Download citation
Download citation
link to html
A series of derivatives of 3-amino-2-oxazolidinone have been prepared. The title derivative, C15H19ClN3O3+·Cl-·H2O, is a potential psychotropic drug. The structure is assembled by strong and weak hydrogen bonds into a three-dimensional infinite framework. In the structure, intramolecular hydrogen bonds link C and O atoms to create a fused three-membered ring system.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536801004548/bt6025sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536801004548/bt6025Isup2.hkl
Contains datablock I

CCDC reference: 162823

Key indicators

  • Single-crystal X-ray study
  • T = 293 K
  • Mean [sigma](C-C) = 0.003 Å
  • R factor = 0.043
  • wR factor = 0.120
  • Data-to-parameter ratio = 17.5

checkCIF results

No syntax errors found

ADDSYM reports no extra symmetry


Yellow Alert Alert Level C:
REFLT_03 From the CIF: _diffrn_reflns_theta_max 27.55 From the CIF: _reflns_number_total 3858 TEST2: Reflns within _diffrn_reflns_theta_max Count of symmetry unique reflns 4086 Completeness (_total/calc) 94.42% Alert C: < 95% complete
0 Alert Level A = Potentially serious problem
0 Alert Level B = Potential problem
1 Alert Level C = Please check

Comment top

In the Pharmaceutical Research Institute in Warsaw, a series of deriatives of 3-amino-2-oxazolidinone have been prepared (Chilmonczyk et al., 1997). It has recently been found that the oxazolidinone derivative 5-morpholinmethyl-3-(4-chloridebenzylidenamino)-2-oxazolidinone is a potential psychotropic drug (Chilmonczyk, 1995). Preliminary clinical data show that the compound exhibits antidepressive activity in humans (Rybakowski & Araszkiewicz, 1999). It is generally accepted that a specific energetically preferred conformation of a compound (so-called bioactive conformation) decides about the nature of interactions with its molecular target – pharmacological receptor. Therefore, it is of basic importance to get an insight into molecular parameters such as charge distribution, most preferred conformation or distances between specified points within a molecule (Krzywda et al., 2000).

A perspective view of the title structure, (I), together with the atom-numbering scheme are shown in Fig. 1. A l l interatomic distances are normal. The oxazolidinone ring exist in a conformation of an almost ideal half-chair, which can be deduced from the asymmetry parameters (Duax & Norton, 1975). Values and placement of asymmetry parameters are showed in Fig. 2.

The primary place of molecular interaction with an acid residue within a putative receptor site can be detected by hydrogen bonds. The structure of the title compound is assembled by strong and weak hydrogen bonds, to a three-dimensional infinite framework (Fig. 3). The water O4 atom acts as a donor for one strong and three weak intermolecular hydrogen bonds. All these weak hydrogen bonds are created via the same H atom (H41), however, in the difference Fourier map there is no orientational disorder resulting from these. In addition, O4 acts as an acceptor for two intermolecular weak hydrogen bonds with C5 and Cl2. Also noteworthy is the fact that there is a proton transfer from hydrochloric acid to N1 which is stabilized by a weak N1—H1···Cl1 hydrogen bond. In addition, in the structure, intramolecular hydrogen bonds exist linking C1 and O2 which provide additional stabilization of the molecule, creating a fused three-membered ring system.

Experimental top

The title compound was prepared according to the method of Chilmonczyk et al. (1997).

Computing details top

Data collection: KM-4 Software (Kuma, 1993); cell refinement: KM-4 Software; data reduction: DATAPROC (Kuma, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: XP in SHELXTL/PC (Sheldrick, 1990) and ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97.

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. Values and placement of the asymmetry parameters for the oxazolidinone ring.
[Figure 3] Fig. 3. Part of the molecular packing of title compound showing the intermolecular hydrogen bonds creating a three-dimensional net structure. Hydrogen bonds are indicated by dashed lines.
1-[3-(4-Chlorobenzylideneamino)-2-oxooxazolidin-5-ylmethyl]morpholinium chloride monohydrate top
Crystal data top
C15H19ClN3O3+·Cl·H2OZ = 2
Mr = 378.25F(000) = 396
Triclinic, P1Dx = 1.420 Mg m3
a = 7.122 (2) ÅMo Kα radiation, λ = 0.71073 Å
b = 8.809 (2) ÅCell parameters from 99 reflections
c = 15.178 (3) Åθ = 5–60°
α = 95.98 (2)°µ = 0.39 mm1
β = 99.34 (2)°T = 293 K
γ = 107.43 (2)°Plate, colourless
V = 884.6 (4) Å30.49 × 0.42 × 0.04 mm
Data collection top
Kuma KM-4
diffractometer
3418 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.014
Graphite monochromatorθmax = 27.6°, θmin = 2.5°
ω–2θ scansh = 19
Absorption correction: ψ scan
(North et al., 1968)
k = 1111
Tmin = 0.831, Tmax = 0.985l = 1919
4747 measured reflections3 standard reflections every 100 reflections
3858 independent reflections intensity decay: 1.1%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.043Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.120H atoms treated by a mixture of independent and constrained refinement
S = 1.04 w = 1/[σ2(Fo2) + (0.0656P)2 + 0.312P]
where P = (Fo2 + 2Fc2)/3
3858 reflections(Δ/σ)max = 0.001
221 parametersΔρmax = 0.35 e Å3
0 restraintsΔρmin = 0.38 e Å3
Crystal data top
C15H19ClN3O3+·Cl·H2Oγ = 107.43 (2)°
Mr = 378.25V = 884.6 (4) Å3
Triclinic, P1Z = 2
a = 7.122 (2) ÅMo Kα radiation
b = 8.809 (2) ŵ = 0.39 mm1
c = 15.178 (3) ÅT = 293 K
α = 95.98 (2)°0.49 × 0.42 × 0.04 mm
β = 99.34 (2)°
Data collection top
Kuma KM-4
diffractometer
3418 reflections with I > 2σ(I)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.014
Tmin = 0.831, Tmax = 0.9853 standard reflections every 100 reflections
4747 measured reflections intensity decay: 1.1%
3858 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0430 restraints
wR(F2) = 0.120H atoms treated by a mixture of independent and constrained refinement
S = 1.04Δρmax = 0.35 e Å3
3858 reflectionsΔρmin = 0.38 e Å3
221 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.1505 (2)0.54719 (17)0.23337 (10)0.0340 (3)
C10.1150 (3)0.4469 (2)0.30356 (13)0.0451 (4)
H1A0.01930.44220.30980.068*
H1B0.20780.33920.28620.068*
C20.1388 (4)0.5231 (3)0.39256 (14)0.0559 (5)
H2A0.12300.45860.43870.084*
H2B0.27250.52960.38480.084*
O10.0002 (3)0.6810 (2)0.42041 (11)0.0657 (5)
C30.0337 (4)0.7799 (3)0.35624 (17)0.0588 (6)
H3A0.06030.88660.37640.088*
H3B0.16650.78730.35260.088*
C40.0116 (3)0.7161 (2)0.26318 (15)0.0486 (5)
H4A0.04740.78180.22100.073*
H4B0.12500.72080.26380.073*
C50.1299 (3)0.4825 (2)0.14208 (12)0.0379 (4)
H5A0.00500.48020.14580.057*
H5B0.15200.55360.10060.057*
C60.2702 (3)0.3143 (2)0.10655 (12)0.0363 (4)
H60.39700.29560.12670.044*
O20.1872 (2)0.19594 (15)0.14219 (8)0.0406 (3)
C70.2094 (3)0.0743 (2)0.07528 (12)0.0369 (4)
O30.1696 (2)0.04529 (17)0.08899 (10)0.0508 (4)
N20.2859 (2)0.11091 (17)0.00459 (10)0.0370 (3)
C80.3015 (3)0.2717 (2)0.00396 (12)0.0396 (4)
H8A0.19840.34540.01860.059*
H8B0.43080.27100.02670.059*
N30.3085 (2)0.01072 (18)0.08314 (10)0.0362 (3)
C90.3730 (3)0.0571 (2)0.15540 (12)0.0375 (4)
H90.40390.15750.15140.056*
C100.4031 (3)0.0378 (2)0.24492 (12)0.0358 (4)
C110.3085 (3)0.1509 (2)0.26179 (14)0.0462 (4)
H11A0.22200.17400.21330.055*
C120.3394 (3)0.2327 (3)0.34890 (14)0.0499 (5)
H12A0.26920.30740.36160.060*
Cl10.49991 (10)0.29961 (7)0.52778 (3)0.05808 (17)
C130.4646 (3)0.2012 (2)0.41802 (12)0.0410 (4)
C140.5620 (3)0.0909 (3)0.40260 (13)0.0480 (5)
H14A0.65140.07230.45170.058*
C150.5287 (3)0.0087 (2)0.31643 (13)0.0464 (4)
H15A0.59250.07130.30560.056*
Cl20.57484 (7)0.43716 (6)0.78472 (4)0.04856 (15)
O40.8155 (3)0.6712 (2)0.97204 (12)0.0684 (5)
H410.81300.77550.98630.082*
H420.71420.61810.92260.082*
H10.279 (4)0.545 (3)0.2297 (15)0.045 (6)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0278 (7)0.0367 (7)0.0391 (7)0.0137 (6)0.0066 (6)0.0045 (6)
C10.0471 (11)0.0479 (10)0.0433 (10)0.0218 (9)0.0042 (8)0.0096 (8)
C20.0632 (14)0.0600 (13)0.0395 (10)0.0186 (11)0.0017 (9)0.0041 (9)
O10.0585 (10)0.0719 (11)0.0519 (9)0.0141 (8)0.0069 (7)0.0065 (8)
C30.0539 (13)0.0471 (11)0.0651 (14)0.0086 (10)0.0096 (11)0.0099 (10)
C40.0410 (10)0.0392 (10)0.0600 (12)0.0057 (8)0.0128 (9)0.0008 (8)
C50.0356 (9)0.0389 (9)0.0411 (9)0.0124 (7)0.0126 (7)0.0061 (7)
C60.0316 (8)0.0385 (9)0.0411 (9)0.0143 (7)0.0085 (7)0.0063 (7)
O20.0453 (7)0.0401 (7)0.0383 (6)0.0189 (6)0.0044 (5)0.0062 (5)
C70.0328 (8)0.0367 (9)0.0411 (9)0.0109 (7)0.0076 (7)0.0063 (7)
O30.0648 (9)0.0439 (7)0.0496 (8)0.0282 (7)0.0061 (7)0.0104 (6)
N20.0379 (8)0.0338 (7)0.0396 (7)0.0136 (6)0.0054 (6)0.0046 (6)
C80.0428 (10)0.0370 (9)0.0407 (9)0.0176 (7)0.0050 (7)0.0054 (7)
N30.0334 (7)0.0336 (7)0.0397 (7)0.0091 (6)0.0069 (6)0.0036 (6)
C90.0380 (9)0.0326 (8)0.0419 (9)0.0111 (7)0.0091 (7)0.0055 (7)
C100.0379 (9)0.0312 (8)0.0385 (9)0.0099 (7)0.0100 (7)0.0077 (7)
C110.0514 (11)0.0473 (10)0.0460 (10)0.0259 (9)0.0058 (8)0.0105 (8)
C120.0600 (13)0.0481 (11)0.0527 (11)0.0333 (10)0.0128 (9)0.0069 (9)
Cl10.0827 (4)0.0555 (3)0.0443 (3)0.0324 (3)0.0202 (3)0.0025 (2)
C130.0505 (11)0.0358 (9)0.0403 (9)0.0163 (8)0.0153 (8)0.0062 (7)
C140.0598 (12)0.0530 (11)0.0400 (9)0.0322 (10)0.0070 (9)0.0093 (8)
C150.0579 (12)0.0476 (10)0.0436 (10)0.0322 (9)0.0094 (9)0.0070 (8)
Cl20.0353 (2)0.0457 (3)0.0667 (3)0.02008 (19)0.0035 (2)0.0074 (2)
O40.0858 (13)0.0567 (10)0.0671 (10)0.0391 (9)0.0027 (9)0.0014 (8)
Geometric parameters (Å, º) top
N1—C51.489 (2)C7—O31.199 (2)
N1—C11.490 (2)C7—N21.358 (2)
N1—C41.493 (2)N2—N31.364 (2)
N1—H10.91 (2)N2—C81.448 (2)
C1—C21.502 (3)C8—H8A0.9600
C1—H1A0.9600C8—H8B0.9600
C1—H1B0.9600N3—C91.274 (2)
C2—O11.417 (3)C9—C101.467 (2)
C2—H2A0.9600C9—H90.9721
C2—H2B0.9600C10—C111.384 (3)
O1—C31.411 (3)C10—C151.387 (3)
C3—C41.515 (3)C11—C121.389 (3)
C3—H3A0.9600C11—H11A0.9601
C3—H3B0.9600C12—C131.370 (3)
C4—H4A0.9600C12—H12A0.9600
C4—H4B0.9600Cl1—C131.7385 (19)
C5—C61.502 (2)C13—C141.375 (3)
C5—H5A0.9600C14—C151.375 (3)
C5—H5B0.9600C14—H14A0.9599
C6—O21.453 (2)C15—H15A0.9600
C6—C81.527 (2)O4—H410.9276
C6—H60.9738O4—H420.9227
O2—C71.351 (2)
C5—N1—C1113.56 (14)O2—C6—H6104.6
C5—N1—C4110.35 (14)C5—C6—H6111.7
C1—N1—C4109.60 (15)C8—C6—H6112.0
C5—N1—H1107.9 (14)C7—O2—C6110.16 (13)
C1—N1—H1105.4 (14)O3—C7—O2122.80 (17)
C4—N1—H1109.9 (14)O3—C7—N2128.42 (17)
N1—C1—C2109.08 (16)O2—C7—N2108.76 (15)
N1—C1—H1A109.6C7—N2—N3119.48 (14)
C2—C1—H1A108.8C7—N2—C8112.95 (15)
N1—C1—H1B110.2N3—N2—C8126.64 (14)
C2—C1—H1B110.5N2—C8—C6100.83 (14)
H1A—C1—H1B108.7N2—C8—H8A112.1
O1—C2—C1111.5 (2)C6—C8—H8A110.7
O1—C2—H2A109.7N2—C8—H8B111.2
C1—C2—H2A111.2C6—C8—H8B112.5
O1—C2—H2B108.5H8A—C8—H8B109.3
C1—C2—H2B107.8C9—N3—N2115.62 (15)
H2A—C2—H2B108.1N3—C9—C10121.65 (16)
C3—O1—C2109.93 (17)N3—C9—H9119.4
O1—C3—C4112.23 (19)C10—C9—H9118.9
O1—C3—H3A108.9C11—C10—C15118.73 (17)
C4—C3—H3A109.5C11—C10—C9123.38 (17)
O1—C3—H3B109.3C15—C10—C9117.87 (16)
C4—C3—H3B109.2C10—C11—C12120.21 (18)
H3A—C3—H3B107.6C10—C11—H11A120.3
N1—C4—C3109.69 (17)C12—C11—H11A119.5
N1—C4—H4A108.5C13—C12—C11119.58 (17)
C3—C4—H4A109.0C13—C12—H12A119.8
N1—C4—H4B110.7C11—C12—H12A120.6
C3—C4—H4B110.5C12—C13—C14121.18 (17)
H4A—C4—H4B108.5C12—C13—Cl1119.97 (15)
N1—C5—C6113.23 (14)C14—C13—Cl1118.84 (15)
N1—C5—H5A108.6C15—C14—C13118.93 (18)
C6—C5—H5A107.7C15—C14—H14A121.2
N1—C5—H5B109.2C13—C14—H14A119.9
C6—C5—H5B109.9C14—C15—C10121.35 (17)
H5A—C5—H5B108.0C14—C15—H15A119.4
O2—C6—C5110.87 (14)C10—C15—H15A119.3
O2—C6—C8104.76 (13)H41—O4—H42109.0
C5—C6—C8112.42 (15)
C1—N1—C5—C658.3 (2)C6—C8—N2—N3177.81 (15)
N1—C5—C6—O283.06 (17)C8—N2—N3—C98.9 (2)
C5—C6—O2—C7134.99 (15)C5—N1—C1—C2179.81 (16)
C6—O2—C7—N25.40 (19)N1—C1—C2—O160.0 (2)
O2—C7—N2—N3175.44 (14)C1—C2—O1—C361.2 (2)
C7—N2—N3—C9177.06 (16)C2—O1—C3—C459.3 (2)
N2—N3—C9—C10179.53 (15)O1—C3—C4—N156.3 (2)
N3—C9—C10—C1121.5 (3)C3—C4—N1—C5179.78 (17)
N3—C9—C10—C15160.41 (18)O2—C7—N2—C85.7 (2)
C4—N1—C5—C6178.24 (15)C7—N2—C8—C613.38 (19)
N1—C5—C6—C8160.06 (14)N2—C8—C6—O215.35 (17)
C5—C6—C8—N2135.83 (15)C8—C6—O2—C713.49 (18)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···Cl2i0.91 (2)2.13 (2)3.0359 (17)174 (2)
O4—H42···Cl20.922.363.217 (2)154
O4—H41···O3ii0.932.062.873 (2)146
O4—H41···N3ii0.932.723.506 (2)143
O4—H41···O3iii0.933.363.807 (3)112
C1—H1B···O20.962.462.989 (3)115
C5—H5B···O4iv0.962.313.245 (3)163
C9—H9···Cl2iv0.972.783.666 (2)153
Symmetry codes: (i) x, y1, z1; (ii) x+1, y+1, z+1; (iii) x+1, y+1, z+1; (iv) x+1, y, z+1.

Experimental details

Crystal data
Chemical formulaC15H19ClN3O3+·Cl·H2O
Mr378.25
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)7.122 (2), 8.809 (2), 15.178 (3)
α, β, γ (°)95.98 (2), 99.34 (2), 107.43 (2)
V3)884.6 (4)
Z2
Radiation typeMo Kα
µ (mm1)0.39
Crystal size (mm)0.49 × 0.42 × 0.04
Data collection
DiffractometerKuma KM-4
diffractometer
Absorption correctionψ scan
(North et al., 1968)
Tmin, Tmax0.831, 0.985
No. of measured, independent and
observed [I > 2σ(I)] reflections
4747, 3858, 3418
Rint0.014
(sin θ/λ)max1)0.651
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.043, 0.120, 1.04
No. of reflections3858
No. of parameters221
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.35, 0.38

Computer programs: KM-4 Software (Kuma, 1993), KM-4 Software, DATAPROC (Kuma, 1998), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), XP in SHELXTL/PC (Sheldrick, 1990) and ORTEP-3 (Farrugia, 1997), SHELXL97.

Selected torsion angles (º) top
C6—O2—C7—N25.40 (19)N2—C8—C6—O215.35 (17)
O2—C7—N2—C85.7 (2)C8—C6—O2—C713.49 (18)
C7—N2—C8—C613.38 (19)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···Cl2i0.91 (2)2.13 (2)3.0359 (17)174 (2)
O4—H42···Cl20.922.363.217 (2)153.7
O4—H41···O3ii0.932.062.873 (2)145.5
O4—H41···N3ii0.932.723.506 (2)143.3
O4—H41···O3iii0.933.363.807 (3)112.0
C1—H1B···O20.962.462.989 (3)114.8
C5—H5B···O4iv0.962.313.245 (3)163.2
C9—H9···Cl2iv0.972.783.666 (2)152.7
Symmetry codes: (i) x, y1, z1; (ii) x+1, y+1, z+1; (iii) x+1, y+1, z+1; (iv) x+1, y, z+1.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds