Download citation
Download citation
link to html
The title compound, [Co(C14H8O5)(C10H8N2)], forms a poly­meric chain via bidentate coordination of the carboxyl­ate ligands from μ-4,4′-oxy­dibenzoate to the Co atoms. The chelating bipyridyl ligands stack with inverted forms along the [100] direction and are separated by 3.7952 (16) Å. The Co atom has a distorted octahedral geometry.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536801004949/bt6026sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536801004949/bt6026Isup2.hkl
Contains datablock I

CCDC reference: 162806

Key indicators

  • Single-crystal X-ray study
  • T = 302 K
  • Mean [sigma](C-C) = 0.004 Å
  • R factor = 0.042
  • wR factor = 0.135
  • Data-to-parameter ratio = 21.0

checkCIF results

No syntax errors found

ADDSYM reports no extra symmetry




Comment top

Coordination compounds crystallized from polyaromatic acids and metal ions are of interest for their polymeric network structures and their magnetic and porous properties (Yaghi et al., 1995, 1996; Plater, Roberts & Howie, 1998; Plater, Roberts, Marr et al., 1998; Plater et al., 1999; Kepert & Rosseinsky, 1999). The title compound, (I) (Fig. 1), synthesized from cobalt acetate tetrahydrate, 4,4'-oxydibenzoic acid and 2,2-bipyridyl, forms such a one-dimensional polymer containing chains of Co atoms linked together by the carboxylate ligands (Fig. 2). These chains interact via ππ interactions between adjacent, inverted bipyridyl ligands stacking along 100.

The Co atom has a distorted octahedral environment (Table 1) formed from two N atoms from the chelating bipyridyl and four carboxylate O atoms (two bidentate ligands). The aromatic rings in the diacid are oriented at 80.79 (9)° to one another, giving a `square wave' shape to the chain (Fig. 3).

Experimental top

Cobalt acetate tetrahydrate (102 mg, 0.410 mmol), 2,2'-bipyridyl (63 mg, 0.403 mmol), 4,4'-oxydibenzoic acid (105 mg, 0.407 mmol) and water (20 ml) were placed in a 45 ml bomb. After sealing, the bomb was heated at 100 K h-1 to 503 K; this temperature was maintained for 2 h, after which the bomb was cooled at 5 K h-1 to 453 K. After a further 6 h, the bomb was cooled at 5 K h-1 to 293 K. The bomb was opened and the resultant solid collected by filtration, washed with water and dried in air. Red needle-shaped crystals were selected for analysis.

Computing details top

Data collection: SMART (Bruker, 1999); cell refinement: SAINT (Bruker, 1999); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2000); software used to prepare material for publication: SHELXL97.

Figures top
[Figure 1] Fig. 1. The title compound with the atomic numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. [Symmetry code: (i) x + 3/2, -y + 1/2, z + 1/2.]
[Figure 2] Fig. 2. Formation of polymeric chains of Co atoms linked by the diacid.
[Figure 3] Fig. 3. View of the packing of the structure within the unit cell, showing the `square wave' diacid chains and the superposition of the bipyridyl ligands which lead to ππ interactions in the 100 direction.
catena-Poly[[(2,2'-bipyridine-N,N')cobalt(II)]- µ-4,4'-oxydibenzoato-O,O':O'',O'''] top
Crystal data top
[Co(C14H8O5)(C10H8N2)]F(000) = 964
Mr = 471.32Dx = 1.497 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 7.8975 (4) ÅCell parameters from 18261 reflections
b = 17.6323 (8) Åθ = 2.3–30.0°
c = 15.1057 (7) ŵ = 0.86 mm1
β = 96.360 (1)°T = 302 K
V = 2090.54 (17) Å3Needle, red
Z = 40.4 × 0.1 × 0.1 mm
Data collection top
Bruker SMART 1000 area CCD
diffractometer
6071 independent reflections
Radiation source: fine-focus sealed tube3584 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.050
ϕω scansθmax = 30.0°, θmin = 2.3°
Absorption correction: multi-scan
(SADABS; Bruker, 1999)
h = 1011
Tmin = 0.816, Tmax = 0.928k = 2422
18261 measured reflectionsl = 2121
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.042Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.135H-atom parameters constrained
S = 0.94 w = 1/[σ2(Fo2) + (0.075P)2]
where P = (Fo2 + 2Fc2)/3
6071 reflections(Δ/σ)max = 0.001
289 parametersΔρmax = 0.30 e Å3
0 restraintsΔρmin = 0.34 e Å3
Crystal data top
[Co(C14H8O5)(C10H8N2)]V = 2090.54 (17) Å3
Mr = 471.32Z = 4
Monoclinic, P21/nMo Kα radiation
a = 7.8975 (4) ŵ = 0.86 mm1
b = 17.6323 (8) ÅT = 302 K
c = 15.1057 (7) Å0.4 × 0.1 × 0.1 mm
β = 96.360 (1)°
Data collection top
Bruker SMART 1000 area CCD
diffractometer
6071 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 1999)
3584 reflections with I > 2σ(I)
Tmin = 0.816, Tmax = 0.928Rint = 0.050
18261 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0420 restraints
wR(F2) = 0.135H-atom parameters constrained
S = 0.94Δρmax = 0.30 e Å3
6071 reflectionsΔρmin = 0.34 e Å3
289 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Co10.71362 (4)0.112194 (19)0.66625 (2)0.04221 (12)
N10.6977 (2)0.00583 (12)0.65353 (13)0.0471 (5)
C10.6777 (4)0.05433 (17)0.72072 (19)0.0605 (7)
H10.65960.03460.77600.073*
C20.6829 (4)0.13155 (19)0.7107 (2)0.0754 (9)
H20.67130.16370.75850.090*
C30.7059 (4)0.16034 (19)0.6280 (3)0.0839 (10)
H30.70590.21240.61850.101*
C40.7285 (4)0.11147 (17)0.5602 (2)0.0727 (9)
H40.74590.13020.50440.087*
C50.7256 (3)0.03433 (14)0.57465 (16)0.0468 (6)
C60.7472 (3)0.02364 (16)0.50406 (16)0.0499 (6)
C70.7806 (4)0.0048 (2)0.41884 (18)0.0687 (8)
H70.79010.04570.40240.082*
C80.7995 (5)0.0616 (2)0.3590 (2)0.0903 (12)
H80.82180.04990.30140.108*
C90.7856 (5)0.1354 (2)0.3841 (2)0.0831 (11)
H90.79830.17440.34400.100*
C100.7523 (4)0.15140 (19)0.46979 (18)0.0630 (7)
H100.73960.20170.48630.076*
N20.7377 (3)0.09658 (12)0.53017 (13)0.0487 (5)
O10.4563 (2)0.14167 (10)0.65881 (11)0.0475 (4)
O20.6458 (2)0.23221 (10)0.65684 (13)0.0548 (4)
C110.4927 (3)0.21155 (13)0.65381 (14)0.0401 (5)
C120.3518 (3)0.26841 (13)0.63932 (14)0.0378 (5)
C130.1832 (3)0.24523 (13)0.62057 (16)0.0448 (5)
H130.15600.19410.62400.054*
C140.0562 (3)0.29751 (14)0.59699 (17)0.0487 (6)
H140.05640.28180.58460.058*
C150.0976 (3)0.37312 (13)0.59204 (14)0.0403 (5)
C160.2609 (3)0.39787 (13)0.61628 (16)0.0458 (6)
H160.28610.44940.61710.055*
C170.3870 (3)0.34521 (14)0.63931 (16)0.0474 (6)
H170.49810.36170.65520.057*
O30.0255 (2)0.42793 (10)0.56850 (12)0.0547 (5)
C180.1506 (3)0.41133 (14)0.49901 (15)0.0439 (5)
C190.1116 (3)0.39169 (14)0.41517 (17)0.0511 (6)
H190.00110.38410.40480.061*
C200.2422 (3)0.38335 (14)0.34665 (16)0.0476 (6)
H200.21690.37140.28960.057*
C210.4106 (3)0.39274 (13)0.36270 (14)0.0407 (5)
C220.4461 (3)0.41129 (18)0.44726 (16)0.0586 (7)
H220.55880.41680.45870.070*
C230.3167 (3)0.42171 (19)0.51502 (17)0.0607 (7)
H230.34170.43570.57150.073*
C240.5535 (3)0.38767 (13)0.28909 (15)0.0430 (5)
O40.5215 (2)0.38604 (10)0.20919 (11)0.0517 (4)
O50.7061 (2)0.38766 (11)0.30707 (12)0.0588 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Co10.04066 (19)0.0474 (2)0.03707 (17)0.00332 (14)0.00244 (13)0.00178 (13)
N10.0463 (11)0.0497 (12)0.0436 (11)0.0024 (9)0.0025 (9)0.0029 (9)
C10.0633 (17)0.0649 (19)0.0511 (15)0.0015 (14)0.0036 (13)0.0127 (13)
C20.082 (2)0.065 (2)0.076 (2)0.0029 (17)0.0067 (18)0.0238 (17)
C30.092 (2)0.0482 (19)0.107 (3)0.0022 (17)0.010 (2)0.0057 (19)
C40.084 (2)0.0584 (19)0.075 (2)0.0015 (15)0.0040 (18)0.0141 (16)
C50.0384 (13)0.0521 (15)0.0462 (13)0.0011 (10)0.0114 (10)0.0055 (11)
C60.0454 (14)0.0604 (16)0.0433 (12)0.0066 (11)0.0027 (11)0.0076 (11)
C70.078 (2)0.082 (2)0.0453 (15)0.0068 (17)0.0029 (14)0.0142 (14)
C80.116 (3)0.112 (3)0.0458 (16)0.021 (2)0.0222 (18)0.0096 (18)
C90.098 (3)0.101 (3)0.0497 (17)0.024 (2)0.0075 (17)0.0176 (17)
C100.0684 (18)0.069 (2)0.0489 (15)0.0109 (15)0.0066 (14)0.0080 (13)
N20.0516 (12)0.0532 (13)0.0407 (10)0.0041 (9)0.0028 (9)0.0012 (9)
O10.0433 (9)0.0404 (9)0.0585 (10)0.0006 (7)0.0042 (8)0.0032 (8)
O20.0372 (9)0.0490 (10)0.0758 (12)0.0008 (8)0.0045 (8)0.0028 (9)
C110.0384 (12)0.0445 (14)0.0361 (11)0.0016 (10)0.0010 (9)0.0009 (9)
C120.0387 (12)0.0405 (12)0.0330 (10)0.0021 (9)0.0012 (9)0.0013 (9)
C130.0414 (12)0.0390 (13)0.0534 (14)0.0068 (10)0.0024 (11)0.0032 (10)
C140.0342 (12)0.0468 (14)0.0627 (15)0.0020 (10)0.0060 (11)0.0044 (11)
C150.0417 (12)0.0428 (13)0.0346 (10)0.0033 (9)0.0041 (9)0.0029 (9)
C160.0464 (14)0.0384 (13)0.0507 (13)0.0049 (10)0.0033 (11)0.0019 (10)
C170.0374 (12)0.0456 (14)0.0566 (14)0.0060 (10)0.0060 (11)0.0023 (11)
O30.0555 (11)0.0465 (10)0.0567 (10)0.0110 (8)0.0180 (8)0.0110 (8)
C180.0426 (13)0.0432 (13)0.0422 (12)0.0032 (10)0.0113 (10)0.0004 (10)
C190.0375 (13)0.0591 (16)0.0555 (14)0.0110 (11)0.0000 (11)0.0107 (12)
C200.0429 (13)0.0572 (16)0.0413 (12)0.0081 (11)0.0011 (10)0.0104 (11)
C210.0387 (12)0.0457 (13)0.0362 (11)0.0021 (10)0.0024 (9)0.0028 (9)
C220.0401 (14)0.097 (2)0.0387 (13)0.0008 (13)0.0053 (11)0.0037 (13)
C230.0468 (15)0.099 (2)0.0356 (12)0.0005 (15)0.0005 (11)0.0046 (13)
C240.0429 (13)0.0441 (13)0.0409 (11)0.0017 (10)0.0014 (10)0.0012 (10)
O40.0438 (9)0.0734 (13)0.0361 (8)0.0046 (8)0.0038 (7)0.0067 (8)
O50.0360 (9)0.0953 (16)0.0434 (9)0.0022 (9)0.0027 (8)0.0034 (9)
Geometric parameters (Å, º) top
Co1—O12.0885 (16)O2—C111.258 (3)
Co1—N12.092 (2)C11—C121.496 (3)
Co1—N22.103 (2)C12—C171.382 (3)
Co1—O4i2.1203 (17)C12—C131.392 (3)
Co1—O5i2.1513 (18)C13—C141.380 (3)
Co1—O22.1837 (18)C13—H130.9300
N1—C51.334 (3)C14—C151.377 (3)
N1—C11.350 (3)C14—H140.9300
C1—C21.371 (4)C15—C161.372 (3)
C1—H10.9300C15—O31.389 (3)
C2—C31.380 (5)C16—C171.378 (3)
C2—H20.9300C16—H160.9300
C3—C41.365 (5)C17—H170.9300
C3—H30.9300O3—C181.391 (3)
C4—C51.378 (4)C18—C231.372 (3)
C4—H40.9300C18—C191.380 (3)
C5—C61.500 (4)C19—C201.386 (3)
C6—N21.350 (3)C19—H190.9300
C6—C71.383 (3)C20—C211.388 (3)
C7—C81.368 (5)C20—H200.9300
C7—H70.9300C21—C221.377 (3)
C8—C91.363 (5)C21—C241.496 (3)
C8—H80.9300C22—C231.377 (3)
C9—C101.378 (4)C22—H220.9300
C9—H90.9300C23—H230.9300
C10—N21.343 (3)C24—O41.260 (3)
C10—H100.9300C24—O51.264 (3)
O1—C111.269 (3)
O1—Co1—N1101.21 (7)C10—N2—Co1126.4 (2)
O1—Co1—N299.95 (8)C6—N2—Co1115.10 (16)
N1—Co1—N277.94 (8)C11—O1—Co191.10 (13)
O1—Co1—O4i159.03 (7)C11—O2—Co187.11 (14)
N1—Co1—O4i95.15 (7)O2—C11—O1120.1 (2)
N2—Co1—O4i96.20 (7)O2—C11—C12120.5 (2)
O1—Co1—O5i103.38 (7)O1—C11—C12119.3 (2)
N1—Co1—O5i95.75 (8)C17—C12—C13118.4 (2)
N2—Co1—O5i156.61 (8)C17—C12—C11120.7 (2)
O4i—Co1—O5i61.62 (6)C13—C12—C11120.8 (2)
O1—Co1—O261.65 (6)C14—C13—C12120.5 (2)
N1—Co1—O2161.10 (7)C14—C13—H13119.7
N2—Co1—O296.39 (8)C12—C13—H13119.7
O4i—Co1—O2103.43 (6)C15—C14—C13119.4 (2)
O5i—Co1—O296.11 (7)C15—C14—H14120.3
C5—N1—C1118.5 (2)C13—C14—H14120.3
C5—N1—Co1116.28 (17)C16—C15—C14121.0 (2)
C1—N1—Co1124.88 (19)C16—C15—O3117.2 (2)
N1—C1—C2122.6 (3)C14—C15—O3121.6 (2)
N1—C1—H1118.7C15—C16—C17119.0 (2)
C2—C1—H1118.7C15—C16—H16120.5
C1—C2—C3118.3 (3)C17—C16—H16120.5
C1—C2—H2120.9C16—C17—C12121.4 (2)
C3—C2—H2120.9C16—C17—H17119.3
C4—C3—C2119.2 (3)C12—C17—H17119.3
C4—C3—H3120.4C15—O3—C18117.73 (18)
C2—C3—H3120.4C23—C18—C19120.7 (2)
C3—C4—C5119.9 (3)C23—C18—O3116.9 (2)
C3—C4—H4120.0C19—C18—O3122.2 (2)
C5—C4—H4120.0C18—C19—C20119.3 (2)
N1—C5—C4121.4 (3)C18—C19—H19120.4
N1—C5—C6114.9 (2)C20—C19—H19120.4
C4—C5—C6123.7 (3)C19—C20—C21120.3 (2)
N2—C6—C7121.6 (3)C19—C20—H20119.8
N2—C6—C5115.3 (2)C21—C20—H20119.8
C7—C6—C5123.1 (3)C22—C21—C20119.2 (2)
C8—C7—C6119.0 (3)C22—C21—C24119.3 (2)
C8—C7—H7120.5C20—C21—C24121.4 (2)
C6—C7—H7120.5C23—C22—C21120.7 (2)
C9—C8—C7119.8 (3)C23—C22—H22119.7
C9—C8—H8120.1C21—C22—H22119.7
C7—C8—H8120.1C18—C23—C22119.8 (2)
C8—C9—C10119.1 (3)C18—C23—H23120.1
C8—C9—H9120.4C22—C23—H23120.1
C10—C9—H9120.4O4—C24—O5120.2 (2)
N2—C10—C9122.0 (3)O4—C24—C21119.9 (2)
N2—C10—H10119.0O5—C24—C21119.9 (2)
C9—C10—H10119.0C24—O4—Co1ii89.85 (14)
C10—N2—C6118.4 (2)C24—O5—Co1ii88.35 (14)
O1—Co1—N1—C5104.17 (17)O4i—Co1—O1—C1148.7 (2)
N2—Co1—N1—C56.25 (16)O5i—Co1—O1—C1190.54 (14)
O4i—Co1—N1—C589.00 (17)O2—Co1—O1—C110.77 (12)
O5i—Co1—N1—C5150.93 (17)O1—Co1—O2—C110.78 (13)
O2—Co1—N1—C580.4 (3)N1—Co1—O2—C1125.9 (3)
O1—Co1—N1—C182.3 (2)N2—Co1—O2—C1197.10 (15)
N2—Co1—N1—C1179.8 (2)O4i—Co1—O2—C11164.94 (13)
O4i—Co1—N1—C184.5 (2)O5i—Co1—O2—C11102.71 (14)
O5i—Co1—N1—C122.6 (2)Co1—O2—C11—O11.3 (2)
O2—Co1—N1—C1106.0 (3)Co1—O2—C11—C12175.33 (18)
C5—N1—C1—C20.7 (4)Co1—O1—C11—O21.4 (2)
Co1—N1—C1—C2174.1 (2)Co1—O1—C11—C12175.31 (17)
N1—C1—C2—C31.5 (5)O2—C11—C12—C177.5 (3)
C1—C2—C3—C42.3 (5)O1—C11—C12—C17175.8 (2)
C2—C3—C4—C51.0 (5)O2—C11—C12—C13168.8 (2)
C1—N1—C5—C42.1 (4)O1—C11—C12—C137.8 (3)
Co1—N1—C5—C4176.1 (2)C17—C12—C13—C144.1 (3)
C1—N1—C5—C6179.7 (2)C11—C12—C13—C14172.3 (2)
Co1—N1—C5—C65.8 (3)C12—C13—C14—C150.1 (4)
C3—C4—C5—N11.3 (5)C13—C14—C15—C164.7 (4)
C3—C4—C5—C6179.2 (3)C13—C14—C15—O3179.9 (2)
N1—C5—C6—N20.8 (3)C14—C15—C16—C175.0 (4)
C4—C5—C6—N2178.9 (3)O3—C15—C16—C17179.4 (2)
N1—C5—C6—C7178.6 (2)C15—C16—C17—C120.7 (4)
C4—C5—C6—C73.3 (4)C13—C12—C17—C163.8 (3)
N2—C6—C7—C82.0 (4)C11—C12—C17—C16172.6 (2)
C5—C6—C7—C8179.6 (3)C16—C15—O3—C18142.4 (2)
C6—C7—C8—C90.1 (5)C14—C15—O3—C1842.1 (3)
C7—C8—C9—C100.1 (6)C15—O3—C18—C23128.7 (3)
C8—C9—C10—N21.8 (5)C15—O3—C18—C1956.9 (3)
C9—C10—N2—C63.6 (4)C23—C18—C19—C200.7 (4)
C9—C10—N2—Co1173.0 (2)O3—C18—C19—C20173.5 (2)
C7—C6—N2—C103.6 (4)C18—C19—C20—C211.6 (4)
C5—C6—N2—C10178.6 (2)C19—C20—C21—C220.8 (4)
C7—C6—N2—Co1173.3 (2)C19—C20—C21—C24177.1 (2)
C5—C6—N2—Co14.5 (3)C20—C21—C22—C231.1 (4)
O1—Co1—N2—C1078.2 (2)C24—C21—C22—C23175.3 (3)
N1—Co1—N2—C10177.7 (2)C19—C18—C23—C221.0 (5)
O4i—Co1—N2—C1088.4 (2)O3—C18—C23—C22175.6 (2)
O5i—Co1—N2—C10106.0 (3)C21—C22—C23—C182.0 (5)
O2—Co1—N2—C1015.9 (2)C22—C21—C24—O4165.7 (2)
O1—Co1—N2—C6105.15 (18)C20—C21—C24—O410.6 (4)
N1—Co1—N2—C65.68 (17)C22—C21—C24—O511.9 (4)
O4i—Co1—N2—C688.28 (18)C20—C21—C24—O5171.8 (2)
O5i—Co1—N2—C670.7 (3)O5—C24—O4—Co1ii1.6 (2)
O2—Co1—N2—C6167.40 (17)C21—C24—O4—Co1ii175.97 (19)
N1—Co1—O1—C11170.71 (13)O4—C24—O5—Co1ii1.6 (2)
N2—Co1—O1—C1191.16 (14)C21—C24—O5—Co1ii175.99 (19)
Symmetry codes: (i) x+3/2, y+1/2, z+1/2; (ii) x3/2, y+1/2, z1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2···O2iii0.932.583.317 (4)136
C13—H13···O4iv0.932.453.201 (3)137
C20—H20···O1v0.932.533.419 (3)159
Symmetry codes: (iii) x+3/2, y1/2, z+3/2; (iv) x+1/2, y+1/2, z+1/2; (v) x1/2, y+1/2, z1/2.

Experimental details

Crystal data
Chemical formula[Co(C14H8O5)(C10H8N2)]
Mr471.32
Crystal system, space groupMonoclinic, P21/n
Temperature (K)302
a, b, c (Å)7.8975 (4), 17.6323 (8), 15.1057 (7)
β (°) 96.360 (1)
V3)2090.54 (17)
Z4
Radiation typeMo Kα
µ (mm1)0.86
Crystal size (mm)0.4 × 0.1 × 0.1
Data collection
DiffractometerBruker SMART 1000 area CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 1999)
Tmin, Tmax0.816, 0.928
No. of measured, independent and
observed [I > 2σ(I)] reflections
18261, 6071, 3584
Rint0.050
(sin θ/λ)max1)0.703
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.135, 0.94
No. of reflections6071
No. of parameters289
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.30, 0.34

Computer programs: SMART (Bruker, 1999), SAINT (Bruker, 1999), SAINT, SHELXS97 (Sheldrick, 1990), SHELXL97 (Sheldrick, 1997), ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2000), SHELXL97.

Selected geometric parameters (Å, º) top
Co1—O12.0885 (16)Co1—O4i2.1203 (17)
Co1—N12.092 (2)Co1—O5i2.1513 (18)
Co1—N22.103 (2)Co1—O22.1837 (18)
O1—Co1—N1101.21 (7)N2—Co1—O5i156.61 (8)
O1—Co1—N299.95 (8)O4i—Co1—O5i61.62 (6)
N1—Co1—N277.94 (8)O1—Co1—O261.65 (6)
O1—Co1—O4i159.03 (7)N1—Co1—O2161.10 (7)
N1—Co1—O4i95.15 (7)N2—Co1—O296.39 (8)
N2—Co1—O4i96.20 (7)O4i—Co1—O2103.43 (6)
O1—Co1—O5i103.38 (7)O5i—Co1—O296.11 (7)
N1—Co1—O5i95.75 (8)
Symmetry code: (i) x+3/2, y+1/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2···O2ii0.932.583.317 (4)136.0
C13—H13···O4iii0.932.453.201 (3)137.4
C20—H20···O1iv0.932.533.419 (3)158.9
Symmetry codes: (ii) x+3/2, y1/2, z+3/2; (iii) x+1/2, y+1/2, z+1/2; (iv) x1/2, y+1/2, z1/2.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds