organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4-Iso­propyl-5,5-di­methyl-2-sulfanyl-1,3,2-dioxaphosphinane 2-sulfide

aSchool of Studies in Chemistry, Jiwaji University, Gwalior 474 011, India, and bDepartment of Chemistry, Howard University, 525 College Street NW, Washington, DC 20059, USA
*Correspondence e-mail: rbutcher99@yahoo.com

(Received 29 June 2012; accepted 2 July 2012; online 11 August 2012)

The title compound, C8H17O2PS2, displays a distorted tetra­hedral geometry around the P atom. The P atom is part of a six-membered ring with an isopropyl group in the equatorial position. The mol­ecules are linked by S—H⋯S hydrogen bonds in the crystal packing.

Related literature

For dithio­phospho­ric acid ligands that form metal complexes, see: Srivastava et al. (2010[Srivastava, S. K., Tomar, S., Rastogi, R. & Saxena, R. (2010). Phosphorus Sulfur Silicon, 185, 634-640.]). For applications as lubricating oil additives and load-carrying capacitors, see: Jiang et al. (1996[Jiang, S., Dasgupta, S., Blanco, M., Frazier, R., Yamaguchi, E. S., Tang, Y. & Goddard, W. A. (1996). J. Phys. Chem. 100, 15760-15769. ]); Haire et al. (2008[Haire, M. J., Schuermans, K. J. & De Weerdt, M. J. (2008). US Patent No. 0269085.]); Plaza et al. (2001[Plaza, S., Margielewski, L., Celichowski, G., Wesolowski, R. W. & Stanecka, R. (2001). Wear, 249, 1077-1089.]). For a related structure, see: Li et al. (2007[Li, H.-B., Li, Y., Xiong, D.-J. & Tian, D.-M. (2007). Acta Cryst. E63, o606-o607.]).

[Scheme 1]

Experimental

Crystal data
  • C8H17O2PS2

  • Mr = 240.31

  • Monoclinic, P 21 /c

  • a = 8.2831 (2) Å

  • b = 13.1532 (4) Å

  • c = 11.5255 (3) Å

  • β = 104.128 (3)°

  • V = 1217.72 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.54 mm−1

  • T = 123 K

  • 0.65 × 0.2 × 0.1 mm

Data collection
  • Agilent Xcalibur Ruby Gemini diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2011[Agilent (2011). CrysAlis PRO. Agilent Technologies, Yarnton, Oxfordshire, England.]) Tmin = 0.872, Tmax = 1.000

  • 10444 measured reflections

  • 4979 independent reflections

  • 3999 reflections with I > 2σ(I)

  • Rint = 0.024

Refinement
  • R[F2 > 2σ(F2)] = 0.038

  • wR(F2) = 0.094

  • S = 1.09

  • 4979 reflections

  • 123 parameters

  • H-atom parameters constrained

  • Δρmax = 0.45 e Å−3

  • Δρmin = −0.38 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
S1—H1S⋯S2i 1.20 2.76 3.9456 (5) 170
Symmetry code: (i) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}].

Data collection: CrysAlis PRO (Agilent, 2011[Agilent (2011). CrysAlis PRO. Agilent Technologies, Yarnton, Oxfordshire, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Organo-phosphorus compounds with sulfur donors have recently drawn more attention due to their adjustable coordination ability and interesting applications as high viscosity lubricant additives(Jiang et al., 1996; Haire et al., 2008) and load carrying capacity (Plaza et al., 2001). As part of our investigation on the organotin dithio complexes (Srivastava et al., 2010), we herein report the synthesis and structure of I.

The crystal structure of I is illustrated in Fig.1. The conformation of the molecule with respect to P is distorted tetrahedral as reflected by torsion angles O2—P—O1—C1, S2—P—O2—C5 and S1—P—O1—C1 of 41.57 (10), -165.77 (7) and -74.71 (9)° respectively. The phosphorus atom is coordinated by both sulfur and oxygen atoms with the formation of a six-membered ring. The isopropyl group is in equatorial position as indicated by bond angles C5—C6—C8 [108.83 (11)°], C5—C6—C7 [115.18 (11)°] and C7—C6—C8 [110.12 (12)°]. The P—S1, P—S2 and mean P—O distances are 2.0723 (5), 1.9216 (4) and 1.5794 (9) Å, respectively, which are comparable to reported values (Li et al., 2007). The molecules are stabilized by S—H···S intermolecular hydrogen bonds in the crystal packing (Table 1; Fig.2).

Related literature top

For dithiophosphoric acid ligands that form metal complexes, see: Srivastava et al. (2010). For applications as lubricating oil additives and load-carrying capacitors, see: Jiang et al. (1996); Haire et al. (2008); Plaza et al. (2001). For a related structure, see: Li et al. (2007).

Experimental top

4-Isopropyl-2-mercapto-5,5-dimethyl-1,3,2-dioxaphosphinane 2-sulfide was prepared by the reaction of P4S10 (4.44 g, 0.01 mol) with O.O'-2,2,4-trimethyl-1,3- pentanediol(0.02 g, 0.02 mol) with stirring. The reaction was carried out in moisture free anhydrous condition and in presence of dry nitrogen. The P4S10 was slowly dissolved in glycol solution (in dry benzene) with evolution of H2S.The reaction mixture was warmed gently on water bath (60 - 80 °C) in order to complete the reaction. After cooling, an yellow viscous liquid was obtained which crystallizes in deep freezer overnight. White crystal suitable for X-ray analysis was obtained in 60% yield. (M.P.: 336 K). Anal. Calc. for C8H17O2PS2 (%): C,39.98; H, 7.13. Found: C 39.84; H, 7.05.

Refinement top

All H atoms were located by a Fourier map. Nevertheless, they were placed in their calculated positions and then refined using the riding model with atom—H lengths of 1.00 Å (CH),0.99 Å (CH2) or 0.98 Å (CH3). Isotropic displacement parameters for these atoms were set to 1.2 (CH or CH2) or 1.5 (CH3) times Ueq of the parent atom. The torsions angles O-P-S-H of the S-H group and C-C-C-H for the methyl groups were refined.

Computing details top

Data collection: CrysAlis PRO (Agilent, 2011); cell refinement: CrysAlis PRO (Agilent, 2011); data reduction: CrysAlis PRO (Agilent, 2011); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound showing the atom labeling scheme and 30% probability displacement ellipsoids.
[Figure 2] Fig. 2. Crystal packing for (I) viewed along b axis. Dashed lines indicate an intermolecular S—H···S hydrogen bonds.
4-Isopropyl-5,5-dimethyl-2-sulfanyl-1,3,2-dioxaphosphinane 2-sulfide top
Crystal data top
C8H17O2PS2F(000) = 512
Mr = 240.31Dx = 1.311 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 3599 reflections
a = 8.2831 (2) Åθ = 3.1–35.0°
b = 13.1532 (4) ŵ = 0.54 mm1
c = 11.5255 (3) ÅT = 123 K
β = 104.128 (3)°Long plate, colorless
V = 1217.72 (6) Å30.65 × 0.2 × 0.1 mm
Z = 4
Data collection top
Agilent Xcalibur Ruby Gemini
diffractometer
4979 independent reflections
Radiation source: Enhance (Mo) X-ray Source3999 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.024
Detector resolution: 10.5081 pixels mm-1θmax = 35.0°, θmin = 3.1°
ω scansh = 1312
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2011)
k = 1721
Tmin = 0.872, Tmax = 1.000l = 1817
10444 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.038Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.094H-atom parameters constrained
S = 1.09 w = 1/[σ2(Fo2) + (0.0372P)2 + 0.2639P]
where P = (Fo2 + 2Fc2)/3
4979 reflections(Δ/σ)max = 0.001
123 parametersΔρmax = 0.45 e Å3
0 restraintsΔρmin = 0.38 e Å3
Crystal data top
C8H17O2PS2V = 1217.72 (6) Å3
Mr = 240.31Z = 4
Monoclinic, P21/cMo Kα radiation
a = 8.2831 (2) ŵ = 0.54 mm1
b = 13.1532 (4) ÅT = 123 K
c = 11.5255 (3) Å0.65 × 0.2 × 0.1 mm
β = 104.128 (3)°
Data collection top
Agilent Xcalibur Ruby Gemini
diffractometer
4979 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2011)
3999 reflections with I > 2σ(I)
Tmin = 0.872, Tmax = 1.000Rint = 0.024
10444 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0380 restraints
wR(F2) = 0.094H-atom parameters constrained
S = 1.09Δρmax = 0.45 e Å3
4979 reflectionsΔρmin = 0.38 e Å3
123 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
P0.80019 (4)0.22223 (2)0.26248 (3)0.01693 (7)
S10.89229 (5)0.16081 (3)0.43126 (3)0.02970 (9)
H1S0.87900.22190.50570.036*
S20.81069 (4)0.12077 (3)0.14460 (3)0.02277 (8)
O10.90574 (11)0.31992 (7)0.24915 (9)0.02352 (19)
O20.61912 (10)0.26399 (7)0.25326 (8)0.01907 (17)
C10.87839 (16)0.41289 (10)0.31086 (13)0.0249 (3)
H1A0.94690.46820.28950.030*
H1B0.91530.40190.39830.030*
C20.69484 (16)0.44550 (10)0.27866 (12)0.0207 (2)
C30.6409 (2)0.47148 (12)0.14512 (13)0.0303 (3)
H3A0.72530.51480.12350.046*
H3B0.53420.50760.12840.046*
H3C0.62870.40870.09800.046*
C40.68450 (19)0.54015 (11)0.35475 (13)0.0288 (3)
H4A0.76350.59150.34090.043*
H4B0.71210.52140.43960.043*
H4C0.57130.56790.33220.043*
C50.59607 (15)0.35802 (9)0.31797 (11)0.0182 (2)
H5A0.64880.34530.40450.022*
C60.40844 (16)0.36803 (11)0.30692 (12)0.0231 (3)
H6A0.38880.43620.33940.028*
C70.29883 (18)0.36110 (15)0.17915 (14)0.0349 (3)
H7A0.18130.36210.18140.052*
H7B0.32300.29770.14210.052*
H7C0.32200.41910.13230.052*
C80.35565 (18)0.28763 (13)0.38615 (14)0.0317 (3)
H8A0.23790.29700.38490.048*
H8B0.42320.29460.46840.048*
H8C0.37200.21970.35590.048*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
P0.01539 (13)0.01640 (14)0.01950 (14)0.00176 (11)0.00521 (11)0.00062 (11)
S10.03645 (18)0.03029 (19)0.02098 (15)0.00996 (15)0.00431 (14)0.00425 (13)
S20.02690 (15)0.02011 (15)0.02217 (15)0.00522 (12)0.00769 (12)0.00132 (12)
O10.0191 (4)0.0197 (4)0.0342 (5)0.0022 (3)0.0112 (4)0.0017 (4)
O20.0157 (3)0.0167 (4)0.0256 (4)0.0003 (3)0.0065 (3)0.0032 (3)
C10.0226 (5)0.0190 (6)0.0339 (7)0.0054 (5)0.0084 (5)0.0030 (5)
C20.0238 (5)0.0150 (5)0.0236 (5)0.0003 (4)0.0065 (5)0.0002 (5)
C30.0390 (8)0.0260 (7)0.0273 (6)0.0021 (6)0.0106 (6)0.0053 (6)
C40.0352 (7)0.0171 (6)0.0344 (7)0.0012 (5)0.0092 (6)0.0038 (5)
C50.0186 (5)0.0160 (5)0.0204 (5)0.0010 (4)0.0055 (4)0.0015 (4)
C60.0186 (5)0.0234 (6)0.0282 (6)0.0027 (5)0.0074 (5)0.0043 (5)
C70.0197 (6)0.0500 (10)0.0332 (7)0.0035 (6)0.0027 (5)0.0027 (7)
C80.0263 (6)0.0393 (8)0.0332 (7)0.0052 (6)0.0141 (6)0.0030 (6)
Geometric parameters (Å, º) top
P—O21.5762 (9)C3—H3C0.9800
P—O11.5826 (10)C4—H4A0.9800
P—S21.9216 (5)C4—H4B0.9800
P—S12.0723 (5)C4—H4C0.9800
S1—H1S1.2000C5—C61.5337 (17)
O1—C11.4599 (17)C5—H5A1.0000
O2—C51.4804 (15)C6—C81.529 (2)
C1—C21.5355 (18)C6—C71.533 (2)
C1—H1A0.9900C6—H6A1.0000
C1—H1B0.9900C7—H7A0.9800
C2—C31.5328 (19)C7—H7B0.9800
C2—C41.5372 (18)C7—H7C0.9800
C2—C51.5426 (18)C8—H8A0.9800
C3—H3A0.9800C8—H8B0.9800
C3—H3B0.9800C8—H8C0.9800
O2—P—O1104.46 (5)H4A—C4—H4B109.5
O2—P—S2113.64 (4)C2—C4—H4C109.5
O1—P—S2111.95 (4)H4A—C4—H4C109.5
O2—P—S1108.99 (4)H4B—C4—H4C109.5
O1—P—S1108.79 (4)O2—C5—C6106.41 (10)
S2—P—S1108.85 (2)O2—C5—C2109.41 (10)
P—S1—H1S109.5C6—C5—C2120.72 (11)
C1—O1—P118.53 (8)O2—C5—H5A106.5
C5—O2—P119.65 (7)C6—C5—H5A106.5
O1—C1—C2112.24 (10)C2—C5—H5A106.5
O1—C1—H1A109.2C8—C6—C7110.12 (12)
C2—C1—H1A109.2C8—C6—C5108.83 (11)
O1—C1—H1B109.2C7—C6—C5115.18 (11)
C2—C1—H1B109.2C8—C6—H6A107.5
H1A—C1—H1B107.9C7—C6—H6A107.5
C3—C2—C1109.50 (11)C5—C6—H6A107.5
C3—C2—C4110.43 (11)C6—C7—H7A109.5
C1—C2—C4106.15 (11)C6—C7—H7B109.5
C3—C2—C5114.56 (11)H7A—C7—H7B109.5
C1—C2—C5106.59 (10)C6—C7—H7C109.5
C4—C2—C5109.22 (11)H7A—C7—H7C109.5
C2—C3—H3A109.5H7B—C7—H7C109.5
C2—C3—H3B109.5C6—C8—H8A109.5
H3A—C3—H3B109.5C6—C8—H8B109.5
C2—C3—H3C109.5H8A—C8—H8B109.5
H3A—C3—H3C109.5C6—C8—H8C109.5
H3B—C3—H3C109.5H8A—C8—H8C109.5
C2—C4—H4A109.5H8B—C8—H8C109.5
C2—C4—H4B109.5
O2—P—O1—C141.56 (10)P—O2—C5—C256.81 (12)
S2—P—O1—C1164.95 (8)C3—C2—C5—O261.00 (14)
S1—P—O1—C174.71 (9)C1—C2—C5—O260.27 (13)
O1—P—O2—C543.49 (10)C4—C2—C5—O2174.55 (10)
S2—P—O2—C5165.77 (7)C3—C2—C5—C662.90 (16)
S1—P—O2—C572.65 (9)C1—C2—C5—C6175.83 (11)
P—O1—C1—C254.83 (14)C4—C2—C5—C661.55 (15)
O1—C1—C2—C363.68 (14)O2—C5—C6—C872.23 (13)
O1—C1—C2—C4177.11 (11)C2—C5—C6—C8162.46 (12)
O1—C1—C2—C560.77 (14)O2—C5—C6—C751.96 (15)
P—O2—C5—C6171.25 (8)C2—C5—C6—C773.35 (16)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
S1—H1S···S2i1.202.763.9456 (5)170
Symmetry code: (i) x, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC8H17O2PS2
Mr240.31
Crystal system, space groupMonoclinic, P21/c
Temperature (K)123
a, b, c (Å)8.2831 (2), 13.1532 (4), 11.5255 (3)
β (°) 104.128 (3)
V3)1217.72 (6)
Z4
Radiation typeMo Kα
µ (mm1)0.54
Crystal size (mm)0.65 × 0.2 × 0.1
Data collection
DiffractometerAgilent Xcalibur Ruby Gemini
diffractometer
Absorption correctionMulti-scan
(CrysAlis PRO; Agilent, 2011)
Tmin, Tmax0.872, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
10444, 4979, 3999
Rint0.024
(sin θ/λ)max1)0.808
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.094, 1.09
No. of reflections4979
No. of parameters123
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.45, 0.38

Computer programs: CrysAlis PRO (Agilent, 2011), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
S1—H1S···S2i1.202.763.9456 (5)170.0
Symmetry code: (i) x, y+1/2, z+1/2.
 

Acknowledgements

SKS and PS are grateful to UGC, New Delhi, India, for financial assistance (grant No. F.36–123/2008(SR)). RJB acknowledges the NSF–MRI program (grant No. CHE0619278) for funds to purchase the X-ray diffractometer. SKG wishes to acknowledge the USIEF for the award of a Fulbright-Nehru Senior Research Fellowship.

References

First citationAgilent (2011). CrysAlis PRO. Agilent Technologies, Yarnton, Oxfordshire, England.  Google Scholar
First citationHaire, M. J., Schuermans, K. J. & De Weerdt, M. J. (2008). US Patent No. 0269085.  Google Scholar
First citationJiang, S., Dasgupta, S., Blanco, M., Frazier, R., Yamaguchi, E. S., Tang, Y. & Goddard, W. A. (1996). J. Phys. Chem. 100, 15760–15769.   CrossRef CAS Web of Science Google Scholar
First citationLi, H.-B., Li, Y., Xiong, D.-J. & Tian, D.-M. (2007). Acta Cryst. E63, o606–o607.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationPlaza, S., Margielewski, L., Celichowski, G., Wesolowski, R. W. & Stanecka, R. (2001). Wear, 249, 1077–1089.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSrivastava, S. K., Tomar, S., Rastogi, R. & Saxena, R. (2010). Phosphorus Sulfur Silicon, 185, 634–640.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds