r.m.s. deviation of 0.059 Å. The O—Cu—O angle is 79.33 (8)° and the Cu...Cu separation is 5.14 Å.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536801007814/bt6045sup1.cif
Contains datablocks I, ind39cif

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536801007814/bt6045Isup2.hkl
Contains datablock I

CCDC reference: 170729

Key indicators

  • Single-crystal X-ray study
  • T = 296 K
  • Mean [sigma](C-C) = 0.004 Å
  • R factor = 0.039
  • wR factor = 0.090
  • Data-to-parameter ratio = 20.1

checkCIF results

No syntax errors found

ADDSYM reports no extra symmetry


Yellow Alert Alert Level C:
PLAT_369 Alert C Long C(sp2)-C(sp2) Bond C(1) - C(1)a = 1.54 Ang.
0 Alert Level A = Potentially serious problem
0 Alert Level B = Potential problem
1 Alert Level C = Please check

Comment top

Magnetic studies of oxalate-bridged metal complexes are well documented (Julve, Verdaguer et al., 1984; Julve, Faus et al., 1984; Kahn et al., 1985). Presently, this study is mainly concentrated on one-dimensional/two-dimensional systems having alternating bridging ligands, i.e. systems where more than one bridging ligand (Vicente et al., 1996). Recently, Ribas et al. (1998) designed a strategy for having NiII and CuII as central atom with the aim of combining oxalate and azide super-exchange pathways in the same compound. To get the desired compound, they replaced the water molecule in [L(H2O)M-ox-M(H2O)L]2+ [M = CuII(Vicente et al., 1997), L = diamine; M = NiII (Escuer et al., 1994), L = diamine or triamine] with a bridging azide ligand. Using the same strategy, we tried to synthesize a µ-oxalato-µ-cyanato-dicopper(II) alternating chain. Surprisingly, due to the lesser bridging tendency of the cyanate ion compared to azide, we did not get the desired one-dimensional alternating chain but instead obtained a dinuclear copper(II) oxalate-bridged complex with a pendant cyanate ligand in the fifth position of each copper(II) in a trans fashion. The coordination geometry about each Cu atom is distorted trigonal–bipyrimidal, with with N2, N3, O2 and Cu atoms in the equatorial plane of the bipyramid (r.m.s. deviation 0.019 Å); N1 and O1 are on the axial apices. The µ-oxalato chelate is shared by of the two centrosymmetry-related CuII ions. Several similiar oxalato-briging structures of CuII coordination complex with aqua instead of isocyanato have been reported (Julve, Verdaguer et al., 1984; Julve, Faus et al., 1984; Sletten, 1983).

Experimental top

N,N,N',N'-Tetramethylethane-1,2-diamine (0.3 ml, 2 mmol) was added slowly to copper nitrate trihydrate (483.2 mg, 2 mmol) dissolved in water (10 ml). To the deep-blue solution, an aqueous solution (10 ml) of potassium cyanate (162.6 mg, 2 mmol) was poured drop-by-drop with constant stirring and a blue crystalline compound separated out. An aqueous solution (10 ml) of sodium oxalate (134 mg, 1 mmol) was added slowly with vigorous stirring and a deep-blue solution was obtained. This was filtered and the filtrate was kept in a desiccator. After a few days, single crystals suitable for X-ray crystal structure analysis were obtained.

Computing details top

Data collection: SMART (Bruker, 1998); cell refinement: SMART; data reduction: SHELXTL (Bruker, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Figures top
[Figure 1] Fig. 1. ORTEP drawing of the title complex. Atoms labeled with a prime are centrosymmetrically related to those without prime. The coordination bonds are hollow.
µ-oxalato-bis[(isocyanato-N)(tetramethylethylenediamine)copper(II)] top
Crystal data top
[Cu2(NCO)2(C2O4)(C6H16N2)2]F(000) = 552
Mr = 531.06Dx = 1.543 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 7.4943 (9) ÅCell parameters from 25 reflections
b = 14.5660 (17) Åθ = 2.4–28.3°
c = 10.8812 (13) ŵ = 1.90 mm1
β = 105.655 (2)°T = 296 K
V = 1143.8 (2) Å3Rectangular plate, blue
Z = 20.23 × 0.10 × 0.10 mm
Data collection top
CCD area detector
diffractometer
2734 independent reflections
Radiation source: fine-focus sealed tube2367 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.032
ϕ and ω scansθmax = 28.3°, θmin = 2.4°
Absorption correction: empirical (using intensity measurements)
(North et al., 1968)
h = 99
Tmin = 0.646, Tmax = 0.827k = 1518
7265 measured reflectionsl = 1414
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.090H-atom parameters constrained
S = 1.16 w = 1/[σ2(Fo2) + (0.115P)2 + 0.612P]
where P = (Fo2 + 2Fc2)/3
2734 reflections(Δ/σ)max < 0.001
136 parametersΔρmax = 0.37 e Å3
1 restraintΔρmin = 0.51 e Å3
Crystal data top
[Cu2(NCO)2(C2O4)(C6H16N2)2]V = 1143.8 (2) Å3
Mr = 531.06Z = 2
Monoclinic, P21/cMo Kα radiation
a = 7.4943 (9) ŵ = 1.90 mm1
b = 14.5660 (17) ÅT = 296 K
c = 10.8812 (13) Å0.23 × 0.10 × 0.10 mm
β = 105.655 (2)°
Data collection top
CCD area detector
diffractometer
2734 independent reflections
Absorption correction: empirical (using intensity measurements)
(North et al., 1968)
2367 reflections with I > 2σ(I)
Tmin = 0.646, Tmax = 0.827Rint = 0.032
7265 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0391 restraint
wR(F2) = 0.090H-atom parameters constrained
S = 1.16Δρmax = 0.37 e Å3
2734 reflectionsΔρmin = 0.51 e Å3
136 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.01552 (4)0.05732 (2)0.76424 (3)0.03128 (11)
O10.1048 (3)0.04496 (12)0.88738 (19)0.0418 (5)
C10.0525 (4)0.04310 (16)1.0118 (3)0.0341 (6)
O20.0791 (3)0.10586 (12)0.93093 (18)0.0432 (5)
N10.0582 (3)0.17153 (15)0.6555 (2)0.0347 (5)
N20.2833 (3)0.10567 (16)0.8003 (2)0.0400 (5)
N30.1915 (4)0.01432 (19)0.6664 (3)0.0578 (7)
C20.2965 (4)0.0685 (2)0.6242 (3)0.0446 (7)
O30.4076 (4)0.1258 (2)0.5775 (3)0.0987 (11)
C30.2787 (4)0.1884 (2)0.7196 (3)0.0483 (7)
H3A0.29160.17060.63650.058*
H3B0.38030.22910.75930.058*
C40.0967 (4)0.23676 (19)0.7049 (3)0.0431 (7)
H4A0.09050.26080.78680.052*
H4B0.08640.28790.64630.052*
C50.2319 (4)0.2123 (2)0.6696 (3)0.0461 (7)
H5A0.21950.22520.75800.069*
H5B0.33210.17000.63850.069*
H5C0.25700.26830.62140.069*
C60.0820 (5)0.1523 (3)0.5184 (3)0.0565 (8)
H6A0.02970.12570.50700.085*
H6B0.10830.20850.47080.085*
H6C0.18300.11020.48840.085*
C70.3592 (5)0.1307 (3)0.9364 (3)0.0649 (10)
H7A0.28290.17720.95890.097*
H7B0.48310.15360.95000.097*
H7C0.36080.07740.98870.097*
C80.4017 (5)0.0342 (3)0.7662 (4)0.0641 (10)
H8A0.35290.01770.67810.096*
H8B0.40370.01900.81870.096*
H8C0.52540.05740.77980.096*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.03512 (18)0.02876 (17)0.03108 (18)0.00039 (13)0.01084 (12)0.00284 (12)
O10.0592 (13)0.0313 (10)0.0426 (11)0.0108 (8)0.0269 (9)0.0056 (8)
C10.0405 (14)0.0253 (13)0.0383 (14)0.0000 (10)0.0134 (11)0.0022 (10)
O20.0631 (13)0.0294 (10)0.0425 (11)0.0084 (9)0.0233 (9)0.0074 (8)
N10.0362 (11)0.0357 (11)0.0325 (11)0.0001 (9)0.0096 (9)0.0044 (9)
N20.0337 (12)0.0414 (13)0.0444 (13)0.0014 (10)0.0098 (10)0.0085 (10)
N30.0497 (16)0.0456 (16)0.072 (2)0.0114 (13)0.0065 (14)0.0049 (14)
C20.0430 (16)0.0385 (16)0.0496 (17)0.0046 (13)0.0078 (13)0.0008 (13)
O30.079 (2)0.0691 (19)0.124 (3)0.0270 (16)0.0129 (18)0.0185 (18)
C30.0399 (16)0.0479 (18)0.0601 (19)0.0059 (13)0.0189 (14)0.0139 (14)
C40.0456 (16)0.0304 (14)0.0537 (17)0.0019 (12)0.0143 (13)0.0083 (12)
C50.0376 (15)0.0477 (17)0.0507 (17)0.0088 (13)0.0078 (13)0.0084 (14)
C60.070 (2)0.065 (2)0.0338 (15)0.0010 (17)0.0125 (15)0.0078 (14)
C70.058 (2)0.075 (2)0.0505 (19)0.0179 (18)0.0045 (16)0.0048 (18)
C80.0485 (19)0.062 (2)0.089 (3)0.0177 (16)0.0297 (19)0.0132 (19)
Geometric parameters (Å, º) top
Cu1—N31.933 (3)C3—C41.505 (4)
Cu1—O11.9946 (19)C3—H3A0.9700
Cu1—N12.030 (2)C3—H3B0.9700
Cu1—N22.062 (2)C4—H4A0.9700
Cu1—O22.2330 (19)C4—H4B0.9700
O1—C1i1.261 (3)C5—H5A0.9600
C1—O21.247 (3)C5—H5B0.9600
C1—O1i1.261 (3)C5—H5C0.9600
C1—C1i1.540 (5)C6—H6A0.9600
N1—C51.476 (4)C6—H6B0.9600
N1—C61.480 (4)C6—H6C0.9600
N1—C41.484 (3)C7—H7A0.9600
N2—C81.479 (4)C7—H7B0.9600
N2—C71.482 (4)C7—H7C0.9600
N2—C31.486 (4)C8—H8A0.9600
N3—C21.122 (4)C8—H8B0.9600
C2—O31.191 (4)C8—H8C0.9600
N3—Cu1—O192.33 (11)C4—C3—H3B110.0
N3—Cu1—N193.99 (11)H3A—C3—H3B108.4
O1—Cu1—N1173.19 (9)N1—C4—C3109.7 (2)
N3—Cu1—N2152.15 (12)N1—C4—H4A109.7
O1—Cu1—N289.69 (9)C3—C4—H4A109.7
N1—Cu1—N285.91 (9)N1—C4—H4B109.7
N3—Cu1—O2103.58 (11)C3—C4—H4B109.7
O1—Cu1—O279.23 (7)H4A—C4—H4B108.2
N1—Cu1—O296.78 (8)N1—C5—H5A109.5
N2—Cu1—O2104.09 (9)N1—C5—H5B109.5
C1i—O1—Cu1116.23 (16)H5A—C5—H5B109.5
O2—C1—O1i124.8 (2)N1—C5—H5C109.5
O2—C1—C1i118.2 (3)H5A—C5—H5C109.5
O1i—C1—C1i117.1 (3)H5B—C5—H5C109.5
C1—O2—Cu1108.40 (16)N1—C6—H6A109.5
C5—N1—C6108.1 (2)N1—C6—H6B109.5
C5—N1—C4109.3 (2)H6A—C6—H6B109.5
C6—N1—C4110.9 (2)N1—C6—H6C109.5
C5—N1—Cu1112.21 (17)H6A—C6—H6C109.5
C6—N1—Cu1111.86 (19)H6B—C6—H6C109.5
C4—N1—Cu1104.48 (15)N2—C7—H7A109.5
C8—N2—C7109.2 (3)N2—C7—H7B109.5
C8—N2—C3110.1 (3)H7A—C7—H7B109.5
C7—N2—C3109.4 (3)N2—C7—H7C109.5
C8—N2—Cu1109.3 (2)H7A—C7—H7C109.5
C7—N2—Cu1111.4 (2)H7B—C7—H7C109.5
C3—N2—Cu1107.35 (17)N2—C8—H8A109.5
C2—N3—Cu1167.3 (3)N2—C8—H8B109.5
N3—C2—O3179.0 (4)H8A—C8—H8B109.5
N2—C3—C4108.6 (2)N2—C8—H8C109.5
N2—C3—H3A110.0H8A—C8—H8C109.5
C4—C3—H3A110.0H8B—C8—H8C109.5
N2—C3—H3B110.0
N3—Cu1—O1—C1i95.2 (2)O2—Cu1—N2—C8138.9 (2)
N2—Cu1—O1—C1i112.6 (2)N3—Cu1—N2—C7155.2 (3)
O2—Cu1—O1—C1i8.2 (2)O1—Cu1—N2—C760.8 (2)
O1i—C1—O2—Cu1173.8 (2)N1—Cu1—N2—C7114.0 (2)
C1i—C1—O2—Cu16.6 (4)O2—Cu1—N2—C718.0 (2)
N3—Cu1—O2—C181.9 (2)N3—Cu1—N2—C385.0 (3)
O1—Cu1—O2—C17.89 (18)O1—Cu1—N2—C3179.4 (2)
N1—Cu1—O2—C1177.70 (18)N1—Cu1—N2—C35.8 (2)
N2—Cu1—O2—C194.84 (19)O2—Cu1—N2—C3101.76 (19)
N3—Cu1—N1—C567.7 (2)O1—Cu1—N3—C26.5 (14)
N2—Cu1—N1—C5140.25 (19)N1—Cu1—N3—C2176.1 (14)
O2—Cu1—N1—C536.53 (19)N2—Cu1—N3—C287.3 (14)
N3—Cu1—N1—C654.0 (2)O2—Cu1—N3—C285.9 (14)
N2—Cu1—N1—C698.0 (2)C8—N2—C3—C4151.4 (3)
O2—Cu1—N1—C6158.2 (2)C7—N2—C3—C488.5 (3)
N3—Cu1—N1—C4174.06 (19)Cu1—N2—C3—C432.5 (3)
N2—Cu1—N1—C421.99 (18)C5—N1—C4—C3166.9 (2)
O2—Cu1—N1—C481.74 (18)C6—N1—C4—C374.0 (3)
N3—Cu1—N2—C834.3 (3)Cu1—N1—C4—C346.7 (3)
O1—Cu1—N2—C860.1 (2)N2—C3—C4—N154.3 (3)
N1—Cu1—N2—C8125.1 (2)
Symmetry code: (i) x, y, z+2.

Experimental details

Crystal data
Chemical formula[Cu2(NCO)2(C2O4)(C6H16N2)2]
Mr531.06
Crystal system, space groupMonoclinic, P21/c
Temperature (K)296
a, b, c (Å)7.4943 (9), 14.5660 (17), 10.8812 (13)
β (°) 105.655 (2)
V3)1143.8 (2)
Z2
Radiation typeMo Kα
µ (mm1)1.90
Crystal size (mm)0.23 × 0.10 × 0.10
Data collection
DiffractometerCCD area detector
diffractometer
Absorption correctionEmpirical (using intensity measurements)
(North et al., 1968)
Tmin, Tmax0.646, 0.827
No. of measured, independent and
observed [I > 2σ(I)] reflections
7265, 2734, 2367
Rint0.032
(sin θ/λ)max1)0.667
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.090, 1.16
No. of reflections2734
No. of parameters136
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.37, 0.51

Computer programs: SMART (Bruker, 1998), SMART, SHELXTL (Bruker, 1998), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), SHELXTL.

Selected geometric parameters (Å, º) top
Cu1—N31.933 (3)O1—C1i1.261 (3)
Cu1—O11.9946 (19)C1—O21.247 (3)
Cu1—N12.030 (2)C1—O1i1.261 (3)
Cu1—N22.062 (2)C1—C1i1.540 (5)
Cu1—O22.2330 (19)
N3—Cu1—O192.33 (11)N1—Cu1—N285.91 (9)
N3—Cu1—N193.99 (11)N3—Cu1—O2103.58 (11)
O1—Cu1—N1173.19 (9)O1—Cu1—O279.23 (7)
N3—Cu1—N2152.15 (12)N1—Cu1—O296.78 (8)
O1—Cu1—N289.69 (9)N2—Cu1—O2104.09 (9)
Symmetry code: (i) x, y, z+2.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds