organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-Amino-4-(4-chloro­phen­yl)-5,6,7,8,9,10-hexa­hydro­benzo[8]annulene-1,3-dicarbo­nitrile

aDepartment of Physics, Thiagarajar College, Madurai 625 009, India, and bSchool of Chemistry, Madurai Kamaraj University, Madurai 625 021, India
*Correspondence e-mail: mailtorvkk@yahoo.co.in

(Received 24 July 2012; accepted 7 August 2012; online 11 August 2012)

In the title compound, C20H18ClN3, the cyclo­octene ring exhibits conformational disorder of two methyl­ene groups with a site-occupation factor of 0.859 (6) for the major occupied site. In the crystal, mol­ecules are connected into inversion dimers via pairs of weak N—H⋯N hydrogen bonds, forming an R22(12) graph-set motif. These dimers are further connected via weak N—H⋯Cl inter­actions into chains running along [011]. There are also C—H⋯N interactions present in the crystal.

Related literature

For hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]). For puckering parameters, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]) For conformational analysis of rings, see: Allen et al. (1996[Allen, F. H., Howard, J. A. K. & Pitchford, N. A. (1996). Acta Cryst. B52, 882-891.]); Evans & Boeyens (1988[Evans, D. G. & Boeyens, J. C. A. (1988). Acta Cryst. B44, 663-671.], 1989[Evans, D. G. & Boeyens, J. C. A. (1989). Acta Cryst. B45, 581-590.]); Hendrickson (1967[Hendrickson, J. B. (1967). J. Am. Chem. Soc. 89, 7036-7043.]).

[Scheme 1]

Experimental

Crystal data
  • C20H18ClN3

  • Mr = 335.82

  • Orthorhombic, P b c a

  • a = 11.3835 (9) Å

  • b = 16.9840 (13) Å

  • c = 18.4766 (14) Å

  • V = 3572.2 (5) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.22 mm−1

  • T = 298 K

  • 0.28 × 0.13 × 0.10 mm

Data collection
  • Bruker Kappa APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.966, Tmax = 0.978

  • 39132 measured reflections

  • 4279 independent reflections

  • 3440 reflections with I > 2σ(I)

  • Rint = 0.025

Refinement
  • R[F2 > 2σ(F2)] = 0.045

  • wR(F2) = 0.137

  • S = 1.04

  • 4279 reflections

  • 226 parameters

  • H-atom parameters constrained

  • Δρmax = 0.25 e Å−3

  • Δρmin = −0.23 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1B⋯N3i 0.86 2.44 3.1636 (18) 142
C11′—H11C⋯N2ii 0.97 2.57 3.319 (16) 135
N1—H1A⋯Cl1iii 0.86 2.87 3.6628 (16) 153
Symmetry codes: (i) -x+1, -y, -z+2; (ii) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, z]; (iii) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLUTON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Hendrickson (1967) performed energy-minimumization calculations to first establish ten types of conformers for cyclooctanes viz. crown (CR), chair-chair (CC), twist-chair-chair (TCC), boat (B), saddle, also known as twist-boat (TB), boat-boat (BB), boat-chair (BC), twist-boat-chair (TBC), chair (C), and twist-chair (TC). In the title compound, the torsion angle about the diene (C3\C4) designated \t~1~ [C14—C4—C3—C9 = 3.39] shows that cyclooctene is a cis-conformer (Allen et al., 1996).

The cyclooctene ring exhibits conformational disorder (Fig.1) that may be described as a flip-flop between twist-boat-chair (TBC) and boat-chair (BC) modes (Table 1) with the major and minor component at a ratio of about 86:14. The minor component accounts for the BC mode and seems to have induced by a C—H···N hydrogen bond which connects glide-related molecules into a chain along the b axis. This chain is linked to its inverse through N—H···N hydrogen-bonds lead to a double chain generated through characteristic R22(12) graph-set motifs (Bernstein et al., 1995) across alternating centres of inversion (Fig. 2). These double chains, characterized by the primary interactions observed among molecules in the lattice, may be regaraded as the fundamental one-dimensional building units of a two-dimensional layer which extends parallel to the bc-plane through N—H···N hydrogen bonds.

The Cl atoms lie almost on the b-glide plane and close to the intersections of the a- and b- glide planes. A significant non-covalent N···Cl contact of 3.261 (2) Å and a weak N—H···Cl bond is also observed (Table 2)

Related literature top

For hydrogen-bond motifs, see: Bernstein et al. (1995). For puckering parameters, see: Cremer & Pople (1975) For conformational analysis of rings, see: Allen et al. (1996); Evans & Boeyens (1988, 1989); Hendrickson (1967).

Experimental top

Piperidine (2ml) was added to a mixture of 3-(4-chlorophenyl)-2-cyanoacrylamide (1 mmol) , malanonitrile (1 mmol) and cyclooctanone (1 mmol) in ethanol (5ml) and heated to reflux for three hours. The reaction mixture was poured to ice. The resulting solid formed was filtered and dissolved in hot methanol. Slow evaporation of the solvent for two days resulted in crystals suitable for X-ray diffraction.

Refinement top

All the H atoms were generated geometrically and treated as riding on their respective parent atoms with default constraints using SHELXL97 (Sheldrick, 2008).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLUTON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing the atom-numbering scheme and conformational disorder. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. Chain linked to its inverse through N—H···N hydrogen-bonds leading to a double chain generated through characteristic R22(12) graph-set motifs across alternating centres of inversion. Non-participating H-atoms are omitted for clarity.
2-Amino-4-(4-chlorophenyl)-5,6,7,8,9,10-hexahydrobenzo[8]annulene-1,3- dicarbonitrile top
Crystal data top
C20H18ClN3F(000) = 1408
Mr = 335.82Dx = 1.249 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 3440 reflections
a = 11.3835 (9) Åθ = 1.1–28.0°
b = 16.9840 (13) ŵ = 0.22 mm1
c = 18.4766 (14) ÅT = 298 K
V = 3572.2 (5) Å3Prismatic, brown
Z = 80.28 × 0.13 × 0.10 mm
Data collection top
Bruker Kappa APEXII CCD
diffractometer
4279 independent reflections
Radiation source: fine-focus sealed tube3440 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.025
ω and ϕ scanθmax = 28.0°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 1414
Tmin = 0.966, Tmax = 0.978k = 2222
39132 measured reflectionsl = 2424
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.045Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.137H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0739P)2 + 0.6829P]
where P = (Fo2 + 2Fc2)/3
4279 reflections(Δ/σ)max < 0.001
226 parametersΔρmax = 0.25 e Å3
0 restraintsΔρmin = 0.23 e Å3
Crystal data top
C20H18ClN3V = 3572.2 (5) Å3
Mr = 335.82Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 11.3835 (9) ŵ = 0.22 mm1
b = 16.9840 (13) ÅT = 298 K
c = 18.4766 (14) Å0.28 × 0.13 × 0.10 mm
Data collection top
Bruker Kappa APEXII CCD
diffractometer
4279 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
3440 reflections with I > 2σ(I)
Tmin = 0.966, Tmax = 0.978Rint = 0.025
39132 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0450 restraints
wR(F2) = 0.137H-atom parameters constrained
S = 1.04Δρmax = 0.25 e Å3
4279 reflectionsΔρmin = 0.23 e Å3
226 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Cl10.19472 (4)0.24645 (3)0.44965 (3)0.0821 (2)
N10.34007 (13)0.06894 (9)0.89983 (6)0.0652 (4)
H1A0.28610.10420.90300.078*
H1B0.36510.04570.93820.078*
N20.17382 (14)0.18467 (10)0.78542 (8)0.0701 (4)
N30.54892 (13)0.07229 (9)0.94323 (7)0.0629 (4)
C10.38568 (12)0.04983 (8)0.83396 (7)0.0450 (3)
C20.47395 (12)0.00739 (8)0.82566 (7)0.0440 (3)
C30.52167 (12)0.02742 (8)0.75804 (7)0.0461 (3)
C40.48105 (13)0.01088 (8)0.69542 (7)0.0470 (3)
C50.39315 (12)0.06796 (8)0.70218 (6)0.0427 (3)
C60.34465 (12)0.08622 (8)0.77001 (7)0.0427 (3)
C70.25038 (13)0.14201 (9)0.77660 (7)0.0498 (3)
C80.51593 (13)0.04515 (8)0.89042 (7)0.0492 (3)
C90.61406 (14)0.09109 (10)0.75523 (9)0.0608 (4)
H9A0.65800.09040.80020.073*
H9B0.66850.07920.71640.073*
C100.5646 (2)0.17414 (11)0.74346 (11)0.0802 (6)
H10A0.62380.21180.75850.096*0.859 (6)
H10B0.49740.18080.77510.096*0.859 (6)
H10C0.53900.19520.78960.096*0.141 (6)
H10D0.62680.20790.72530.096*0.141 (6)
C110.5268 (3)0.19477 (15)0.66680 (16)0.0894 (10)0.859 (6)
H11A0.51010.25070.66490.107*0.859 (6)
H11B0.59220.18470.63450.107*0.859 (6)
C120.4193 (3)0.15018 (16)0.63835 (17)0.0921 (10)0.859 (6)
H12A0.37450.13070.67930.111*0.859 (6)
H12B0.36970.18680.61210.111*0.859 (6)
C11'0.4529 (16)0.1765 (10)0.6860 (9)0.075 (5)*0.141 (6)
H11C0.41520.22770.68650.091*0.141 (6)
H11D0.39520.13660.69820.091*0.141 (6)
C12'0.5065 (15)0.1601 (8)0.6134 (8)0.074 (5)*0.141 (6)
H12C0.48840.20210.57960.089*0.141 (6)
H12D0.59120.15510.61730.089*0.141 (6)
C130.4493 (3)0.07954 (14)0.58781 (11)0.0994 (8)
H13A0.49040.09980.54570.119*0.859 (6)
H13B0.37620.05660.57100.119*0.859 (6)
H13C0.45010.07580.53540.119*0.141 (6)
H13D0.36870.07580.60440.119*0.141 (6)
C140.52427 (17)0.01371 (11)0.62142 (9)0.0691 (5)
H14A0.60490.03170.62540.083*
H14B0.52340.03170.58950.083*
C150.34630 (12)0.11211 (8)0.63809 (7)0.0431 (3)
C160.40500 (12)0.17620 (8)0.60985 (8)0.0505 (3)
H160.47630.19150.63000.061*
C170.35930 (14)0.21823 (10)0.55193 (8)0.0575 (4)
H170.39950.26130.53320.069*
C180.25412 (13)0.19528 (9)0.52285 (7)0.0522 (3)
C190.19350 (18)0.13276 (14)0.55030 (11)0.0832 (7)
H190.12190.11790.53030.100*
C200.23989 (17)0.09176 (12)0.60831 (10)0.0832 (7)
H200.19820.04960.62760.100*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0710 (3)0.1072 (4)0.0681 (3)0.0029 (2)0.0157 (2)0.0413 (3)
N10.0756 (9)0.0852 (9)0.0350 (6)0.0228 (7)0.0014 (6)0.0009 (6)
N20.0683 (9)0.0782 (10)0.0640 (8)0.0204 (8)0.0023 (7)0.0035 (7)
N30.0694 (8)0.0719 (9)0.0475 (7)0.0057 (7)0.0065 (6)0.0127 (6)
C10.0487 (7)0.0516 (7)0.0347 (6)0.0036 (6)0.0036 (5)0.0009 (5)
C20.0457 (7)0.0481 (7)0.0382 (6)0.0039 (5)0.0052 (5)0.0055 (5)
C30.0436 (7)0.0508 (7)0.0440 (7)0.0019 (6)0.0002 (5)0.0038 (6)
C40.0492 (7)0.0527 (7)0.0391 (7)0.0009 (6)0.0036 (5)0.0040 (5)
C50.0455 (7)0.0465 (7)0.0361 (6)0.0072 (5)0.0036 (5)0.0041 (5)
C60.0456 (6)0.0451 (6)0.0373 (6)0.0020 (5)0.0037 (5)0.0014 (5)
C70.0538 (8)0.0557 (8)0.0399 (6)0.0014 (6)0.0042 (6)0.0004 (6)
C80.0503 (7)0.0544 (8)0.0429 (7)0.0025 (6)0.0036 (6)0.0048 (6)
C90.0554 (8)0.0723 (10)0.0548 (8)0.0153 (7)0.0037 (7)0.0072 (7)
C100.1036 (15)0.0614 (10)0.0755 (12)0.0234 (10)0.0093 (11)0.0056 (9)
C110.109 (2)0.0646 (13)0.095 (2)0.0137 (13)0.0081 (16)0.0173 (13)
C120.097 (2)0.0822 (16)0.097 (2)0.0004 (14)0.0155 (15)0.0334 (15)
C130.148 (2)0.0973 (15)0.0526 (10)0.0276 (15)0.0169 (12)0.0201 (10)
C140.0842 (12)0.0787 (11)0.0443 (8)0.0213 (9)0.0168 (8)0.0104 (7)
C150.0464 (7)0.0482 (7)0.0346 (6)0.0049 (5)0.0037 (5)0.0034 (5)
C160.0462 (7)0.0537 (7)0.0516 (8)0.0076 (6)0.0084 (6)0.0088 (6)
C170.0566 (8)0.0567 (8)0.0592 (9)0.0085 (7)0.0052 (7)0.0196 (7)
C180.0509 (7)0.0648 (9)0.0409 (6)0.0041 (6)0.0043 (6)0.0129 (6)
C190.0713 (11)0.1031 (14)0.0752 (12)0.0364 (10)0.0367 (9)0.0351 (11)
C200.0785 (12)0.0942 (13)0.0770 (12)0.0470 (10)0.0343 (10)0.0429 (10)
Geometric parameters (Å, º) top
Cl1—C181.7441 (14)C11—H11B0.9700
N1—C11.3624 (17)C12—C131.559 (4)
N1—H1A0.8597C12—H12A0.9700
N1—H1B0.8603C12—H12B0.9700
N2—C71.145 (2)C11'—C12'1.50 (2)
N3—C81.1427 (18)C11'—H11C0.9700
C1—C21.4063 (19)C11'—H11D0.9700
C1—C61.4130 (17)C12'—C131.588 (15)
C2—C31.4042 (19)C12'—H12C0.9700
C2—C81.4391 (18)C12'—H12D0.9700
C3—C41.4056 (18)C13—C141.537 (3)
C3—C91.509 (2)C13—H13A0.9700
C4—C51.399 (2)C13—H13B0.9700
C4—C141.512 (2)C13—H13C0.9700
C5—C61.4042 (18)C13—H13D0.9700
C5—C151.4996 (17)C14—H14A0.9700
C6—C71.437 (2)C14—H14B0.9700
C9—C101.534 (3)C15—C201.375 (2)
C9—H9A0.9700C15—C161.3797 (19)
C9—H9B0.9700C16—C171.388 (2)
C10—C111.521 (3)C16—H160.9300
C10—C11'1.656 (17)C17—C181.369 (2)
C10—H10A0.9700C17—H170.9300
C10—H10B0.9700C18—C191.364 (2)
C10—H10C0.9700C19—C201.383 (2)
C10—H10D0.9700C19—H190.9300
C11—C121.532 (5)C20—H200.9300
C11—H11A0.9700
C1—N1—H1A120.0C13—C12—H12B108.7
C1—N1—H1B120.1H12A—C12—H12B107.6
H1A—N1—H1B120.0C12'—C11'—C10104.9 (12)
N1—C1—C2122.30 (12)C12'—C11'—H11C110.8
N1—C1—C6121.13 (13)C10—C11'—H11C110.8
C2—C1—C6116.57 (12)C12'—C11'—H11D110.8
C3—C2—C1122.74 (12)C10—C11'—H11D110.8
C3—C2—C8120.22 (12)H11C—C11'—H11D108.8
C1—C2—C8117.03 (12)C11'—C12'—C13105.0 (12)
C2—C3—C4119.54 (12)C11'—C12'—H12C110.7
C2—C3—C9118.28 (12)C13—C12'—H12C110.7
C4—C3—C9122.17 (13)C11'—C12'—H12D110.7
C5—C4—C3118.86 (12)C13—C12'—H12D110.7
C5—C4—C14120.33 (12)H12C—C12'—H12D108.8
C3—C4—C14120.63 (13)C14—C13—C12116.08 (17)
C4—C5—C6120.93 (11)C14—C13—C12'106.2 (6)
C4—C5—C15122.04 (11)C12—C13—C12'41.2 (6)
C6—C5—C15117.03 (12)C14—C13—H13A108.3
C5—C6—C1121.32 (12)C12—C13—H13A108.3
C5—C6—C7121.00 (11)C12'—C13—H13A74.7
C1—C6—C7117.67 (12)C14—C13—H13B108.3
N2—C7—C6176.28 (16)C12—C13—H13B108.3
N3—C8—C2177.25 (16)C12'—C13—H13B142.5
C3—C9—C10114.08 (14)H13A—C13—H13B107.4
C3—C9—H9A108.7C14—C13—H13C110.5
C10—C9—H9A108.7C12—C13—H13C130.6
C3—C9—H9B108.7C12'—C13—H13C110.5
C10—C9—H9B108.7H13A—C13—H13C38.7
H9A—C9—H9B107.6H13B—C13—H13C70.2
C11—C10—C9116.58 (18)C14—C13—H13D110.5
C11—C10—C11'35.0 (6)C12—C13—H13D69.7
C9—C10—C11'113.2 (6)C12'—C13—H13D110.5
C11—C10—H10A108.1H13A—C13—H13D137.1
C9—C10—H10A108.1H13B—C13—H13D42.6
C11'—C10—H10A134.5H13C—C13—H13D108.7
C11—C10—H10B108.1C4—C14—C13112.68 (16)
C9—C10—H10B108.1C4—C14—H14A109.1
C11'—C10—H10B77.2C13—C14—H14A109.1
H10A—C10—H10B107.3C4—C14—H14B109.1
C11—C10—H10C130.5C13—C14—H14B109.1
C9—C10—H10C108.9H14A—C14—H14B107.8
C11'—C10—H10C108.9C20—C15—C16118.28 (13)
H10A—C10—H10C73.3C20—C15—C5120.25 (12)
H10B—C10—H10C35.8C16—C15—C5121.39 (11)
C11—C10—H10D75.5C15—C16—C17121.06 (13)
C9—C10—H10D108.9C15—C16—H16119.5
C11'—C10—H10D108.9C17—C16—H16119.5
H10A—C10—H10D37.1C18—C17—C16118.95 (13)
H10B—C10—H10D135.6C18—C17—H17120.5
H10C—C10—H10D107.7C16—C17—H17120.5
C10—C11—C12115.6 (2)C19—C18—C17121.21 (13)
C10—C11—H11A108.4C19—C18—Cl1118.69 (12)
C12—C11—H11A108.4C17—C18—Cl1120.10 (12)
C10—C11—H11B108.4C18—C19—C20119.13 (15)
C12—C11—H11B108.4C18—C19—H19120.4
H11A—C11—H11B107.4C20—C19—H19120.4
C11—C12—C13114.2 (3)C15—C20—C19121.34 (15)
C11—C12—H12A108.7C15—C20—H20119.3
C13—C12—H12A108.7C19—C20—H20119.3
C11—C12—H12B108.7
N1—C1—C2—C3179.89 (14)C3—C9—C10—C1177.1 (2)
C6—C1—C2—C31.1 (2)C9—C10—C11—C1267.7 (3)
N1—C1—C2—C80.6 (2)C10—C11—C12—C1399.9 (3)
C6—C1—C2—C8179.67 (12)C11—C12—C13—C1460.5 (3)
C1—C2—C3—C40.3 (2)C12—C13—C14—C446.5 (3)
C8—C2—C3—C4178.99 (13)C3—C4—C14—C1388.71 (19)
C1—C2—C3—C9178.57 (13)C3—C9—C10—C11'38.5 (7)
C8—C2—C3—C92.2 (2)C9—C10—C11'—C12'70.7 (12)
C2—C3—C4—C50.4 (2)C10—C11'—C12'—C13116.6 (11)
C9—C3—C4—C5178.44 (13)C11'—C12'—C13—C1485.5 (10)
C2—C3—C4—C14175.42 (14)C12'—C13—C14—C489.6 (6)
C3—C4—C5—C60.9 (2)C11'—C10—C11—C1225.4 (10)
C14—C4—C5—C6174.16 (14)C11—C10—C11'—C12'33.0 (8)
C3—C4—C5—C15179.21 (12)C11—C12—C13—C12'24.5 (8)
C14—C4—C5—C155.7 (2)C11'—C12'—C13—C1225.8 (8)
C4—C5—C6—C12.3 (2)C5—C4—C14—C1386.27 (19)
C15—C5—C6—C1177.79 (11)C4—C5—C15—C20102.07 (19)
C4—C5—C6—C7176.91 (13)C6—C5—C15—C2077.81 (19)
C15—C5—C6—C72.97 (19)C4—C5—C15—C1681.27 (18)
N1—C1—C6—C5178.61 (14)C6—C5—C15—C1698.85 (16)
C2—C1—C6—C52.33 (19)C20—C15—C16—C171.3 (2)
N1—C1—C6—C72.1 (2)C5—C15—C16—C17178.01 (14)
C2—C1—C6—C7176.94 (12)C15—C16—C17—C180.1 (2)
C5—C6—C7—N2159 (3)C16—C17—C18—C190.7 (3)
C1—C6—C7—N220 (3)C16—C17—C18—Cl1179.58 (13)
C3—C2—C8—N3141 (3)C17—C18—C19—C200.4 (3)
C1—C2—C8—N338 (3)Cl1—C18—C19—C20179.96 (18)
C2—C3—C9—C1090.97 (18)C16—C15—C20—C191.7 (3)
C9—C3—C4—C143.4 (2)C5—C15—C20—C19178.4 (2)
C4—C3—C9—C1087.84 (18)C18—C19—C20—C150.9 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1B···N3i0.862.443.1636 (18)142
C11—H11C···N2ii0.972.573.319 (16)135
N1—H1A···Cl1iii0.862.873.6628 (16)153
Symmetry codes: (i) x+1, y, z+2; (ii) x+1/2, y1/2, z; (iii) x, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC20H18ClN3
Mr335.82
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)298
a, b, c (Å)11.3835 (9), 16.9840 (13), 18.4766 (14)
V3)3572.2 (5)
Z8
Radiation typeMo Kα
µ (mm1)0.22
Crystal size (mm)0.28 × 0.13 × 0.10
Data collection
DiffractometerBruker Kappa APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.966, 0.978
No. of measured, independent and
observed [I > 2σ(I)] reflections
39132, 4279, 3440
Rint0.025
(sin θ/λ)max1)0.660
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.045, 0.137, 1.04
No. of reflections4279
No. of parameters226
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.25, 0.23

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLUTON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1B···N3i0.862.443.1636 (18)141.9
C11'—H11C···N2ii0.972.573.319 (16)134.6
N1—H1A···Cl1iii0.862.873.6628 (16)153.3
Symmetry codes: (i) x+1, y, z+2; (ii) x+1/2, y1/2, z; (iii) x, y+1/2, z+1/2.
 

Acknowledgements

The authors thank Dr B. Sridhar for help with the data collection and Dr K. Ravikumar for useful discussions on the structural significance.

References

First citationAllen, F. H., Howard, J. A. K. & Pitchford, N. A. (1996). Acta Cryst. B52, 882–891.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationEvans, D. G. & Boeyens, J. C. A. (1988). Acta Cryst. B44, 663–671.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationEvans, D. G. & Boeyens, J. C. A. (1989). Acta Cryst. B45, 581–590.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationHendrickson, J. B. (1967). J. Am. Chem. Soc. 89, 7036–7043.  CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds