metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 9| September 2011| Pages m1197-m1198

μ-Bromido-bis­{μ-2,2′-[4,7-di­aza­decane-1,10-diylbis(nitrilo­methanylyl­­idene)]diphenolato}tricopper(II) bromide di­methyl­formamide disolvate

aDepartment of Chemistry, Howard University, 525 College Street NW, Washington, DC 20059, USA
*Correspondence e-mail: rbutcher99@yahoo.com

(Received 21 July 2011; accepted 1 August 2011; online 6 August 2011)

The complex mol­ecule of the title compound, [Cu3Br(C22H28N4O2)2]Br·2C3H7NO, contains three copper atoms, two of which are five-coordinate within a square-pyramidal environment and linked by a bridging Br atom occupying the apical position in each square pyramid. The remaining Cu atom is four-coordinate but with considerable tetra­hedral disortion [the dihedral angle between the two chelate planes is 69.21 (7)°]. There are two mol­ecules of dimethyl­formamide (DMF) present as solvent mol­ecules, one of which is disordered over two equivalent conformations with occupancies of 0.603 (5) and 0.397 (5). The amine H atoms are involved in both inter- and intra­molecular hydrogen-bonding inter­actions with the Br and O atoms of the cation, as well as with the O atom of the ordered DMF mol­ecule.

Related literature

For information concerning the τ parameter, see: Addison et al. (1984[Addison, A. W., Rao, T. N., Reedijk, J., van Rijn, J. & Verschoor, G. C. (1984). J. Chem. Soc. Dalton Trans. pp. 1349-1356.]). For background to the use of multi-nuclear copper complexes in metallo-enzymes for catalyzing the four-electron reduction of oxygen to water, see: Yoon et al. (2005[Yoon, J., Mirica, L. M., Stack, T. D. P. & Solomon, E. I. (2005). J. Am. Chem. Soc. 127, 13680-13693.]); Solomon et al. (1996[Solomon, E. I., Sundaram, U. M. & Machonkin, T. E. (1996). Chem. Rev. 96, 2563-2605.]); Mukherjee et al. (2003[Mukherjee, A., Rudra, I., Naik, S. G., Ramasesha, S., Nethaji, M. & Chakravarty, A. R. (2003). Inorg. Chem. 42, 5660-5668.]); Mirica & Stack (2005[Mirica, L. M. & Stack, T. D. P. (2005). Inorg. Chem. 44, 2131-2133.]); Augustine et al. (2010[Augustine, A. J., Kjaergaard, G., Qayyum, M., Ziegler, L., Kosman, D. J., Hodgson, K. O., Hedman, B. & Solomon, E. I. (2010). J. Am. Chem. Soc. 132, 6057-6067.]); Chaudhuri et al. (1992[Chaudhuri, P., Karpenstein, I., Winter, M., Butzlaff, C., Bill, E., Trautwein, A. X., Flörke, U. & Haupt, H. J. (1992). J. Chem. Soc. Chem. Commun. pp. 321-322.]). For general background to multinuclear copper types, see: Miessler & Tarr (2005[Miessler, G. L. & Tarr, D. A. (2005). Inorganic Chemistry, 3rd ed., Singapore: Pearson Education (Indian Branch, Delhi, India).]); Mukherjee et al. (2003[Mukherjee, A., Rudra, I., Naik, S. G., Ramasesha, S., Nethaji, M. & Chakravarty, A. R. (2003). Inorg. Chem. 42, 5660-5668.]); Chen et al. (2010[Chen, Z., Durao, P., Silva, C. S., Pereira, M. M., Todorovic, S., Hildebrandt, P., Bento, I., Lindley, P. F. & Martins, L. O. (2010). Dalton Trans. 39, 2875-2882.]); Lawton et al. (2009[Lawton, T. J., Sayavedra-Soto, L. A., Arp, D. J. & Rosenzweig, A. C. (2009). J. Biol. Chem. 284, 10174-10180.]); Hakulinen et al. (2008[Hakulinen, N., Andberg, M., Kallio, J., Koivula, A., Kruus, K. & Rouvinen, J. (2008). J. Struct. Biol. 162, 29-39.]). For information concerning the Type II and Type III site: Pompidor et al. (2008[Pompidor, G., Maillard, A. P., Girard, E., Gambarelli, S., Kahn, R. & Coves, J. (2008). FEBS Lett. 582, 3954-3958.]); Li et al. (2009[Li, Y., Wang, Y., Jiang, H. & Deng, J. (2009). PNAS, 106, 17002-17006.]). For model studies of the multi-copper site: Cole et al. (1996[Cole, A. P., Root, D. E., Mukherjee, P., Solomon, E. I. & Stack, T. D. P. (1996). Science, 273, 1848-1850.]); Kataoka et al. (2009[Kataoka, K., Sugiyama, R., Hirota, S., Inoue, M., Urata, K., Munagawa, Y., Seo, D. & Sakurai, T. (2009). J. Biol. Chem. 284, 14405-14413.]); Paine et al. (2004[Paine, T. K., Weyhermueller, T., Wieghardt, K. & Chaudhuri, P. (2004). Dalton Trans. pp. 2092-2101.]).

[Scheme 1]

Experimental

Crystal data
  • [Cu3Br(C22H28N4O2)2]Br·2C3H7NO

  • Mr = 1257.60

  • Hexagonal, P 61

  • a = 18.7450 (2) Å

  • c = 28.2531 (5) Å

  • V = 8597.4 (2) Å3

  • Z = 6

  • Mo Kα radiation

  • μ = 2.55 mm−1

  • T = 200 K

  • 0.51 × 0.42 × 0.38 mm

Data collection
  • Oxford Diffraction Gemini R diffractometer

  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis RED and CrysAlis CCD. Oxford Diffraction Ltd, Yarnton, England.]) Tmin = 0.782, Tmax = 1.000

  • 95983 measured reflections

  • 11660 independent reflections

  • 8463 reflections with I > 2σ(I)

  • Rint = 0.070

Refinement
  • R[F2 > 2σ(F2)] = 0.030

  • wR(F2) = 0.062

  • S = 0.91

  • 11660 reflections

  • 662 parameters

  • 85 restraints

  • H-atom parameters constrained

  • Δρmax = 0.39 e Å−3

  • Δρmin = −0.26 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 5710 Friedel pairs

  • Flack parameter: 0.007 (5)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2A—H2AB⋯O2B 0.93 2.00 2.919 (4) 170
N3A—H3AB⋯Br2 0.93 2.50 3.429 (3) 174
N2B—H2BB⋯O2A 0.93 2.14 3.061 (4) 172
N3B—H3BB⋯O1S 0.93 2.39 3.005 (4) 123

Data collection: CrysAlis CCD (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis RED and CrysAlis CCD. Oxford Diffraction Ltd, Yarnton, England.]); cell refinement: CrysAlis RED (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis RED and CrysAlis CCD. Oxford Diffraction Ltd, Yarnton, England.]); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Copper is one of the late transition metals that are essential to the life of animals and plants (Miessler & Tarr, 2005). The metal is present in a number of enzymes such as tyrosinase, amine oxidase, laccase, ascorbate oxidase, ceruloplasmin, superoxide dismutase, nitrile reductase and plastocyanin (Miessler & Tarr, 2005). There are three types of copper atoms present in enzymes, namely Type (I), Type (II) and Type (III). Type (I) copper is responsible for the blue color of blue oxidases and shows an intense visible absorption band near 600 nm (Miessler & Tarr, 2005; Mukherjee et al. 2003), while Type II contains normal tetragonally distorted Cu(II) (Pompidor et al. 2008). Type III contains two strongly antiferromagnetically coupled Cu(II) centers and is diagmagetic (Li et al. 2009). The role of Type (I) copper is to transfer electrons to the tri-nuclear unit in ascorbate oxidase for a simultaneous four-electron reduction of dioxygen (O2) (Yoon et al. 2005). The tri-nuclear cluster of the enzymes is comprised of a Type (II) copper center and a Type (III) coupled binuclear site in relatively close proximity where oxygen reduction is effected (Yoon et al. 2005; Solomon et al. 1996; Chen et al. 2010; Lawton et al. 2009; Hakulinen et al., 2008). Generally, the multinuclear copper complexes that are in the group of metalloenzymes are used to catalyze the four-electron reduction of O2 to H2O (Yoon et al. 2005; Mukherjee et al. 2003; Mirica et al. 2005; Augustine et al. 2010; Chaudhuri et al. 1992; Chen et al. 2010).

A number of researchers have synthesized or studied model complexes of multicopper oxidases. Paine et al. 2004 synthesized and characterized seven copper (II) complexes with a ligand 2,2'-selonobis(4,6-di-tert-butylphenol) (H2L). Two of the complexes were found to belong to the asymmetric tri-nuclear copper (II) complexes modeling the tri-nuclear copper site in multi-copper oxidases. Other researchers that have studied model complexes of multi-copper oxidases include, Cole et al. 1996. Kataoka et al. 2009 studied the mechanism of the four-electron reduction of dioxygen by a multi-copper oxidase.

The title compound C50H69Br2Cu3N10O6 is a mimic of the multi-copper enzymes such as ascorbate oxidase which is a tri-nuclear copper complex that is engaged in dioxygen (O2) activation and subsequent substrate oxidation (Solomon et al. 1996). The complex consists of two copper (II) cations bridged by a bromide anion and is thus a model for the type III site and one distorted 4-coordinate copper center and thus a model for the type II site. Taken together this comprises a model for the multi-copper oxidases which consists of a type III and type II site in close proximity. In the present case the distances from type II model center, Cu1, to the two Cu's (Cu2 and Cu3) comprising a model for the type III site are respectively 5.915 (1) and 6.565 (1) Å. The type II copper center Cu(1) is considerably distorted from square planar coordination geometry with the dihedral angle between the two chelate planes being 69.21 (7)°. The two remaining Cu's are both square pyramidal with the bridging Br in the apical position in each coordination sphere (τ values are 0.0297 (2) and 0.0386 (2), respectively [Addison et al., 1984]).

There are two molecules of N,N-dimethylformamide (DMF) present as solvent molecules, one of which is disordered over two equivalent conformations with occupancies of 0.603 (5) and 0.397 (5). The amine H's are involved in both inter- and intramolecular hydrogen bonding interactions with the Br and O's of the copper cluster as well as the O of the ordered DMF.

Related literature top

For information concerning the τ parameter, see: Addison et al. (1984). For background to the use of multi-nuclear copper complexes in metallo-enzymes for catalyzing the four-electron reduction of oxygen to water, see: Yoon et al. (2005); Solomon et al. (1996); Mukherjee et al. (2003); Mirica & Stack (2005); Augustine et al. (2010); Chaudhuri et al. (1992). For general background to multinuclear copper types, see: Miessler & Tarr (2005); Mukherjee et al. (2003); Chen et al. (2010); Lawton et al. (2009); Hakulinen et al. (2008). For information concerning the Type II and Type III site: Pompidor et al. (2008); Li et al. (2009). For model studies of the multi-copper site: Cole et al. (1996); Kataoka et al. (2009); Paine et al. (2004).

Experimental top

The synthesis of N,N-bis(3-aminopropyl)-ethylenediamine-bis(salicylaldimine) was accomplished by adding a solution of (5 g, 30.52 mmol) N,N-bis(3-aminopropyl)-ethylene-di-amine in 20 ml methanol drop-wise to the solution of (7.45 g, 61.04 mmol) salicylaldehyde. The mixture was refluxed overnight while stirring with a magnetic stirrer. Then the reaction mixture was evaporated under reduced pressure. An oily orange product was obtained which later solidified into yellow compound.

Synthesis of the complex C50H70Br2Cu3N10O6 was achieved by adding a solution of (0.97 g, 6.76 mmol) CuBr in a mixture of 20 ml methanol and 25 ml ethanol to a solution of (1.17 g, 3.06 mmol) N,N-bis(3-aminopropyl)-ethylenediamine-bis(salicylaldimine) in 20 ml of CH2Cl2 drop-wise while stirring. The reaction time was 24 h after which the reaction mixture was evaporated under reduced pressure. Dark greenish solids were obtained. These solids were then dissolved in DMF, filtered and layered with diethyl ether for crystallization. X-ray diffraction quality crystals were obtained.

Refinement top

H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms with a C—H distances of 0.93 to 0.99 Å and N—H distances of 0.93 Å and Uiso(H) = 1.2Ueq(C, N).

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2009); cell refinement: CrysAlis RED (Oxford Diffraction, 2009); data reduction: CrysAlis RED (Oxford Diffraction, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Diagram of trinuclear Cu cation, C47H63BrCu3N9O5 showing atom labeling. All H atoms are removed for clarity.
[Figure 2] Fig. 2. The molecular packing for C50H70Br2Cu3N10O6 viewed down the c axis. Hydrogen bonds are shown by dashed lines.
µ-Bromido-bis{µ-2,2'-[4,7-diazadecane-1,10- diylbis(nitrilomethanylylidene)]diphenolato}tricopper(II) bromide dimethylformamide disolvate top
Crystal data top
[Cu3Br(C22H28N4O2)2]Br·2C3H7NODx = 1.457 Mg m3
Mr = 1257.60Mo Kα radiation, λ = 0.71073 Å
Hexagonal, P61Cell parameters from 28991 reflections
Hall symbol: P 61θ = 4.6–34.8°
a = 18.7450 (2) ŵ = 2.55 mm1
c = 28.2531 (5) ÅT = 200 K
V = 8597.4 (2) Å3Hexagonal prism, dark green-brown
Z = 60.51 × 0.42 × 0.38 mm
F(000) = 3870
Data collection top
Oxford Diffraction Gemini R
diffractometer
11660 independent reflections
Radiation source: Enhance (Mo) X-ray Source8463 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.070
Detector resolution: 10.5081 pixels mm-1θmax = 26.4°, θmin = 4.6°
ϕ and ω scansh = 2323
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2009)
k = 2323
Tmin = 0.782, Tmax = 1.000l = 3535
95983 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.030H-atom parameters constrained
wR(F2) = 0.062 w = 1/[σ2(Fo2) + (0.033P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.91(Δ/σ)max = 0.001
11660 reflectionsΔρmax = 0.39 e Å3
662 parametersΔρmin = 0.26 e Å3
85 restraintsAbsolute structure: Flack (1983), 5710 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.007 (5)
Crystal data top
[Cu3Br(C22H28N4O2)2]Br·2C3H7NOZ = 6
Mr = 1257.60Mo Kα radiation
Hexagonal, P61µ = 2.55 mm1
a = 18.7450 (2) ÅT = 200 K
c = 28.2531 (5) Å0.51 × 0.42 × 0.38 mm
V = 8597.4 (2) Å3
Data collection top
Oxford Diffraction Gemini R
diffractometer
11660 independent reflections
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2009)
8463 reflections with I > 2σ(I)
Tmin = 0.782, Tmax = 1.000Rint = 0.070
95983 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.030H-atom parameters constrained
wR(F2) = 0.062Δρmax = 0.39 e Å3
S = 0.91Δρmin = 0.26 e Å3
11660 reflectionsAbsolute structure: Flack (1983), 5710 Friedel pairs
662 parametersAbsolute structure parameter: 0.007 (5)
85 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Br10.89066 (2)0.14678 (2)0.176552 (13)0.03897 (10)
Br20.74921 (3)0.14478 (2)0.044701 (14)0.04604 (11)
Cu10.61482 (3)0.32849 (3)0.135041 (15)0.03419 (11)
Cu20.78094 (3)0.13386 (3)0.107128 (15)0.03145 (11)
Cu30.89767 (2)0.27075 (3)0.235668 (15)0.03223 (11)
O1A0.52044 (15)0.26481 (16)0.17344 (9)0.0477 (7)
O2A0.69414 (14)0.11884 (14)0.15022 (8)0.0366 (6)
O1B0.68241 (15)0.41100 (15)0.09096 (9)0.0404 (6)
O2B0.91309 (14)0.34740 (15)0.18618 (8)0.0354 (6)
N1A0.57558 (18)0.24489 (18)0.08448 (10)0.0335 (7)
N2A0.81810 (16)0.25796 (17)0.10297 (10)0.0310 (7)
H2AB0.84360.28100.13160.037*
N3A0.86311 (18)0.16184 (19)0.05401 (10)0.0369 (7)
H3AB0.83580.16030.02620.044*
N4A0.7301 (2)0.01341 (18)0.09708 (10)0.0373 (7)
N1B0.67956 (18)0.39345 (18)0.19003 (11)0.0366 (7)
N2B0.77206 (16)0.23279 (17)0.23541 (10)0.0316 (7)
H2BB0.74890.20250.20800.038*
N3B0.86762 (18)0.19830 (18)0.29376 (11)0.0369 (7)
H3BB0.86820.23060.31890.044*
N4B1.01824 (18)0.32127 (19)0.24628 (10)0.0340 (7)
C1A0.4522 (2)0.1967 (2)0.16353 (14)0.0379 (9)
C2A0.3885 (3)0.1640 (3)0.19581 (16)0.0483 (11)
H2AA0.39520.19120.22520.058*
C3A0.3148 (3)0.0923 (3)0.18639 (18)0.0561 (12)
H3AA0.27190.07170.20930.067*
C4A0.3029 (3)0.0503 (3)0.14385 (18)0.0548 (12)
H4AA0.25260.00100.13740.066*
C5A0.3655 (2)0.0818 (2)0.11174 (16)0.0470 (11)
H5AA0.35790.05340.08270.056*
C6A0.4402 (2)0.1539 (2)0.11959 (14)0.0371 (9)
C7A0.5029 (2)0.1788 (2)0.08426 (14)0.0392 (10)
H7AA0.49030.14340.05770.047*
C8A0.6293 (2)0.2537 (3)0.04497 (13)0.0388 (9)
H8AA0.65940.31190.03470.047*
H8AB0.59540.22000.01800.047*
C9A0.6915 (2)0.2267 (2)0.05827 (13)0.0359 (9)
H9AA0.66080.16840.06850.043*
H9AB0.72330.22960.02960.043*
C10A0.7520 (2)0.2777 (2)0.09742 (13)0.0309 (8)
H10A0.77660.33700.08990.037*
H10B0.72180.26720.12770.037*
C11A0.8822 (2)0.2975 (2)0.06630 (14)0.0388 (9)
H11A0.92160.35510.07540.047*
H11B0.85670.29800.03570.047*
C12A0.9270 (2)0.2491 (2)0.06150 (14)0.0401 (9)
H12A0.96540.26970.03430.048*
H12B0.95900.25480.09050.048*
C13A0.8980 (3)0.1078 (3)0.04635 (15)0.0497 (11)
H13A0.93010.10950.07460.060*
H13B0.93610.12840.01900.060*
C14A0.8327 (3)0.0214 (3)0.03727 (15)0.0538 (12)
H14A0.85880.01010.02590.065*
H14B0.79620.02100.01180.065*
C15A0.7814 (3)0.0209 (3)0.08029 (15)0.0511 (11)
H15A0.74500.08000.07290.061*
H15B0.81850.01720.10630.061*
C16A0.6539 (2)0.0364 (2)0.10388 (13)0.0384 (9)
H16A0.63370.09160.09390.046*
C17A0.5946 (2)0.0182 (2)0.12504 (13)0.0358 (8)
C18A0.5128 (2)0.0815 (2)0.12627 (14)0.0449 (10)
H18A0.49800.13200.11070.054*
C19A0.4536 (2)0.0734 (3)0.14896 (16)0.0514 (11)
H19A0.39790.11680.14870.062*
C20A0.4760 (2)0.0002 (3)0.17263 (15)0.0452 (10)
H20A0.43510.00610.18890.054*
C21A0.5553 (2)0.0624 (2)0.17298 (15)0.0424 (10)
H21A0.56870.11150.18970.051*
C22A0.6180 (2)0.0567 (2)0.14935 (12)0.0309 (8)
C1B0.7506 (2)0.4813 (2)0.09864 (14)0.0383 (9)
C2B0.7961 (2)0.5279 (2)0.05984 (15)0.0445 (10)
H2BA0.77750.50780.02880.053*
C3B0.8672 (3)0.6021 (3)0.06554 (19)0.0562 (12)
H3BA0.89740.63160.03840.067*
C4B0.8959 (3)0.6350 (3)0.1102 (2)0.0591 (12)
H4BA0.94400.68750.11390.071*
C5B0.8525 (3)0.5892 (2)0.14919 (18)0.0536 (12)
H5BA0.87190.61040.18000.064*
C6B0.7802 (2)0.5119 (2)0.14443 (15)0.0377 (9)
C7B0.7438 (2)0.4664 (2)0.18719 (14)0.0383 (10)
H7BA0.76930.49240.21620.046*
C8B0.6577 (2)0.3565 (2)0.23718 (14)0.0395 (9)
H8BA0.60010.34090.24440.047*
H8BB0.69380.39730.26100.047*
C9B0.6671 (2)0.2805 (2)0.24022 (13)0.0331 (8)
H9BA0.63470.24180.21460.040*
H9BB0.64470.25250.27080.040*
C10B0.7567 (2)0.3023 (2)0.23597 (13)0.0297 (8)
H10C0.77950.33440.20650.036*
H10D0.78770.33880.26280.036*
C11B0.7338 (2)0.1768 (2)0.27697 (14)0.0408 (9)
H11C0.73450.20910.30480.049*
H11D0.67570.13570.26980.049*
C12B0.7810 (2)0.1338 (2)0.28765 (14)0.0398 (9)
H12C0.75990.10070.31690.048*
H12D0.77570.09670.26130.048*
C13B0.9210 (3)0.1646 (3)0.30828 (15)0.0494 (11)
H13C0.91890.12570.28390.059*
H13D0.90040.13400.33840.059*
C14B1.0095 (2)0.2337 (3)0.31471 (14)0.0476 (10)
H14C1.01000.27570.33610.057*
H14D1.04130.21100.33020.057*
C15B1.0516 (2)0.2746 (3)0.26925 (14)0.0470 (10)
H15C1.11080.31230.27580.056*
H15D1.04750.23180.24700.056*
C16B1.0690 (2)0.3952 (2)0.23404 (13)0.0370 (9)
H16B1.12400.41690.24470.044*
C17B1.0528 (2)0.4498 (2)0.20587 (12)0.0328 (9)
C18B1.1168 (2)0.5309 (2)0.19848 (14)0.0428 (10)
H18B1.16750.54950.21470.051*
C19B1.1089 (3)0.5836 (2)0.16907 (17)0.0542 (12)
H19B1.15340.63800.16450.065*
C20B1.0348 (3)0.5570 (2)0.14577 (16)0.0486 (11)
H20B1.02860.59370.12520.058*
C21B0.9708 (2)0.4791 (2)0.15188 (14)0.0410 (10)
H21B0.92060.46230.13540.049*
C22B0.9771 (2)0.4226 (2)0.18211 (12)0.0321 (8)
O1S0.91150 (16)0.37375 (17)0.31116 (10)0.0474 (7)
N1S1.01679 (18)0.5040 (2)0.32238 (12)0.0432 (8)
C11S0.9451 (2)0.4480 (3)0.30412 (14)0.0453 (10)
H11E0.91770.46720.28390.054*
C12S1.0533 (3)0.5915 (3)0.31260 (19)0.0672 (14)
H12E1.01210.60190.29770.101*
H12F1.10030.60920.29130.101*
H12G1.07190.62250.34230.101*
C13S1.0625 (3)0.4780 (3)0.35186 (19)0.0731 (14)
H13E1.03760.41800.35000.110*
H13F1.06120.49400.38470.110*
H13G1.11970.50430.34090.110*
O2S0.2671 (7)0.1242 (6)0.2966 (3)0.107 (3)0.603 (5)
N2S0.2666 (6)0.0724 (9)0.3677 (4)0.067 (2)0.603 (5)
C21S0.2957 (7)0.1004 (6)0.3245 (4)0.088 (2)0.603 (5)
H21C0.34480.10080.31560.105*0.603 (5)
C22S0.3171 (7)0.0563 (7)0.3991 (4)0.096 (3)0.603 (5)
H22A0.37340.08230.38670.143*0.603 (5)
H22B0.29470.00330.40160.143*0.603 (5)
H22C0.31760.07890.43050.143*0.603 (5)
C23S0.1892 (6)0.0658 (7)0.3821 (5)0.112 (3)0.603 (5)
H23A0.17120.09090.35800.167*0.603 (5)
H23B0.19680.09440.41240.167*0.603 (5)
H23C0.14740.00760.38580.167*0.603 (5)
O2T0.2328 (10)0.0872 (10)0.2965 (5)0.107 (3)0.397 (5)
N2T0.2414 (11)0.0553 (14)0.3716 (5)0.067 (2)0.397 (5)
C21T0.2120 (10)0.0795 (9)0.3365 (5)0.088 (2)0.397 (5)
H21D0.17010.09200.34410.105*0.397 (5)
C22T0.1978 (10)0.0412 (10)0.4154 (6)0.096 (3)0.397 (5)
H22D0.14050.02590.40900.143*0.397 (5)
H22E0.22410.09150.43460.143*0.397 (5)
H22F0.19900.00360.43270.143*0.397 (5)
C23T0.3184 (10)0.0576 (13)0.3674 (8)0.112 (3)0.397 (5)
H23D0.35370.10080.34500.167*0.397 (5)
H23E0.30900.00420.35600.167*0.397 (5)
H23F0.34540.06940.39840.167*0.397 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.0436 (2)0.0452 (2)0.0341 (2)0.02668 (19)0.00490 (18)0.00110 (18)
Br20.0450 (2)0.0467 (2)0.0418 (2)0.0194 (2)0.00779 (19)0.00269 (19)
Cu10.0310 (2)0.0342 (3)0.0389 (3)0.0175 (2)0.0050 (2)0.0046 (2)
Cu20.0293 (2)0.0329 (2)0.0330 (2)0.0161 (2)0.0025 (2)0.0023 (2)
Cu30.0261 (2)0.0359 (3)0.0321 (2)0.0136 (2)0.0004 (2)0.0037 (2)
O1A0.0366 (16)0.0515 (17)0.0465 (16)0.0156 (14)0.0016 (13)0.0051 (14)
O2A0.0281 (14)0.0340 (14)0.0425 (15)0.0116 (12)0.0029 (11)0.0039 (12)
O1B0.0407 (15)0.0363 (15)0.0426 (15)0.0179 (14)0.0059 (12)0.0002 (12)
O2B0.0262 (13)0.0373 (15)0.0348 (14)0.0100 (12)0.0015 (11)0.0037 (11)
N1A0.0340 (18)0.0340 (18)0.0395 (19)0.0222 (16)0.0054 (14)0.0021 (14)
N2A0.0252 (16)0.0350 (17)0.0322 (16)0.0145 (14)0.0003 (13)0.0006 (14)
N3A0.0414 (19)0.048 (2)0.0290 (17)0.0279 (17)0.0007 (14)0.0055 (15)
N4A0.045 (2)0.0344 (18)0.0372 (18)0.0232 (17)0.0011 (15)0.0002 (14)
N1B0.0349 (18)0.0343 (18)0.043 (2)0.0190 (16)0.0025 (14)0.0029 (15)
N2B0.0270 (15)0.0278 (16)0.0315 (16)0.0072 (13)0.0026 (13)0.0030 (13)
N3B0.0396 (18)0.0419 (18)0.0325 (17)0.0229 (16)0.0014 (14)0.0012 (15)
N4B0.0303 (17)0.042 (2)0.0282 (17)0.0175 (16)0.0020 (13)0.0029 (14)
C1A0.027 (2)0.037 (2)0.054 (3)0.0186 (19)0.0086 (19)0.003 (2)
C2A0.042 (3)0.050 (3)0.053 (3)0.023 (2)0.004 (2)0.006 (2)
C3A0.040 (3)0.052 (3)0.080 (4)0.026 (2)0.009 (2)0.028 (3)
C4A0.041 (3)0.046 (3)0.073 (3)0.018 (2)0.007 (2)0.004 (2)
C5A0.038 (2)0.039 (2)0.067 (3)0.021 (2)0.005 (2)0.003 (2)
C6A0.031 (2)0.030 (2)0.052 (2)0.0168 (18)0.0063 (19)0.0022 (19)
C7A0.042 (2)0.037 (2)0.045 (2)0.024 (2)0.012 (2)0.0070 (18)
C8A0.039 (2)0.050 (2)0.034 (2)0.0273 (19)0.0106 (18)0.0094 (18)
C9A0.038 (2)0.040 (2)0.034 (2)0.0232 (19)0.0067 (17)0.0078 (17)
C10A0.0275 (19)0.034 (2)0.035 (2)0.0176 (17)0.0009 (16)0.0029 (17)
C11A0.031 (2)0.039 (2)0.039 (2)0.0113 (18)0.0029 (18)0.0072 (18)
C12A0.026 (2)0.050 (2)0.041 (2)0.0161 (19)0.0058 (17)0.0151 (19)
C13A0.059 (3)0.065 (3)0.044 (2)0.045 (3)0.016 (2)0.012 (2)
C14A0.071 (3)0.064 (3)0.048 (3)0.050 (3)0.008 (2)0.000 (2)
C15A0.058 (3)0.052 (3)0.053 (3)0.035 (2)0.008 (2)0.003 (2)
C16A0.044 (2)0.028 (2)0.042 (2)0.016 (2)0.0022 (19)0.0006 (18)
C17A0.032 (2)0.038 (2)0.036 (2)0.0161 (18)0.0067 (17)0.0022 (17)
C18A0.041 (2)0.031 (2)0.049 (3)0.0086 (19)0.007 (2)0.0006 (19)
C19A0.027 (2)0.048 (3)0.064 (3)0.007 (2)0.002 (2)0.013 (2)
C20A0.031 (2)0.053 (3)0.053 (3)0.022 (2)0.0028 (19)0.009 (2)
C21A0.033 (2)0.038 (2)0.054 (3)0.0161 (19)0.000 (2)0.003 (2)
C22A0.027 (2)0.030 (2)0.030 (2)0.0103 (17)0.0013 (16)0.0080 (16)
C1B0.036 (2)0.036 (2)0.051 (3)0.024 (2)0.001 (2)0.002 (2)
C2B0.039 (2)0.046 (3)0.051 (3)0.023 (2)0.001 (2)0.006 (2)
C3B0.046 (3)0.059 (3)0.074 (3)0.033 (2)0.014 (3)0.023 (3)
C4B0.040 (2)0.042 (3)0.082 (4)0.010 (2)0.001 (3)0.009 (3)
C5B0.047 (3)0.036 (2)0.073 (3)0.017 (2)0.012 (2)0.003 (2)
C6B0.027 (2)0.032 (2)0.056 (3)0.0163 (18)0.0030 (19)0.003 (2)
C7B0.036 (2)0.031 (2)0.052 (3)0.020 (2)0.0107 (19)0.0129 (19)
C8B0.040 (2)0.039 (2)0.042 (2)0.0210 (19)0.0048 (19)0.0127 (19)
C9B0.0275 (19)0.029 (2)0.041 (2)0.0136 (17)0.0014 (17)0.0029 (17)
C10B0.0305 (19)0.0244 (18)0.034 (2)0.0140 (16)0.0057 (16)0.0006 (16)
C11B0.035 (2)0.040 (2)0.044 (2)0.0161 (19)0.0076 (18)0.0119 (19)
C12B0.037 (2)0.037 (2)0.041 (2)0.0156 (19)0.0087 (18)0.0129 (18)
C13B0.053 (3)0.061 (3)0.043 (2)0.035 (2)0.006 (2)0.021 (2)
C14B0.043 (2)0.066 (3)0.040 (2)0.033 (2)0.0040 (19)0.007 (2)
C15B0.030 (2)0.060 (3)0.049 (3)0.021 (2)0.0094 (19)0.001 (2)
C16B0.0233 (19)0.050 (3)0.034 (2)0.0159 (19)0.0038 (17)0.012 (2)
C17B0.033 (2)0.036 (2)0.028 (2)0.0171 (18)0.0011 (16)0.0096 (16)
C18B0.035 (2)0.041 (2)0.047 (2)0.015 (2)0.0027 (19)0.018 (2)
C19B0.043 (3)0.027 (2)0.081 (3)0.009 (2)0.013 (2)0.002 (2)
C20B0.051 (3)0.031 (2)0.063 (3)0.020 (2)0.002 (2)0.000 (2)
C21B0.033 (2)0.039 (2)0.050 (2)0.0174 (19)0.0007 (19)0.001 (2)
C22B0.029 (2)0.033 (2)0.032 (2)0.0141 (18)0.0039 (17)0.0042 (17)
O1S0.0400 (16)0.0433 (18)0.0516 (17)0.0155 (14)0.0030 (13)0.0044 (14)
N1S0.0308 (18)0.042 (2)0.051 (2)0.0142 (17)0.0042 (16)0.0107 (16)
C11S0.035 (2)0.057 (3)0.046 (3)0.025 (2)0.002 (2)0.008 (2)
C12S0.049 (3)0.049 (3)0.092 (4)0.015 (2)0.007 (3)0.007 (3)
C13S0.063 (3)0.071 (3)0.075 (3)0.027 (3)0.032 (3)0.019 (3)
O2S0.121 (6)0.112 (7)0.082 (3)0.055 (5)0.004 (4)0.004 (4)
N2S0.066 (6)0.049 (5)0.078 (3)0.022 (5)0.006 (3)0.006 (3)
C21S0.104 (5)0.087 (5)0.079 (5)0.053 (4)0.009 (4)0.012 (4)
C22S0.099 (5)0.083 (5)0.106 (5)0.047 (4)0.009 (4)0.029 (4)
C23S0.105 (6)0.108 (6)0.119 (6)0.050 (5)0.018 (5)0.002 (5)
O2T0.121 (6)0.112 (7)0.082 (3)0.055 (5)0.004 (4)0.004 (4)
N2T0.066 (6)0.049 (5)0.078 (3)0.022 (5)0.006 (3)0.006 (3)
C21T0.104 (5)0.087 (5)0.079 (5)0.053 (4)0.009 (4)0.012 (4)
C22T0.099 (5)0.083 (5)0.106 (5)0.047 (4)0.009 (4)0.029 (4)
C23T0.105 (6)0.108 (6)0.119 (6)0.050 (5)0.018 (5)0.002 (5)
Geometric parameters (Å, º) top
Br1—Cu22.7636 (6)C21A—C22A1.401 (5)
Br1—Cu32.8108 (6)C21A—H21A0.9500
Cu1—O1B1.895 (3)C1B—C2B1.396 (5)
Cu1—O1A1.903 (3)C1B—C6B1.411 (5)
Cu1—N1A1.971 (3)C2B—C3B1.372 (6)
Cu1—N1B1.973 (3)C2B—H2BA0.9500
Cu2—O2A1.937 (2)C3B—C4B1.390 (6)
Cu2—N4A1.984 (3)C3B—H3BA0.9500
Cu2—N3A2.023 (3)C4B—C5B1.383 (6)
Cu2—N2A2.071 (3)C4B—H4BA0.9500
Cu3—O2B1.920 (2)C5B—C6B1.412 (5)
Cu3—N4B1.989 (3)C5B—H5BA0.9500
Cu3—N3B2.022 (3)C6B—C7B1.439 (5)
Cu3—N2B2.092 (3)C7B—H7BA0.9500
O1A—C1A1.309 (4)C8B—C9B1.521 (5)
O2A—C22A1.316 (4)C8B—H8BA0.9900
O1B—C1B1.316 (4)C8B—H8BB0.9900
O2B—C22B1.323 (4)C9B—C10B1.522 (5)
N1A—C7A1.304 (5)C9B—H9BA0.9900
N1A—C8A1.457 (4)C9B—H9BB0.9900
N2A—C10A1.468 (4)C10B—H10C0.9900
N2A—C11A1.475 (4)C10B—H10D0.9900
N2A—H2AB0.9300C11B—C12B1.496 (5)
N3A—C13A1.470 (5)C11B—H11C0.9900
N3A—C12A1.482 (5)C11B—H11D0.9900
N3A—H3AB0.9300C12B—H12C0.9900
N4A—C16A1.271 (4)C12B—H12D0.9900
N4A—C15A1.478 (5)C13B—C14B1.521 (6)
N1B—C7B1.296 (4)C13B—H13C0.9900
N1B—C8B1.462 (5)C13B—H13D0.9900
N2B—C10B1.469 (4)C14B—C15B1.502 (5)
N2B—C11B1.498 (4)C14B—H14C0.9900
N2B—H2BB0.9300C14B—H14D0.9900
N3B—C12B1.471 (4)C15B—H15C0.9900
N3B—C13B1.483 (5)C15B—H15D0.9900
N3B—H3BB0.9300C16B—C17B1.444 (5)
N4B—C16B1.275 (4)C16B—H16B0.9500
N4B—C15B1.458 (5)C17B—C18B1.403 (5)
C1A—C2A1.379 (5)C17B—C22B1.414 (5)
C1A—C6A1.433 (5)C18B—C19B1.355 (6)
C2A—C3A1.389 (6)C18B—H18B0.9500
C2A—H2AA0.9500C19B—C20B1.384 (6)
C3A—C4A1.393 (6)C19B—H19B0.9500
C3A—H3AA0.9500C20B—C21B1.361 (5)
C4A—C5A1.362 (6)C20B—H20B0.9500
C4A—H4AA0.9500C21B—C22B1.410 (5)
C5A—C6A1.394 (5)C21B—H21B0.9500
C5A—H5AA0.9500O1S—C11S1.223 (5)
C6A—C7A1.431 (5)N1S—C11S1.328 (5)
C7A—H7AA0.9500N1S—C13S1.443 (5)
C8A—C9A1.532 (5)N1S—C12S1.454 (5)
C8A—H8AA0.9900C11S—H11E0.9500
C8A—H8AB0.9900C12S—H12E0.9800
C9A—C10A1.530 (5)C12S—H12F0.9800
C9A—H9AA0.9900C12S—H12G0.9800
C9A—H9AB0.9900C13S—H13E0.9800
C10A—H10A0.9900C13S—H13F0.9800
C10A—H10B0.9900C13S—H13G0.9800
C11A—C12A1.518 (5)O2S—C21S1.160 (11)
C11A—H11A0.9900N2S—C21S1.334 (11)
C11A—H11B0.9900N2S—C22S1.435 (11)
C12A—H12A0.9900N2S—C23S1.450 (13)
C12A—H12B0.9900C21S—H21C0.9500
C13A—C14A1.485 (6)C22S—H22A0.9800
C13A—H13A0.9900C22S—H22B0.9800
C13A—H13B0.9900C22S—H22C0.9800
C14A—C15A1.506 (6)C23S—H23A0.9800
C14A—H14A0.9900C23S—H23B0.9800
C14A—H14B0.9900C23S—H23C0.9800
C15A—H15A0.9900O2T—C21T1.179 (14)
C15A—H15B0.9900N2T—C21T1.320 (13)
C16A—C17A1.444 (5)N2T—C23T1.428 (17)
C16A—H16A0.9500N2T—C22T1.435 (15)
C17A—C18A1.395 (5)C21T—H21D0.9500
C17A—C22A1.422 (5)C22T—H22D0.9800
C18A—C19A1.355 (6)C22T—H22E0.9800
C18A—H18A0.9500C22T—H22F0.9800
C19A—C20A1.388 (6)C23T—H23D0.9800
C19A—H19A0.9500C23T—H23E0.9800
C20A—C21A1.357 (5)C23T—H23F0.9800
C20A—H20A0.9500
Cu2—Br1—Cu3102.672 (17)C18A—C19A—C20A118.6 (4)
O1B—Cu1—O1A156.87 (11)C18A—C19A—H19A120.7
O1B—Cu1—N1A90.23 (12)C20A—C19A—H19A120.7
O1A—Cu1—N1A93.11 (12)C21A—C20A—C19A121.2 (4)
O1B—Cu1—N1B93.44 (12)C21A—C20A—H20A119.4
O1A—Cu1—N1B91.73 (12)C19A—C20A—H20A119.4
N1A—Cu1—N1B158.65 (12)C20A—C21A—C22A121.9 (4)
O2A—Cu2—N4A91.93 (11)C20A—C21A—H21A119.0
O2A—Cu2—N3A168.39 (11)C22A—C21A—H21A119.0
N4A—Cu2—N3A93.40 (12)O2A—C22A—C21A120.3 (3)
O2A—Cu2—N2A89.16 (10)O2A—C22A—C17A123.0 (3)
N4A—Cu2—N2A166.07 (12)C21A—C22A—C17A116.7 (3)
N3A—Cu2—N2A83.21 (12)O1B—C1B—C2B118.7 (4)
O2A—Cu2—Br195.79 (8)O1B—C1B—C6B123.1 (3)
N4A—Cu2—Br196.58 (9)C2B—C1B—C6B118.2 (3)
N3A—Cu2—Br193.84 (9)C3B—C2B—C1B121.5 (4)
N2A—Cu2—Br197.13 (8)C3B—C2B—H2BA119.3
O2B—Cu3—N4B92.49 (11)C1B—C2B—H2BA119.3
O2B—Cu3—N3B168.65 (11)C2B—C3B—C4B121.4 (4)
N4B—Cu3—N3B93.79 (12)C2B—C3B—H3BA119.3
O2B—Cu3—N2B88.55 (10)C4B—C3B—H3BA119.3
N4B—Cu3—N2B168.69 (12)C5B—C4B—C3B118.0 (4)
N3B—Cu3—N2B83.46 (11)C5B—C4B—H4BA121.0
O2B—Cu3—Br196.50 (7)C3B—C4B—H4BA121.0
N4B—Cu3—Br193.18 (9)C4B—C5B—C6B121.8 (4)
N3B—Cu3—Br192.58 (9)C4B—C5B—H5BA119.1
N2B—Cu3—Br197.90 (8)C6B—C5B—H5BA119.1
C1A—O1A—Cu1129.7 (2)C1B—C6B—C5B119.0 (4)
C22A—O2A—Cu2125.3 (2)C1B—C6B—C7B123.7 (3)
C1B—O1B—Cu1128.8 (2)C5B—C6B—C7B117.1 (4)
C22B—O2B—Cu3125.3 (2)N1B—C7B—C6B126.3 (3)
C7A—N1A—C8A116.0 (3)N1B—C7B—H7BA116.8
C7A—N1A—Cu1123.8 (3)C6B—C7B—H7BA116.8
C8A—N1A—Cu1120.2 (2)N1B—C8B—C9B111.1 (3)
C10A—N2A—C11A112.1 (3)N1B—C8B—H8BA109.4
C10A—N2A—Cu2115.9 (2)C9B—C8B—H8BA109.4
C11A—N2A—Cu2109.6 (2)N1B—C8B—H8BB109.4
C10A—N2A—H2AB106.2C9B—C8B—H8BB109.4
C11A—N2A—H2AB106.2H8BA—C8B—H8BB108.0
Cu2—N2A—H2AB106.2C8B—C9B—C10B111.9 (3)
C13A—N3A—C12A112.9 (3)C8B—C9B—H9BA109.2
C13A—N3A—Cu2118.3 (2)C10B—C9B—H9BA109.2
C12A—N3A—Cu2105.7 (2)C8B—C9B—H9BB109.2
C13A—N3A—H3AB106.4C10B—C9B—H9BB109.2
C12A—N3A—H3AB106.4H9BA—C9B—H9BB107.9
Cu2—N3A—H3AB106.4N2B—C10B—C9B116.3 (3)
C16A—N4A—C15A117.8 (3)N2B—C10B—H10C108.2
C16A—N4A—Cu2122.6 (2)C9B—C10B—H10C108.2
C15A—N4A—Cu2119.6 (3)N2B—C10B—H10D108.2
C7B—N1B—C8B116.7 (3)C9B—C10B—H10D108.2
C7B—N1B—Cu1124.2 (3)H10C—C10B—H10D107.4
C8B—N1B—Cu1119.0 (2)C12B—C11B—N2B109.3 (3)
C10B—N2B—C11B112.1 (3)C12B—C11B—H11C109.8
C10B—N2B—Cu3112.6 (2)N2B—C11B—H11C109.8
C11B—N2B—Cu3107.4 (2)C12B—C11B—H11D109.8
C10B—N2B—H2BB108.2N2B—C11B—H11D109.8
C11B—N2B—H2BB108.2H11C—C11B—H11D108.3
Cu3—N2B—H2BB108.2N3B—C12B—C11B106.8 (3)
C12B—N3B—C13B112.6 (3)N3B—C12B—H12C110.4
C12B—N3B—Cu3106.2 (2)C11B—C12B—H12C110.4
C13B—N3B—Cu3119.3 (2)N3B—C12B—H12D110.4
C12B—N3B—H3BB105.9C11B—C12B—H12D110.4
C13B—N3B—H3BB105.9H12C—C12B—H12D108.6
Cu3—N3B—H3BB105.9N3B—C13B—C14B110.6 (3)
C16B—N4B—C15B117.5 (3)N3B—C13B—H13C109.5
C16B—N4B—Cu3122.0 (2)C14B—C13B—H13C109.5
C15B—N4B—Cu3120.5 (2)N3B—C13B—H13D109.5
O1A—C1A—C2A119.9 (4)C14B—C13B—H13D109.5
O1A—C1A—C6A122.3 (3)H13C—C13B—H13D108.1
C2A—C1A—C6A117.7 (3)C15B—C14B—C13B113.8 (3)
C1A—C2A—C3A121.7 (4)C15B—C14B—H14C108.8
C1A—C2A—H2AA119.2C13B—C14B—H14C108.8
C3A—C2A—H2AA119.2C15B—C14B—H14D108.8
C2A—C3A—C4A120.9 (4)C13B—C14B—H14D108.8
C2A—C3A—H3AA119.6H14C—C14B—H14D107.7
C4A—C3A—H3AA119.6N4B—C15B—C14B114.4 (3)
C5A—C4A—C3A118.0 (4)N4B—C15B—H15C108.7
C5A—C4A—H4AA121.0C14B—C15B—H15C108.7
C3A—C4A—H4AA121.0N4B—C15B—H15D108.7
C4A—C5A—C6A123.0 (4)C14B—C15B—H15D108.7
C4A—C5A—H5AA118.5H15C—C15B—H15D107.6
C6A—C5A—H5AA118.5N4B—C16B—C17B127.8 (3)
C5A—C6A—C7A118.0 (4)N4B—C16B—H16B116.1
C5A—C6A—C1A118.7 (4)C17B—C16B—H16B116.1
C7A—C6A—C1A123.2 (3)C18B—C17B—C22B118.7 (3)
N1A—C7A—C6A127.2 (4)C18B—C17B—C16B118.8 (3)
N1A—C7A—H7AA116.4C22B—C17B—C16B122.3 (3)
C6A—C7A—H7AA116.4C19B—C18B—C17B122.3 (4)
N1A—C8A—C9A111.9 (3)C19B—C18B—H18B118.8
N1A—C8A—H8AA109.2C17B—C18B—H18B118.8
C9A—C8A—H8AA109.2C18B—C19B—C20B119.0 (4)
N1A—C8A—H8AB109.2C18B—C19B—H19B120.5
C9A—C8A—H8AB109.2C20B—C19B—H19B120.5
H8AA—C8A—H8AB107.9C21B—C20B—C19B120.9 (4)
C10A—C9A—C8A114.8 (3)C21B—C20B—H20B119.5
C10A—C9A—H9AA108.6C19B—C20B—H20B119.5
C8A—C9A—H9AA108.6C20B—C21B—C22B121.5 (4)
C10A—C9A—H9AB108.6C20B—C21B—H21B119.3
C8A—C9A—H9AB108.6C22B—C21B—H21B119.3
H9AA—C9A—H9AB107.5O2B—C22B—C21B118.7 (3)
N2A—C10A—C9A112.0 (3)O2B—C22B—C17B123.7 (3)
N2A—C10A—H10A109.2C21B—C22B—C17B117.6 (3)
C9A—C10A—H10A109.2C11S—N1S—C13S119.7 (4)
N2A—C10A—H10B109.2C11S—N1S—C12S122.5 (4)
C9A—C10A—H10B109.2C13S—N1S—C12S117.9 (3)
H10A—C10A—H10B107.9O1S—C11S—N1S125.3 (4)
N2A—C11A—C12A108.5 (3)O1S—C11S—H11E117.4
N2A—C11A—H11A110.0N1S—C11S—H11E117.4
C12A—C11A—H11A110.0N1S—C12S—H12E109.5
N2A—C11A—H11B110.0N1S—C12S—H12F109.5
C12A—C11A—H11B110.0H12E—C12S—H12F109.5
H11A—C11A—H11B108.4N1S—C12S—H12G109.5
N3A—C12A—C11A106.8 (3)H12E—C12S—H12G109.5
N3A—C12A—H12A110.4H12F—C12S—H12G109.5
C11A—C12A—H12A110.4N1S—C13S—H13E109.5
N3A—C12A—H12B110.4N1S—C13S—H13F109.5
C11A—C12A—H12B110.4H13E—C13S—H13F109.5
H12A—C12A—H12B108.6N1S—C13S—H13G109.5
N3A—C13A—C14A111.6 (3)H13E—C13S—H13G109.5
N3A—C13A—H13A109.3H13F—C13S—H13G109.5
C14A—C13A—H13A109.3C21S—N2S—C22S117.7 (10)
N3A—C13A—H13B109.3C21S—N2S—C23S119.1 (10)
C14A—C13A—H13B109.3C22S—N2S—C23S123.0 (10)
H13A—C13A—H13B108.0O2S—C21S—N2S126.6 (12)
C13A—C14A—C15A113.4 (4)O2S—C21S—H21C116.7
C13A—C14A—H14A108.9N2S—C21S—H21C116.7
C15A—C14A—H14A108.9C21T—N2T—C23T121.2 (15)
C13A—C14A—H14B108.9C21T—N2T—C22T114.6 (15)
C15A—C14A—H14B108.9C23T—N2T—C22T123.4 (14)
H14A—C14A—H14B107.7O2T—C21T—N2T126.3 (17)
N4A—C15A—C14A114.4 (3)O2T—C21T—H21D116.8
N4A—C15A—H15A108.7N2T—C21T—H21D116.8
C14A—C15A—H15A108.7N2T—C22T—H22D109.5
N4A—C15A—H15B108.7N2T—C22T—H22E109.5
C14A—C15A—H15B108.7H22D—C22T—H22E109.5
H15A—C15A—H15B107.6N2T—C22T—H22F109.5
N4A—C16A—C17A127.1 (3)H22D—C22T—H22F109.5
N4A—C16A—H16A116.4H22E—C22T—H22F109.5
C17A—C16A—H16A116.4N2T—C23T—H23D109.5
C18A—C17A—C22A119.6 (3)N2T—C23T—H23E109.5
C18A—C17A—C16A117.3 (3)H23D—C23T—H23E109.5
C22A—C17A—C16A122.7 (3)N2T—C23T—H23F109.5
C19A—C18A—C17A122.0 (4)H23D—C23T—H23F109.5
C19A—C18A—H18A119.0H23E—C23T—H23F109.5
C17A—C18A—H18A119.0
Cu3—Br1—Cu2—O2A52.80 (7)C8A—N1A—C7A—C6A177.2 (3)
Cu3—Br1—Cu2—N4A145.43 (9)Cu1—N1A—C7A—C6A1.2 (5)
Cu3—Br1—Cu2—N3A120.70 (9)C5A—C6A—C7A—N1A178.1 (3)
Cu3—Br1—Cu2—N2A37.07 (8)C1A—C6A—C7A—N1A5.5 (6)
Cu2—Br1—Cu3—O2B47.97 (7)C7A—N1A—C8A—C9A99.0 (4)
Cu2—Br1—Cu3—N4B140.84 (9)Cu1—N1A—C8A—C9A79.5 (3)
Cu2—Br1—Cu3—N3B125.21 (8)N1A—C8A—C9A—C10A62.8 (4)
Cu2—Br1—Cu3—N2B41.46 (8)C11A—N2A—C10A—C9A78.5 (4)
O1B—Cu1—O1A—C1A89.5 (4)Cu2—N2A—C10A—C9A48.5 (3)
N1A—Cu1—O1A—C1A8.4 (3)C8A—C9A—C10A—N2A170.5 (3)
N1B—Cu1—O1A—C1A167.6 (3)C10A—N2A—C11A—C12A157.2 (3)
N4A—Cu2—O2A—C22A28.0 (3)Cu2—N2A—C11A—C12A26.9 (3)
N3A—Cu2—O2A—C22A89.4 (6)C13A—N3A—C12A—C11A177.1 (3)
N2A—Cu2—O2A—C22A138.1 (3)Cu2—N3A—C12A—C11A52.1 (3)
Br1—Cu2—O2A—C22A124.8 (3)N2A—C11A—C12A—N3A52.6 (4)
O1A—Cu1—O1B—C1B107.1 (4)C12A—N3A—C13A—C14A178.0 (3)
N1A—Cu1—O1B—C1B154.4 (3)Cu2—N3A—C13A—C14A57.9 (4)
N1B—Cu1—O1B—C1B4.6 (3)N3A—C13A—C14A—C15A70.2 (4)
N4B—Cu3—O2B—C22B26.6 (3)C16A—N4A—C15A—C14A128.7 (4)
N3B—Cu3—O2B—C22B97.0 (6)Cu2—N4A—C15A—C14A50.3 (4)
N2B—Cu3—O2B—C22B142.1 (3)C13A—C14A—C15A—N4A66.5 (5)
Br1—Cu3—O2B—C22B120.1 (2)C15A—N4A—C16A—C17A172.5 (4)
O1B—Cu1—N1A—C7A150.6 (3)Cu2—N4A—C16A—C17A8.5 (5)
O1A—Cu1—N1A—C7A6.5 (3)N4A—C16A—C17A—C18A176.1 (4)
N1B—Cu1—N1A—C7A109.3 (4)N4A—C16A—C17A—C22A12.0 (6)
O1B—Cu1—N1A—C8A31.0 (2)C22A—C17A—C18A—C19A1.8 (6)
O1A—Cu1—N1A—C8A171.9 (2)C16A—C17A—C18A—C19A174.1 (4)
N1B—Cu1—N1A—C8A69.1 (4)C17A—C18A—C19A—C20A1.6 (6)
O2A—Cu2—N2A—C10A44.3 (2)C18A—C19A—C20A—C21A0.4 (6)
N4A—Cu2—N2A—C10A50.3 (6)C19A—C20A—C21A—C22A0.5 (6)
N3A—Cu2—N2A—C10A126.9 (2)Cu2—O2A—C22A—C21A162.7 (3)
Br1—Cu2—N2A—C10A140.1 (2)Cu2—O2A—C22A—C17A17.2 (5)
O2A—Cu2—N2A—C11A172.5 (2)C20A—C21A—C22A—O2A179.6 (3)
N4A—Cu2—N2A—C11A77.9 (5)C20A—C21A—C22A—C17A0.3 (6)
N3A—Cu2—N2A—C11A1.3 (2)C18A—C17A—C22A—O2A179.2 (3)
Br1—Cu2—N2A—C11A91.8 (2)C16A—C17A—C22A—O2A7.5 (5)
O2A—Cu2—N3A—C13A153.7 (5)C18A—C17A—C22A—C21A0.9 (5)
N4A—Cu2—N3A—C13A36.5 (3)C16A—C17A—C22A—C21A172.6 (3)
N2A—Cu2—N3A—C13A157.1 (3)Cu1—O1B—C1B—C2B171.7 (2)
Br1—Cu2—N3A—C13A60.3 (3)Cu1—O1B—C1B—C6B8.0 (5)
O2A—Cu2—N3A—C12A78.7 (6)O1B—C1B—C2B—C3B179.3 (3)
N4A—Cu2—N3A—C12A164.1 (2)C6B—C1B—C2B—C3B1.0 (5)
N2A—Cu2—N3A—C12A29.5 (2)C1B—C2B—C3B—C4B1.6 (6)
Br1—Cu2—N3A—C12A67.3 (2)C2B—C3B—C4B—C5B2.6 (6)
O2A—Cu2—N4A—C16A23.2 (3)C3B—C4B—C5B—C6B1.2 (6)
N3A—Cu2—N4A—C16A146.5 (3)O1B—C1B—C6B—C5B177.9 (3)
N2A—Cu2—N4A—C16A71.1 (6)C2B—C1B—C6B—C5B2.3 (5)
Br1—Cu2—N4A—C16A119.3 (3)O1B—C1B—C6B—C7B6.1 (6)
O2A—Cu2—N4A—C15A157.8 (3)C2B—C1B—C6B—C7B173.7 (3)
N3A—Cu2—N4A—C15A32.5 (3)C4B—C5B—C6B—C1B1.3 (6)
N2A—Cu2—N4A—C15A107.9 (5)C4B—C5B—C6B—C7B175.0 (4)
Br1—Cu2—N4A—C15A61.7 (3)C8B—N1B—C7B—C6B174.9 (3)
O1B—Cu1—N1B—C7B0.2 (3)Cu1—N1B—C7B—C6B1.5 (5)
O1A—Cu1—N1B—C7B157.3 (3)C1B—C6B—C7B—N1B1.2 (6)
N1A—Cu1—N1B—C7B99.6 (4)C5B—C6B—C7B—N1B177.2 (3)
O1B—Cu1—N1B—C8B176.2 (2)C7B—N1B—C8B—C9B114.7 (3)
O1A—Cu1—N1B—C8B26.3 (3)Cu1—N1B—C8B—C9B61.9 (3)
N1A—Cu1—N1B—C8B76.7 (4)N1B—C8B—C9B—C10B66.7 (4)
O2B—Cu3—N2B—C10B47.5 (2)C11B—N2B—C10B—C9B53.5 (4)
N4B—Cu3—N2B—C10B47.9 (7)Cu3—N2B—C10B—C9B174.8 (2)
N3B—Cu3—N2B—C10B124.4 (2)C8B—C9B—C10B—N2B176.2 (3)
Br1—Cu3—N2B—C10B143.9 (2)C10B—N2B—C11B—C12B153.5 (3)
O2B—Cu3—N2B—C11B171.4 (2)Cu3—N2B—C11B—C12B29.3 (3)
N4B—Cu3—N2B—C11B76.0 (6)C13B—N3B—C12B—C11B175.5 (3)
N3B—Cu3—N2B—C11B0.5 (2)Cu3—N3B—C12B—C11B52.1 (3)
Br1—Cu3—N2B—C11B92.3 (2)N2B—C11B—C12B—N3B54.5 (4)
O2B—Cu3—N3B—C12B73.8 (6)C12B—N3B—C13B—C14B179.3 (3)
N4B—Cu3—N3B—C12B162.7 (2)Cu3—N3B—C13B—C14B55.2 (4)
N2B—Cu3—N3B—C12B28.3 (2)N3B—C13B—C14B—C15B69.3 (4)
Br1—Cu3—N3B—C12B69.4 (2)C16B—N4B—C15B—C14B129.3 (4)
O2B—Cu3—N3B—C13B157.7 (5)Cu3—N4B—C15B—C14B49.8 (4)
N4B—Cu3—N3B—C13B34.2 (3)C13B—C14B—C15B—N4B67.2 (5)
N2B—Cu3—N3B—C13B156.8 (3)C15B—N4B—C16B—C17B171.6 (4)
Br1—Cu3—N3B—C13B59.2 (3)Cu3—N4B—C16B—C17B9.3 (5)
O2B—Cu3—N4B—C16B22.2 (3)N4B—C16B—C17B—C18B176.7 (3)
N3B—Cu3—N4B—C16B148.3 (3)N4B—C16B—C17B—C22B9.0 (6)
N2B—Cu3—N4B—C16B72.8 (7)C22B—C17B—C18B—C19B0.7 (5)
Br1—Cu3—N4B—C16B118.9 (3)C16B—C17B—C18B—C19B173.9 (4)
O2B—Cu3—N4B—C15B158.7 (3)C17B—C18B—C19B—C20B0.6 (6)
N3B—Cu3—N4B—C15B30.7 (3)C18B—C19B—C20B—C21B0.4 (6)
N2B—Cu3—N4B—C15B106.3 (6)C19B—C20B—C21B—C22B0.1 (6)
Br1—Cu3—N4B—C15B62.1 (3)Cu3—O2B—C22B—C21B163.7 (2)
Cu1—O1A—C1A—C2A175.0 (3)Cu3—O2B—C22B—C17B17.3 (5)
Cu1—O1A—C1A—C6A4.6 (5)C20B—C21B—C22B—O2B179.2 (3)
O1A—C1A—C2A—C3A179.2 (3)C20B—C21B—C22B—C17B0.2 (5)
C6A—C1A—C2A—C3A0.3 (5)C18B—C17B—C22B—O2B179.4 (3)
C1A—C2A—C3A—C4A0.6 (6)C16B—C17B—C22B—O2B5.1 (5)
C2A—C3A—C4A—C5A0.4 (6)C18B—C17B—C22B—C21B0.4 (5)
C3A—C4A—C5A—C6A0.1 (6)C16B—C17B—C22B—C21B173.9 (3)
C4A—C5A—C6A—C7A177.0 (4)C13S—N1S—C11S—O1S2.2 (6)
C4A—C5A—C6A—C1A0.4 (6)C12S—N1S—C11S—O1S179.9 (4)
O1A—C1A—C6A—C5A179.7 (3)C22S—N2S—C21S—O2S171.6 (12)
C2A—C1A—C6A—C5A0.2 (5)C23S—N2S—C21S—O2S4 (2)
O1A—C1A—C6A—C7A3.9 (5)C23T—N2T—C21T—O2T18 (3)
C2A—C1A—C6A—C7A176.5 (3)C22T—N2T—C21T—O2T172.4 (18)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2A—H2AB···O2B0.932.002.919 (4)170
N3A—H3AB···Br20.932.503.429 (3)174
N2B—H2BB···O2A0.932.143.061 (4)172
N3B—H3BB···O1S0.932.393.005 (4)123

Experimental details

Crystal data
Chemical formula[Cu3Br(C22H28N4O2)2]Br·2C3H7NO
Mr1257.60
Crystal system, space groupHexagonal, P61
Temperature (K)200
a, c (Å)18.7450 (2), 28.2531 (5)
V3)8597.4 (2)
Z6
Radiation typeMo Kα
µ (mm1)2.55
Crystal size (mm)0.51 × 0.42 × 0.38
Data collection
DiffractometerOxford Diffraction Gemini R
diffractometer
Absorption correctionMulti-scan
(CrysAlis RED; Oxford Diffraction, 2009)
Tmin, Tmax0.782, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
95983, 11660, 8463
Rint0.070
(sin θ/λ)max1)0.625
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.030, 0.062, 0.91
No. of reflections11660
No. of parameters662
No. of restraints85
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.39, 0.26
Absolute structureFlack (1983), 5710 Friedel pairs
Absolute structure parameter0.007 (5)

Computer programs: CrysAlis CCD (Oxford Diffraction, 2009), CrysAlis RED (Oxford Diffraction, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2A—H2AB···O2B0.932.002.919 (4)169.7
N3A—H3AB···Br20.932.503.429 (3)174.1
N2B—H2BB···O2A0.932.143.061 (4)172.2
N3B—H3BB···O1S0.932.393.005 (4)123.2
 

Acknowledgements

RJB wishes to acknowledge the NSF–MRI program (grant CHE-0619278) for funds to purchase the diffractometer. GA wishes to acknowledge the Howard University Graduate School of Arts & Sciences for the award of a Teaching Assistanceship.

References

First citationAddison, A. W., Rao, T. N., Reedijk, J., van Rijn, J. & Verschoor, G. C. (1984). J. Chem. Soc. Dalton Trans. pp. 1349–1356.  CSD CrossRef Web of Science Google Scholar
First citationAugustine, A. J., Kjaergaard, G., Qayyum, M., Ziegler, L., Kosman, D. J., Hodgson, K. O., Hedman, B. & Solomon, E. I. (2010). J. Am. Chem. Soc. 132, 6057–6067.  Web of Science CrossRef CAS Google Scholar
First citationChaudhuri, P., Karpenstein, I., Winter, M., Butzlaff, C., Bill, E., Trautwein, A. X., Flörke, U. & Haupt, H. J. (1992). J. Chem. Soc. Chem. Commun. pp. 321–322.  CrossRef Web of Science Google Scholar
First citationChen, Z., Durao, P., Silva, C. S., Pereira, M. M., Todorovic, S., Hildebrandt, P., Bento, I., Lindley, P. F. & Martins, L. O. (2010). Dalton Trans. 39, 2875–2882.  CrossRef CAS Google Scholar
First citationCole, A. P., Root, D. E., Mukherjee, P., Solomon, E. I. & Stack, T. D. P. (1996). Science, 273, 1848–1850.  CSD CrossRef PubMed Web of Science Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationHakulinen, N., Andberg, M., Kallio, J., Koivula, A., Kruus, K. & Rouvinen, J. (2008). J. Struct. Biol. 162, 29–39.  Web of Science CrossRef PubMed CAS Google Scholar
First citationKataoka, K., Sugiyama, R., Hirota, S., Inoue, M., Urata, K., Munagawa, Y., Seo, D. & Sakurai, T. (2009). J. Biol. Chem. 284, 14405–14413.  CrossRef CAS Google Scholar
First citationLawton, T. J., Sayavedra-Soto, L. A., Arp, D. J. & Rosenzweig, A. C. (2009). J. Biol. Chem. 284, 10174–10180.  Web of Science CrossRef PubMed CAS Google Scholar
First citationLi, Y., Wang, Y., Jiang, H. & Deng, J. (2009). PNAS, 106, 17002–17006.  CrossRef CAS Google Scholar
First citationMiessler, G. L. & Tarr, D. A. (2005). Inorganic Chemistry, 3rd ed., Singapore: Pearson Education (Indian Branch, Delhi, India).  Google Scholar
First citationMirica, L. M. & Stack, T. D. P. (2005). Inorg. Chem. 44, 2131–2133.  Web of Science CSD CrossRef CAS Google Scholar
First citationMukherjee, A., Rudra, I., Naik, S. G., Ramasesha, S., Nethaji, M. & Chakravarty, A. R. (2003). Inorg. Chem. 42, 5660–5668.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationOxford Diffraction (2009). CrysAlis RED and CrysAlis CCD. Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationPaine, T. K., Weyhermueller, T., Wieghardt, K. & Chaudhuri, P. (2004). Dalton Trans. pp. 2092–2101.  CSD CrossRef Google Scholar
First citationPompidor, G., Maillard, A. P., Girard, E., Gambarelli, S., Kahn, R. & Coves, J. (2008). FEBS Lett. 582, 3954–3958.  CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSolomon, E. I., Sundaram, U. M. & Machonkin, T. E. (1996). Chem. Rev. 96, 2563–2605.  CrossRef PubMed CAS Web of Science Google Scholar
First citationYoon, J., Mirica, L. M., Stack, T. D. P. & Solomon, E. I. (2005). J. Am. Chem. Soc. 127, 13680–13693.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 9| September 2011| Pages m1197-m1198
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds