organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3-[(Z)-Benzyl­­idene]-2,3-di­hydro-1,5-benzo­thia­zepin-4(5H)-one

aDepartment of Physics, Presidency College, Chennai 600 005, India, and bDepartment of Organic Chemistry, University of Madras, Chennai 600 025, India
*Correspondence e-mail: aravindhanpresidency@gmail.com

(Received 13 October 2011; accepted 17 October 2011; online 29 October 2011)

In the title compound, C16H13NOS, the seven-membered ring adopts a distorted half-chair conformation. In the crystal, mol­ecules are linked by N—H⋯O hydrogen bonds, forming chains running along the b axis. The crystal packing is further stabilized by C—H⋯O inter­actions.

Related literature

For the pharmaceutical properties of thia­zepin derivatives, see: Tomascovic et al. (2000[Tomascovic, L. L., Arneri, R. S., Brundic, A. H., Nagl, A., Mintas, M. & Sandtrom, J. (2000). Helv. Chim. Acta, 83, 479-493.]); Rajsner et al. (1971[Rajsner, M., Protiva, M. & Metysova, J. (1971). Czech. Patent Appl. CS 143737.]); Metys et al. (1965[Metys, J., Metysova, J. & Votava, Z. (1965). Acta Biol. Med. Ger. 15, 871-873.]). For the conformation of thia­zepin derivatives, see: Sridevi et al. (2011[Sridevi, D., Bhaskaran, S., Usha, G., Murugan, G. & Bakthadoss, M. (2011). Acta Cryst. E67, o243.]).

[Scheme 1]

Experimental

Crystal data
  • C16H13NOS

  • Mr = 267.33

  • Orthorhombic, P b c a

  • a = 10.7711 (9) Å

  • b = 7.8736 (7) Å

  • c = 31.610 (3) Å

  • V = 2680.7 (4) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.23 mm−1

  • T = 293 K

  • 0.2 × 0.2 × 0.2 mm

Data collection
  • Bruker KappaCCD APEXII diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2004[Bruker (2004). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.980, Tmax = 0.990

  • 13085 measured reflections

  • 3306 independent reflections

  • 2643 reflections with I > 2σ(I)

  • Rint = 0.028

Refinement
  • R[F2 > 2σ(F2)] = 0.039

  • wR(F2) = 0.112

  • S = 1.04

  • 3306 reflections

  • 180 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.35 e Å−3

  • Δρmin = −0.22 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N—H⋯Oi 0.872 (18) 1.996 (18) 2.8480 (16) 165.4 (16)
C14—H14⋯Oii 0.93 2.57 3.485 (2) 167
C16—H16⋯O 0.93 2.60 3.397 (2) 144
Symmetry codes: (i) [-x+{\script{3\over 2}}, y+{\script{1\over 2}}, z]; (ii) [x+{\script{1\over 2}}, y, -z+{\script{3\over 2}}].

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2004[Bruker (2004). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

The title compound is used as an intermediate for the synthesis of dosulepin, which is an antidepressant of the tricyclic family. Dosulepin prevents reabsorbing of serotonin and noradrenaline in the brain, helps to prolong the mood lightening effect of any released noradrenaline and serotonin, thus relieving depression. The dibenzo[c,e]thiazepin derivatives exhibit chiroptical properties (Tomascovic et al., 2000). Dibenzo[b,e]thiazepin-5,5-dioxide derivatives possess antihistaminic and antiallergenic activities (Rajsner et al., 1971). Benzene thiazepin derivatives are identified as a new type of effective antihistaminic compounds (Metys et al., 1965). Considering the wide range of biological activities of the thiazepin derivatives, we determined the crystal structure of the title compound. The seven membered thiazepin ring adopts a distorted half-chair conformation (Sridevi et al., 2011). Crystal structure and crystal packing of the molecule were stabilized by intra (C16—H16···O) and Inter (N—H···O, C14—H14···O) molecular interaction.

Related literature top

For the pharmaceutical properties of thiazepin derivatives, see: Tomascovic et al. (2000); Rajsner et al. (1971); Metys et al. (1965). For the conformation of thiazepin derivatives, see: Sridevi et al. (2011).

Experimental top

A mixture of (z)-methyl2-(bromomethyl)-3-phenylacrylate (2 mmol) and O-aminothiophenol(2 mmol) in the presence of potassium tert-butoxide (2,4 mmol) in dry THF (10 ml) was stirred at room temperature for 1 h. After the completion of the reaction as indicated by TLC, the reaction mixture was concentrated and the resulting crude mass was diluted with water (20 ml) and extracted with ethyl acetate (3X20ml). The organic layer was washed with brine (2X20ml) and dried over anhydrous sodium sulfate. The organic layer was concentrated, which provided a crude mass (Z)-methyl 2-((2-aminnophyenylthio)methyl)-3-phenylacrylate.The crude product was treated with a catalytic amount of p-toluene sulphonic acid (0.4 mmol),in p-xylene(10 ml), under reflux conditions for 12 h. After the completion of the reaction as indicated by TLC, the reaction mixture was concentrated under reduced pressure and worked up as mentioned previously, which successfully provide the crude final product. The final product was purified by column chromatography on silica gel to afford the title compound in good yield(71%).

Refinement top

H atoms (except H10 and the amino H atom which were freely refined) were refined with fixed individual displacement parameters [U(H) = 1.2 Ueq(C)] using a riding model with C-H ranging from 0.93Å to 0.97Å.

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: APEX2 (Bruker, 2004); data reduction: APEX2 [or SAINT?] (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing 30% probability displacement ellipsoids for non-H atoms. H atoms have been omitted for clarity.
[Figure 2] Fig. 2. A view of the crystal packing H atoms not involved in hydrogen bonding (dashed lines) have been omitted for clarity.
3-[(Z)-Benzylidene]-2,3-dihydro-1,5-benzothiazepin-4(5H)-one top
Crystal data top
C16H13NOSF(000) = 1120
Mr = 267.33Dx = 1.325 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 8725 reflections
a = 10.7711 (9) Åθ = 2.8–29.1°
b = 7.8736 (7) ŵ = 0.23 mm1
c = 31.610 (3) ÅT = 293 K
V = 2680.7 (4) Å3Orthorhombic, colourless
Z = 80.2 × 0.2 × 0.2 mm
Data collection top
Bruker KappaCCD APEXII
diffractometer
3306 independent reflections
Radiation source: fine-focus sealed tube2643 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.028
Detector resolution: 15.9948 pixels mm-1θmax = 28.3°, θmin = 1.3°
ω scansh = 147
Absorption correction: multi-scan
(APEX2; Bruker, 2004)
k = 510
Tmin = 0.980, Tmax = 0.990l = 2342
13085 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.112H atoms treated by a mixture of independent and constrained refinement
S = 1.04 w = 1/[σ2(Fo2) + (0.0544P)2 + 0.6524P]
where P = (Fo2 + 2Fc2)/3
3306 reflections(Δ/σ)max = 0.002
180 parametersΔρmax = 0.35 e Å3
0 restraintsΔρmin = 0.22 e Å3
Crystal data top
C16H13NOSV = 2680.7 (4) Å3
Mr = 267.33Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 10.7711 (9) ŵ = 0.23 mm1
b = 7.8736 (7) ÅT = 293 K
c = 31.610 (3) Å0.2 × 0.2 × 0.2 mm
Data collection top
Bruker KappaCCD APEXII
diffractometer
3306 independent reflections
Absorption correction: multi-scan
(APEX2; Bruker, 2004)
2643 reflections with I > 2σ(I)
Tmin = 0.980, Tmax = 0.990Rint = 0.028
13085 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0390 restraints
wR(F2) = 0.112H atoms treated by a mixture of independent and constrained refinement
S = 1.04Δρmax = 0.35 e Å3
3306 reflectionsΔρmin = 0.22 e Å3
180 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
H101.0606 (16)0.099 (2)0.6162 (5)0.048 (5)*
H0.8379 (16)0.440 (2)0.6294 (5)0.042 (4)*
S0.90221 (4)0.20135 (6)0.529568 (12)0.04764 (14)
O0.73812 (10)0.16660 (13)0.64118 (3)0.0435 (3)
N0.88207 (11)0.35628 (15)0.61960 (4)0.0351 (3)
C80.90106 (16)0.01129 (19)0.56317 (5)0.0461 (4)
H8A0.82160.04580.56050.055*
H8B0.96530.06650.55380.055*
C70.92280 (14)0.05759 (17)0.60855 (4)0.0359 (3)
C60.83940 (13)0.19642 (17)0.62461 (4)0.0333 (3)
C11.11685 (15)0.3856 (2)0.53349 (5)0.0445 (4)
H11.13310.34040.50690.053*
C50.98953 (13)0.39991 (16)0.59611 (4)0.0332 (3)
C21.19757 (16)0.5031 (2)0.55064 (6)0.0494 (4)
H21.26690.53810.53540.059*
C41.07215 (15)0.51731 (19)0.61325 (5)0.0432 (4)
H41.05800.56140.64010.052*
C91.01129 (14)0.33387 (17)0.55554 (4)0.0359 (3)
C160.98687 (17)0.1038 (2)0.70536 (5)0.0515 (4)
H160.91230.15530.69800.062*
C111.05193 (15)0.01041 (19)0.67530 (5)0.0412 (3)
C31.17543 (16)0.5686 (2)0.59035 (6)0.0494 (4)
H31.23000.64760.60190.059*
C131.2089 (2)0.0450 (3)0.72861 (7)0.0690 (6)
H131.28400.09470.73620.083*
C141.1430 (2)0.0472 (3)0.75774 (7)0.0667 (6)
H141.17300.05990.78510.080*
C101.01213 (15)0.01630 (18)0.63123 (5)0.0400 (3)
C121.16375 (17)0.0644 (2)0.68770 (6)0.0555 (4)
H121.20870.12830.66830.067*
C151.0318 (2)0.1210 (3)0.74614 (6)0.0626 (5)
H150.98670.18300.76590.075*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S0.0540 (3)0.0560 (3)0.0329 (2)0.00587 (19)0.00722 (17)0.00413 (17)
O0.0376 (6)0.0446 (6)0.0483 (6)0.0052 (5)0.0072 (5)0.0052 (5)
N0.0361 (7)0.0308 (6)0.0385 (6)0.0026 (5)0.0060 (5)0.0043 (5)
C80.0582 (10)0.0399 (8)0.0403 (8)0.0077 (7)0.0035 (7)0.0108 (6)
C70.0417 (8)0.0298 (6)0.0361 (7)0.0036 (6)0.0064 (6)0.0030 (5)
C60.0345 (7)0.0355 (7)0.0299 (6)0.0014 (6)0.0017 (5)0.0031 (5)
C10.0500 (9)0.0433 (8)0.0401 (8)0.0036 (7)0.0095 (7)0.0038 (7)
C50.0341 (7)0.0283 (6)0.0372 (7)0.0031 (5)0.0010 (6)0.0020 (5)
C20.0441 (9)0.0434 (8)0.0607 (10)0.0010 (7)0.0135 (8)0.0078 (7)
C40.0464 (9)0.0358 (7)0.0472 (9)0.0032 (7)0.0022 (7)0.0056 (6)
C90.0388 (8)0.0343 (7)0.0345 (7)0.0022 (6)0.0006 (6)0.0018 (5)
C160.0490 (10)0.0629 (10)0.0425 (9)0.0091 (8)0.0011 (7)0.0004 (8)
C110.0413 (8)0.0367 (7)0.0457 (8)0.0010 (6)0.0020 (7)0.0063 (6)
C30.0447 (9)0.0383 (8)0.0652 (11)0.0079 (7)0.0023 (8)0.0021 (7)
C130.0549 (11)0.0700 (13)0.0821 (14)0.0031 (10)0.0195 (10)0.0156 (11)
C140.0707 (13)0.0733 (13)0.0561 (11)0.0123 (11)0.0206 (10)0.0097 (10)
C100.0448 (9)0.0311 (7)0.0442 (8)0.0034 (6)0.0101 (7)0.0017 (6)
C120.0491 (10)0.0524 (10)0.0649 (11)0.0090 (8)0.0010 (8)0.0075 (8)
C150.0678 (13)0.0746 (12)0.0454 (9)0.0002 (10)0.0033 (9)0.0049 (9)
Geometric parameters (Å, º) top
S—C91.7728 (15)C2—H20.9300
S—C81.8352 (17)C4—C31.387 (2)
O—C61.2326 (17)C4—H40.9300
N—C61.3493 (18)C16—C151.384 (2)
N—C51.4174 (18)C16—C111.391 (2)
N—H0.872 (18)C16—H160.9300
C8—C71.498 (2)C11—C121.397 (2)
C8—H8A0.9700C11—C101.473 (2)
C8—H8B0.9700C3—H30.9300
C7—C101.334 (2)C13—C141.371 (3)
C7—C61.503 (2)C13—C121.390 (3)
C6—O1.2326 (17)C13—H130.9300
C1—C21.381 (2)C14—C151.381 (3)
C1—C91.394 (2)C14—H140.9300
C1—H10.9300C10—H100.962 (18)
C5—C41.393 (2)C12—H120.9300
C5—C91.4037 (19)C15—H150.9300
C2—C31.378 (2)
C9—S—C8102.50 (7)C5—C4—H4119.9
C6—N—C5124.46 (12)C1—C9—C5118.98 (14)
C6—N—H118.7 (11)C1—C9—S118.75 (12)
C5—N—H116.6 (11)C5—C9—S122.04 (11)
C7—C8—S110.78 (10)C15—C16—C11120.80 (17)
C7—C8—H8A109.5C15—C16—H16119.6
S—C8—H8A109.5C11—C16—H16119.6
C7—C8—H8B109.5C16—C11—C12117.75 (16)
S—C8—H8B109.5C16—C11—C10125.11 (15)
H8A—C8—H8B108.1C12—C11—C10117.14 (15)
C10—C7—C8121.42 (14)C2—C3—C4120.34 (16)
C10—C7—C6124.53 (13)C2—C3—H3119.8
C8—C7—C6114.01 (13)C4—C3—H3119.8
O—C6—N121.94 (13)C14—C13—C12120.12 (19)
O—C6—N121.94 (13)C14—C13—H13119.9
O—C6—C7122.26 (13)C12—C13—H13119.9
O—C6—C7122.26 (13)C13—C14—C15119.60 (19)
N—C6—C7115.79 (12)C13—C14—H14120.2
C2—C1—C9120.89 (15)C15—C14—H14120.2
C2—C1—H1119.6C7—C10—C11131.02 (14)
C9—C1—H1119.6C7—C10—H10115.1 (11)
C4—C5—C9119.65 (13)C11—C10—H10113.9 (11)
C4—C5—N118.61 (13)C13—C12—C11121.10 (18)
C9—C5—N121.68 (13)C13—C12—H12119.5
C3—C2—C1119.96 (15)C11—C12—H12119.5
C3—C2—H2120.0C14—C15—C16120.63 (19)
C1—C2—H2120.0C14—C15—H15119.7
C3—C4—C5120.17 (15)C16—C15—H15119.7
C3—C4—H4119.9
C9—S—C8—C732.87 (13)C4—C5—C9—C11.0 (2)
S—C8—C7—C10126.73 (14)N—C5—C9—C1178.07 (13)
S—C8—C7—C650.98 (16)C4—C5—C9—S173.34 (11)
O—O—C6—N0.0 (4)N—C5—C9—S3.70 (19)
O—O—C6—C70.0 (3)C8—S—C9—C1120.08 (13)
C5—N—C6—O171.54 (13)C8—S—C9—C565.54 (13)
C5—N—C6—O171.54 (13)C15—C16—C11—C120.2 (3)
C5—N—C6—C78.2 (2)C15—C16—C11—C10179.74 (17)
C10—C7—C6—O92.01 (19)C1—C2—C3—C40.1 (3)
C8—C7—C6—O90.37 (16)C5—C4—C3—C20.4 (3)
C10—C7—C6—O92.01 (19)C12—C13—C14—C150.2 (3)
C8—C7—C6—O90.37 (16)C8—C7—C10—C11178.60 (15)
C10—C7—C6—N88.27 (18)C6—C7—C10—C111.1 (3)
C8—C7—C6—N89.35 (16)C16—C11—C10—C711.7 (3)
C6—N—C5—C4135.93 (15)C12—C11—C10—C7168.36 (17)
C6—N—C5—C947.0 (2)C14—C13—C12—C110.7 (3)
C9—C1—C2—C31.1 (2)C16—C11—C12—C130.5 (3)
C9—C5—C4—C30.0 (2)C10—C11—C12—C13179.57 (17)
N—C5—C4—C3177.16 (14)C13—C14—C15—C160.4 (3)
C2—C1—C9—C51.6 (2)C11—C16—C15—C140.6 (3)
C2—C1—C9—S172.96 (12)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N—H···Oi0.872 (18)1.996 (18)2.8480 (16)165.4 (16)
C14—H14···Oii0.932.573.485 (2)167
C16—H16···O0.932.603.397 (2)144
Symmetry codes: (i) x+3/2, y+1/2, z; (ii) x+1/2, y, z+3/2.

Experimental details

Crystal data
Chemical formulaC16H13NOS
Mr267.33
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)293
a, b, c (Å)10.7711 (9), 7.8736 (7), 31.610 (3)
V3)2680.7 (4)
Z8
Radiation typeMo Kα
µ (mm1)0.23
Crystal size (mm)0.2 × 0.2 × 0.2
Data collection
DiffractometerBruker KappaCCD APEXII
diffractometer
Absorption correctionMulti-scan
(APEX2; Bruker, 2004)
Tmin, Tmax0.980, 0.990
No. of measured, independent and
observed [I > 2σ(I)] reflections
13085, 3306, 2643
Rint0.028
(sin θ/λ)max1)0.667
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.112, 1.04
No. of reflections3306
No. of parameters180
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.35, 0.22

Computer programs: APEX2 (Bruker, 2004), APEX2 [or SAINT?] (Bruker, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N—H···Oi0.872 (18)1.996 (18)2.8480 (16)165.4 (16)
C14—H14···Oii0.932.573.485 (2)166.6
C16—H16···O0.932.603.397 (2)144.4
Symmetry codes: (i) x+3/2, y+1/2, z; (ii) x+1/2, y, z+3/2.
 

Acknowledgements

SA thanks the UGC, India, for financial support.

References

First citationBruker (2004). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationMetys, J., Metysova, J. & Votava, Z. (1965). Acta Biol. Med. Ger. 15, 871–873.  CAS PubMed Web of Science Google Scholar
First citationRajsner, M., Protiva, M. & Metysova, J. (1971). Czech. Patent Appl. CS 143737.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSridevi, D., Bhaskaran, S., Usha, G., Murugan, G. & Bakthadoss, M. (2011). Acta Cryst. E67, o243.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationTomascovic, L. L., Arneri, R. S., Brundic, A. H., Nagl, A., Mintas, M. & Sandtrom, J. (2000). Helv. Chim. Acta, 83, 479–493.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds