organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4-Di­ethyl­amino-3,5-diiso­propyl­benzalde­hyde

aUniversity Mainz, Duesbergweg 10-14, 55099 Mainz, Germany
*Correspondence e-mail: detert@uni-mainz.de

(Received 7 November 2011; accepted 10 November 2011; online 16 November 2011)

The title benzaldehyde, C17H27NO, was prepared via lithia­tion of bromoaniline and reaction with DMF. In the crystal, the molecule adopts a C2-symmetrical conformation; nevertheless, two modes of disorder are present: the orientation of the aldehyde group (occupancy ratio 0.5:0.5) and of symmetry-equivalent ethyl groups [occupancy ratio 0.595 (7):0.405 (7)]. The phenyl­ene ring and the carbonyl group are essentially coplanar [C—C—C—O torsion angle = −179.0 (4)°] but the dihedral angle between the mean planes of the phenyl­ene ring and the amino group = 67.5 (2)°. This and the long [1.414 (3) Å] aniline C—N bond indicate electronic decoupling between the carbonyl and amino groups. The angle sum of 359.9 (2)° around the N atom results from steric compression-induced rehybridization.

Related literature

The title compound was prepared as an inter­mediate in the synthesis of highly solvatochromic (Detert et al., 2002[Detert, H., Sugiono, E. & Kruse, G. (2002). J. Phys. Org. Chem. 15, 638-641.]; Detert & Schmitt, 2006[Detert, H. & Schmitt, V. (2006). J. Phys. Org. Chem. 19, 603-607.]) or acidochromic fluoro­phores (Schmitt et al., 2008[Schmitt, V., Glang, S., Preis, J. & Detert, H. (2008). Sens. Lett. 6, 1-7.], 2011[Schmitt, V., Fischer, J. & Detert, H. (2011). ISRN Org. Chem. doi:10.5402/2011/589012.]). For crystal structures of anilines with a p-accetor substituent, see: Fischer et al. (2011[Fischer, J., Schmitt, V., Schollmeyer, D. & Detert, H. (2011). Acta Cryst. E67, o875.]); Moschel et al. (2011[Moschel, S., Schollmeyer, D. & Detert, H. (2011). Acta Cryst. E67, o1425.]). Acceptor-substituted anilines display dual fluorescence due to the formation of TICT (twisted intra­molecular charge-transfer) states, see: Rotkiewicz et al. (1973[Rotkiewicz, K., Grellmann, K. H. & Grabowski, Z. R. (1973). Chem. Phys. Lett. 19, 315-318.]); Okada et al. (1999[Okada, T., Uesugi, M., Köhler, G., Rechthaler, K., Rotkiewicz, K., Rettig, W. & Grabner, G. (1999). Chem. Phys. 241, 327-337.]). For the crystal structure of 4-dimethyl­amino­benzaldehyde, see: Gao & Zhu (2008[Gao, B. & Zhu, J.-L. (2008). Acta Cryst. E64, o1182.]).

[Scheme 1]

Experimental

Crystal data
  • C17H27NO

  • Mr = 261.40

  • Monoclinic, C 2/c

  • a = 11.8061 (9) Å

  • b = 14.3419 (7) Å

  • c = 10.7891 (8) Å

  • β = 118.478 (3)°

  • V = 1605.78 (19) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 0.50 mm−1

  • T = 173 K

  • 0.50 × 0.20 × 0.05 mm

Data collection
  • Enraf–Nonius CAD-4 diffractometer

  • 1607 measured reflections

  • 1533 independent reflections

  • 1165 reflections with I > 2σ(I)

  • Rint = 0.065

  • 60 standard reflections every 60 min intensity decay: 3%

Refinement
  • R[F2 > 2σ(F2)] = 0.057

  • wR(F2) = 0.186

  • S = 1.07

  • 1533 reflections

  • 117 parameters

  • H-atom parameters constrained

  • Δρmax = 0.31 e Å−3

  • Δρmin = −0.23 e Å−3

Data collection: CAD-4 Software (Enraf–Nonius, 1989[Enraf-Nonius (1989). CAD-4 Software. Enraf-Nonius, Delft, The Netherlands.]); cell refinement: CAD-4 Software; data reduction: CORINC (Dräger & Gattow, 1971[Dräger, M. & Gattow, G. (1971). Acta Chem. Scand. 25, 761-762.]); program(s) used to solve structure: SIR97 (Altomare et al., 1999[Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: PLATON.

Supporting information


Comment top

The aldehyde forms needle-shaped crystals of the monoclinic space group C2/c.The compound crystallizes in parallel layers composed of geometrical dimers with C2 symmetry and z = 2. Two modes of disorder are present. A symmetry axis through C11—C4—C1—N4 results in a C2-symmetry of the molecule - but the carboxaldehyde group is disordered (50/50). The symmetry equivalent ethyl groups are also disordered but the s.o.f. is 60/40. The planes of the amino group and the benzene ring open an angle of 67.3 (3) ° whereas the carbonyl group and the aromatic system are essentially coplanar (torsion angle C3—C4—C11—O12: -179.0 (4) °). The sum of the bond angles around the nitrogen atom in both conformers is 359.9 (2) °, corresponding to a sp2 hybridization. With 1.414 (3) Å, the aniline C—N bond is much longer than the corresponding bond (1.366 (2) Å) in the sterically undisturbed dimethylaminobenzaldehyde (Gao & Zhu, 2008). This may be in part due to steric congestion, but also due to inhibited conjugation. Correspondingly, the carbonyl bond length of 1.114 (4) Å in the title compound is shorter than in the dimethylamino derivative (1.204 (2) Å, 1.212 (3) Å) and with 1.470 (4) Å the aryl-carbonyl bond C4—C11 is longer than in the reference compound (1.457 (3) Å, 1.454 (2) Å).

Related literature top

The title compound was prepared as an intermediate in the synthesis of highly solvatochromic (Detert et al., 2002; Detert & Schmitt, 2006) or acidochromic fluorophores (Schmitt et al., 2008, 2011). For crystal structures of anilines with a p-accetor substituent, see: Fischer et al. (2011); Moschel et al. (2011). Acceptor-substituted anilines display dual fluorescence due to the formation of TICT (twisted intramolecular charge-transfer) states, see: Rotkiewicz et al. (1973); Okada et al. (1999). For the crystal structure of 4-dimethylaminobenzaldehyd, see: Gao & Zhu (2008).

Experimental top

4-Bromo-N,N-diethyl-2,6-diisopropylaniline (0.76 g, 2.5 mmol) was dissolved in THF (15 ml) under nitrogen in a flame-dried Schlenk tube. The solution was cooled to195 K and n-BuLi (2.5 M in heptane, 1 ml) was added dropwise. After stirring for 1 h, dry DMF (0.2 ml, 2.5 mmol) was added carefully, stirring was continued for 15 min at 195 K, and the solution was allowed to reach room temperature. Aqueous NH4Cl (conc. 15 ml) was added and the mixture extracted with ethyl acetate (3 * 20 ml). The pooled organic solutions were dried (Na2SO4), concentrated in vacuo and the product was isolated via column chromatography (SiO2, petroleum ether / ethyl acetate = 15 / 1) Rf = 0.4 (petroleum ether / ethyl acetate = 9 / 1). The aldehyde was isolated as a yellowish oil that crystallized upon standing for several days. Yield: 0.23 g (35%)

Refinement top

Hydrogen atoms attached to carbons were placed at calculated positions with C—H = 0.95 Å (aromatic) or 0.98–0.99 Å (sp3 C-atom). All H atoms were refined in the riding-model approximation with isotropic displacement parameters set at 1.2–1.5 times of the Ueq of the parent atom.

Structure description top

The aldehyde forms needle-shaped crystals of the monoclinic space group C2/c.The compound crystallizes in parallel layers composed of geometrical dimers with C2 symmetry and z = 2. Two modes of disorder are present. A symmetry axis through C11—C4—C1—N4 results in a C2-symmetry of the molecule - but the carboxaldehyde group is disordered (50/50). The symmetry equivalent ethyl groups are also disordered but the s.o.f. is 60/40. The planes of the amino group and the benzene ring open an angle of 67.3 (3) ° whereas the carbonyl group and the aromatic system are essentially coplanar (torsion angle C3—C4—C11—O12: -179.0 (4) °). The sum of the bond angles around the nitrogen atom in both conformers is 359.9 (2) °, corresponding to a sp2 hybridization. With 1.414 (3) Å, the aniline C—N bond is much longer than the corresponding bond (1.366 (2) Å) in the sterically undisturbed dimethylaminobenzaldehyde (Gao & Zhu, 2008). This may be in part due to steric congestion, but also due to inhibited conjugation. Correspondingly, the carbonyl bond length of 1.114 (4) Å in the title compound is shorter than in the dimethylamino derivative (1.204 (2) Å, 1.212 (3) Å) and with 1.470 (4) Å the aryl-carbonyl bond C4—C11 is longer than in the reference compound (1.457 (3) Å, 1.454 (2) Å).

The title compound was prepared as an intermediate in the synthesis of highly solvatochromic (Detert et al., 2002; Detert & Schmitt, 2006) or acidochromic fluorophores (Schmitt et al., 2008, 2011). For crystal structures of anilines with a p-accetor substituent, see: Fischer et al. (2011); Moschel et al. (2011). Acceptor-substituted anilines display dual fluorescence due to the formation of TICT (twisted intramolecular charge-transfer) states, see: Rotkiewicz et al. (1973); Okada et al. (1999). For the crystal structure of 4-dimethylaminobenzaldehyd, see: Gao & Zhu (2008).

Computing details top

Data collection: CAD-4 Software (Enraf–Nonius, 1989); cell refinement: CAD-4 Software (Enraf–Nonius, 1989); data reduction: CORINC (Dräger & Gattow, 1971); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. View of compound I. Displacement ellipsoids are drawn at the 50% probability level. Only major conformer is shown.
4-Diethylamino-3,5-diisopropylbenzaldehyde top
Crystal data top
C17H27NOF(000) = 576
Mr = 261.40Dx = 1.081 Mg m3
Monoclinic, C2/cCu Kα radiation, λ = 1.54178 Å
Hall symbol: -C 2ycCell parameters from 25 reflections
a = 11.8061 (9) Åθ = 60–70°
b = 14.3419 (7) ŵ = 0.50 mm1
c = 10.7891 (8) ÅT = 173 K
β = 118.478 (3)°Needle, colourless
V = 1605.78 (19) Å30.50 × 0.20 × 0.05 mm
Z = 4
Data collection top
Enraf–Nonius CAD-4
diffractometer
Rint = 0.065
Radiation source: rotating anodeθmax = 70.0°, θmin = 5.3°
Graphite monochromatorh = 014
ω/2θ scansk = 017
1607 measured reflectionsl = 1311
1533 independent reflections60 standard reflections every 60 min
1165 reflections with I > 2σ(I) intensity decay: 3%
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.057H-atom parameters constrained
wR(F2) = 0.186 w = 1/[σ2(Fo2) + (0.1003P)2 + 0.8224P]
where P = (Fo2 + 2Fc2)/3
S = 1.07(Δ/σ)max < 0.001
1533 reflectionsΔρmax = 0.31 e Å3
117 parametersΔρmin = 0.23 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0061 (10)
Crystal data top
C17H27NOV = 1605.78 (19) Å3
Mr = 261.40Z = 4
Monoclinic, C2/cCu Kα radiation
a = 11.8061 (9) ŵ = 0.50 mm1
b = 14.3419 (7) ÅT = 173 K
c = 10.7891 (8) Å0.50 × 0.20 × 0.05 mm
β = 118.478 (3)°
Data collection top
Enraf–Nonius CAD-4
diffractometer
Rint = 0.065
1607 measured reflections60 standard reflections every 60 min
1533 independent reflections intensity decay: 3%
1165 reflections with I > 2σ(I)
Refinement top
R[F2 > 2σ(F2)] = 0.0570 restraints
wR(F2) = 0.186H-atom parameters constrained
S = 1.07Δρmax = 0.31 e Å3
1533 reflectionsΔρmin = 0.23 e Å3
117 parameters
Special details top

Experimental. 1H-NMR (400 MHz, CDCl3): 9.95 (s, 1 H, CHO), 6.61 (s, 2 H, 2-H, 6-H), 3.49 (sept, 3J = 6.9 Hz, 2 H, CH (i-Pr)), 3.11 (q, 3J = 7.1 Hz, 4 H, N-CH2), 1.22 (d, 3J = 6.9 Hz, 12 H, CH3 (iPr)), 1.04 (t, 3J = 7.1 Hz, 6 H, CH3 (Et)).

13C-NMR (75 MHz, CDCl3): 192.5 (CHO), 152.3 (C-4), 150.9 (C-3, C-5), 134.3 (C-1), 126.0 (C-2, C-6), 48.9 (N-CH2), 29.2 (CH (iPr), 24.5 (CH3 (iPr)), 15.2 (CH3 (Et)).

IR (ATR) ν = 2963, 2928, 2869, 2723, 1696, 1594, 1568, 1457, 1365, 1268, 1170, 1104, 1065, 941, 892, 783, 724 cm-1.

HR-ESI-MS: found 262.2177, calc. 262.2171 for (M+H+).

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C10.50000.29898 (16)0.25000.0301 (6)
C20.49043 (16)0.25001 (12)0.13197 (17)0.0329 (5)
C30.49237 (18)0.15335 (13)0.13533 (18)0.0407 (5)
H30.48840.11980.05740.049*
C40.50000.10460 (18)0.25000.0445 (7)
N50.50000.39757 (14)0.25000.0394 (6)
C60.3927 (4)0.4517 (2)0.2464 (5)0.0477 (12)0.595 (7)
H6A0.42840.50630.30950.057*0.595 (7)
H6B0.34710.41250.28410.057*0.595 (7)
C70.2975 (5)0.4852 (3)0.1028 (5)0.0704 (16)0.595 (7)
H7A0.34050.52740.06680.106*0.595 (7)
H7B0.22750.51860.10820.106*0.595 (7)
H7C0.26200.43180.03910.106*0.595 (7)
C6A0.3813 (6)0.4420 (4)0.1519 (7)0.0511 (19)0.405 (7)
H6C0.32420.39530.08270.061*0.405 (7)
H6D0.39990.49100.09970.061*0.405 (7)
C7A0.3127 (8)0.4849 (6)0.2250 (9)0.084 (3)0.405 (7)
H7D0.27540.43550.25700.126*0.405 (7)
H7E0.24390.52600.15930.126*0.405 (7)
H7F0.37410.52120.30640.126*0.405 (7)
C80.47720 (17)0.29910 (13)0.00066 (18)0.0384 (5)
H80.47650.36780.01590.046*
C90.5913 (2)0.27726 (19)0.0249 (2)0.0577 (7)
H9A0.67150.29660.05730.087*
H9B0.58120.31110.10850.087*
H9C0.59410.21010.03990.087*
C100.3504 (2)0.27324 (18)0.1286 (2)0.0535 (6)
H10A0.35160.20700.15020.080*
H10B0.33970.31080.20940.080*
H10C0.27860.28530.10930.080*
C110.50000.0021 (2)0.25000.0730 (11)
H110.49600.02510.16770.088*0.50
O120.5039 (6)0.0493 (2)0.3294 (5)0.1012 (16)0.50
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0306 (11)0.0327 (12)0.0323 (12)0.0000.0193 (9)0.000
C20.0347 (9)0.0379 (10)0.0326 (9)0.0009 (7)0.0213 (7)0.0008 (6)
C30.0542 (11)0.0377 (10)0.0404 (10)0.0018 (8)0.0309 (9)0.0059 (7)
C40.0589 (17)0.0334 (14)0.0487 (15)0.0000.0317 (13)0.000
N50.0500 (13)0.0301 (11)0.0438 (12)0.0000.0272 (10)0.000
C60.051 (2)0.0404 (19)0.046 (2)0.0115 (16)0.0187 (17)0.0043 (15)
C70.062 (3)0.062 (3)0.073 (3)0.008 (2)0.020 (2)0.017 (2)
C6A0.063 (4)0.037 (3)0.054 (4)0.012 (3)0.028 (3)0.008 (2)
C7A0.068 (5)0.082 (5)0.092 (6)0.020 (4)0.031 (4)0.032 (4)
C80.0425 (10)0.0476 (11)0.0311 (9)0.0020 (8)0.0225 (8)0.0020 (7)
C90.0548 (13)0.0874 (17)0.0472 (12)0.0001 (11)0.0374 (10)0.0050 (11)
C100.0519 (12)0.0748 (15)0.0329 (10)0.0049 (10)0.0194 (9)0.0035 (9)
C110.112 (3)0.0387 (17)0.083 (3)0.0000.059 (2)0.000
O120.195 (5)0.0416 (19)0.101 (3)0.003 (2)0.098 (3)0.0176 (19)
Geometric parameters (Å, º) top
C1—C21.411 (2)C6A—C7A1.505 (10)
C1—C2i1.411 (2)C6A—H6C0.9900
C1—N51.414 (3)C6A—H6D0.9900
C2—C31.387 (3)C7A—H7D0.9800
C2—C81.522 (2)C7A—H7E0.9800
C3—C41.386 (2)C7A—H7F0.9800
C3—H30.9500C8—C101.527 (3)
C4—C3i1.386 (2)C8—C91.530 (3)
C4—C111.470 (4)C8—H81.0000
N5—C6Ai1.441 (6)C9—H9A0.9800
N5—C6A1.441 (6)C9—H9B0.9800
N5—C6i1.470 (4)C9—H9C0.9800
N5—C61.470 (4)C10—H10A0.9800
C6—C71.495 (6)C10—H10B0.9800
C6—H6A0.9900C10—H10C0.9800
C6—H6B0.9900C11—O12i1.114 (4)
C7—H7A0.9800C11—O121.114 (4)
C7—H7B0.9800C11—H110.9500
C7—H7C0.9800
C2—C1—C2i120.3 (2)C7A—C6A—H6D109.2
C2—C1—N5119.86 (11)H6C—C6A—H6D107.9
C2i—C1—N5119.86 (11)C6A—C7A—H7D109.5
C3—C2—C1118.74 (16)C6A—C7A—H7E109.5
C3—C2—C8118.68 (15)H7D—C7A—H7E109.5
C1—C2—C8122.58 (17)C6A—C7A—H7F109.5
C4—C3—C2121.39 (17)H7D—C7A—H7F109.5
C4—C3—H3119.3H7E—C7A—H7F109.5
C2—C3—H3119.3C2—C8—C10111.02 (15)
C3i—C4—C3119.4 (2)C2—C8—C9111.38 (15)
C3i—C4—C11120.29 (12)C10—C8—C9110.43 (16)
C3—C4—C11120.29 (12)C2—C8—H8108.0
C1—N5—C6Ai116.2 (2)C10—C8—H8108.0
C1—N5—C6A116.2 (2)C9—C8—H8108.0
C6Ai—N5—C6A127.5 (5)C8—C9—H9A109.5
C1—N5—C6i121.86 (16)C8—C9—H9B109.5
C6A—N5—C6i108.1 (3)H9A—C9—H9B109.5
C1—N5—C6121.86 (16)C8—C9—H9C109.5
C6Ai—N5—C6108.1 (3)H9A—C9—H9C109.5
C6i—N5—C6116.3 (3)H9B—C9—H9C109.5
N5—C6—C7114.2 (4)C8—C10—H10A109.5
N5—C6—H6A108.7C8—C10—H10B109.5
C7—C6—H6A108.7H10A—C10—H10B109.5
N5—C6—H6B108.7C8—C10—H10C109.5
C7—C6—H6B108.7H10A—C10—H10C109.5
H6A—C6—H6B107.6H10B—C10—H10C109.5
N5—C6A—C7A112.0 (6)O12i—C11—C4131.4 (3)
N5—C6A—H6C109.2O12—C11—C4131.4 (3)
C7A—C6A—H6C109.2O12—C11—H11114.3
N5—C6A—H6D109.2C4—C11—H11114.3
C2i—C1—C2—C30.85 (12)C1—N5—C6—C797.8 (3)
N5—C1—C2—C3179.15 (12)C6Ai—N5—C6—C7123.5 (4)
C2i—C1—C2—C8178.76 (17)C6A—N5—C6—C74.4 (4)
N5—C1—C2—C81.24 (17)C6i—N5—C6—C782.2 (3)
C1—C2—C3—C41.7 (2)C1—N5—C6A—C7A107.0 (5)
C8—C2—C3—C4177.89 (13)C6Ai—N5—C6A—C7A73.0 (5)
C2—C3—C4—C3i0.89 (12)C6i—N5—C6A—C7A111.7 (5)
C2—C3—C4—C11179.11 (12)C6—N5—C6A—C7A2.0 (4)
C2—C1—N5—C6Ai112.2 (3)C3—C2—C8—C1061.2 (2)
C2i—C1—N5—C6Ai67.8 (3)C1—C2—C8—C10118.38 (18)
C2—C1—N5—C6A67.8 (3)C3—C2—C8—C962.3 (2)
C2i—C1—N5—C6A112.2 (3)C1—C2—C8—C9118.10 (18)
C2—C1—N5—C6i67.7 (2)C3i—C4—C11—O12i179.0 (4)
C2i—C1—N5—C6i112.3 (2)C3—C4—C11—O12i1.0 (4)
C2—C1—N5—C6112.3 (2)C3i—C4—C11—O121.0 (4)
C2i—C1—N5—C667.7 (2)C3—C4—C11—O12179.0 (4)
Symmetry code: (i) x+1, y, z+1/2.

Experimental details

Crystal data
Chemical formulaC17H27NO
Mr261.40
Crystal system, space groupMonoclinic, C2/c
Temperature (K)173
a, b, c (Å)11.8061 (9), 14.3419 (7), 10.7891 (8)
β (°) 118.478 (3)
V3)1605.78 (19)
Z4
Radiation typeCu Kα
µ (mm1)0.50
Crystal size (mm)0.50 × 0.20 × 0.05
Data collection
DiffractometerEnraf–Nonius CAD-4
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
1607, 1533, 1165
Rint0.065
(sin θ/λ)max1)0.609
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.057, 0.186, 1.07
No. of reflections1533
No. of parameters117
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.31, 0.23

Computer programs: CAD-4 Software (Enraf–Nonius, 1989), CORINC (Dräger & Gattow, 1971), SIR97 (Altomare et al., 1999), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009).

 

Acknowledgements

The authors are grateful to Heinz Kolshorn for the NMR spectra and invaluable discussions.

References

First citationAltomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationDetert, H. & Schmitt, V. (2006). J. Phys. Org. Chem. 19, 603–607.  Web of Science CrossRef CAS Google Scholar
First citationDetert, H., Sugiono, E. & Kruse, G. (2002). J. Phys. Org. Chem. 15, 638–641.  Web of Science CrossRef CAS Google Scholar
First citationDräger, M. & Gattow, G. (1971). Acta Chem. Scand. 25, 761–762.  Google Scholar
First citationEnraf–Nonius (1989). CAD-4 Software. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citationFischer, J., Schmitt, V., Schollmeyer, D. & Detert, H. (2011). Acta Cryst. E67, o875.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGao, B. & Zhu, J.-L. (2008). Acta Cryst. E64, o1182.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMoschel, S., Schollmeyer, D. & Detert, H. (2011). Acta Cryst. E67, o1425.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationOkada, T., Uesugi, M., Köhler, G., Rechthaler, K., Rotkiewicz, K., Rettig, W. & Grabner, G. (1999). Chem. Phys. 241, 327–337.  Web of Science CrossRef CAS Google Scholar
First citationRotkiewicz, K., Grellmann, K. H. & Grabowski, Z. R. (1973). Chem. Phys. Lett. 19, 315–318.  CrossRef CAS Web of Science Google Scholar
First citationSchmitt, V., Fischer, J. & Detert, H. (2011). ISRN Org. Chem. doi:10.5402/2011/589012.  Google Scholar
First citationSchmitt, V., Glang, S., Preis, J. & Detert, H. (2008). Sens. Lett. 6, 1–7.  Web of Science CrossRef Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds