organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(S)-2-[(S,Z)-3-Bromo-1-nitro-4-phenyl­but-3-en-2-yl]cyclo­hexa­none

aState Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China
*Correspondence e-mail: xiaaibao1983@163.com

(Received 27 June 2011; accepted 29 June 2011; online 6 July 2011)

In the crystal structure of the title compound, C16H18BrNO3, the two stereogenic centres both have an S configuration. The cyclo­hexyl ring adopts a chair conformation. In the crystal, mol­ecules are linked by weak N—O⋯Br contacts [O⋯Br = 3.289 (4) Å].

Related literature

For related structures, see: Li et al. (2010[Li, Z.-B., Luo, S.-P., Guo, Y., Xia, A.-B. & Xu, D.-Q. (2010). Org. Biomol. Chem. 8, 2505-2508.]); Chua et al. (2009[Chua, P.-J., Tan, B., Zeng, X.-F. & Zhong, G.-F. (2009). Bioorg. Med. Chem. Lett. 19, 3915-3918.]). For the asymmetric Michael reaction, which in principle allows for the formation of two contiguous asymmetric centers, see: Zeng & Zhong (2009[Zeng, X.-F. & Zhong, G.-F. (2009). Synthesis, 9, 1545-1550.]); Roca-Lopez et al. (2010[Roca-Lopez, D., Sadaba, D., Delso, I., Herrera, R. P., Tejero, T. & Merino, P. (2010). Tetrahedron Asymmetry, 21, 2561-2601.]); Tsogoeva (2007[Tsogoeva, S. B. (2007). Eur. J. Org. Chem. pp. 1701-1716.]); Sulzer-Mosse & Alexakis (2007[Sulzer-Mosse, S. & Alexakis, A. (2007). Chem. Commun. pp. 3123-3135.]); Mukherjee et al. (2007[Mukherjee, S., Yang, J. W., Hoffmann, S. & List, B. (2007). Chem. Rev. 107, 5471-5569.]).

[Scheme 1]

Experimental

Crystal data
  • C16H18BrNO3

  • Mr = 352.22

  • Orthorhombic, P 21 21 21

  • a = 8.0091 (3) Å

  • b = 12.2395 (6) Å

  • c = 16.3039 (7) Å

  • V = 1598.23 (12) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 2.58 mm−1

  • T = 296 K

  • 0.33 × 0.29 × 0.25 mm

Data collection
  • Rigaku R-AXIS RAPID/ZJUG diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.428, Tmax = 0.525

  • 15575 measured reflections

  • 3636 independent reflections

  • 2369 reflections with I > 2σ(I)

  • Rint = 0.051

Refinement
  • R[F2 > 2σ(F2)] = 0.037

  • wR(F2) = 0.114

  • S = 1.00

  • 3636 reflections

  • 191 parameters

  • H-atom parameters constrained

  • Δρmax = 0.82 e Å−3

  • Δρmin = −1.05 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1548 Friedel pairs

  • Flack parameter: −0.018 (17)

Data collection: PROCESS-AUTO (Rigaku, 2006[Rigaku (2006). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.]); cell refinement: PROCESS-AUTO; data reduction: CrystalStructure (Rigaku, 2007[Rigaku (2007). CrystalStructure. Rigaku Americas Corporation, The Woodlands, Texas, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

Nitroalkenes are important reagents in organic chemistry and they are the most prominent Michael acceptors used in organocatalytic reactions (Tsogoeva et al., 2007; Sulzer-Mosse et al., 2007; Mukherjee et al., 2007). Consequently, the title compound was synthesized as one of a series of solvent-free Michael products under investigation. In this paper, its absolute configuration and crystal structure are presented.The title compound is shown in Fig. 1. The cyclohexyl ring adopts a chair conformation. The plane of the phenyl ring and the least-square plane of the cyclohexyl moiety enclose an angle of 63.96 (3)°. The torsion angle O1—C7—Br1—C9 is 139.74 (2)° The molecules are linked by weak N1—O2···Br1 contacts. The O···Br distance is 3.289 Å.

Related literature top

For related structures, see: Li et al. (2010); Chua et al. (2009). For the asymmetric Michael reaction, which in principle allows for the formation of two contiguous asymmetric centers, see: Zeng & Zhong (2009); Roca-Lopez et al. (2010); Tsogoeva (2007); Sulzer-Mosse & Alexakis (2007); Mukherjee et al. (2007).

Experimental top

A mixture of (2-bromo-4-nitrobuta-1,3-dienyl)benzene (1 mmol) and cyclohexanone (8 mmol) in the presence of (S)-2-(pyrrolidin-2-ylmethylthio)pyridine(0.2 mmol) as amine catalyst and 4-(trifluoromethyl)benzoic acid(0.2 mmol) as cocatalyst at room temperature with stirring. After completion of the reaction, the mixture was extracted with ethyl acetate. The solvent was removed under reduced pressure and the residue was purified by silica gel column chromatography (eluent: petroleum ether-aether). Suitable crystals were obtained by slow evaporation of an ethyl ether solution.

Refinement top

H atoms were placed in calculated position with C—H ranging from 0.93 Å to 0.98 Å and refined using a riding model with Uiso(H)=1.2Ueq of the carrier atoms.

Computing details top

Data collection: PROCESS-AUTO (Rigaku, 2006); cell refinement: PROCESS-AUTO (Rigaku, 2006); data reduction: CrystalStructure (Rigaku, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of the structure of the title compound, with the atomic labeling scheme. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. Unit cell packing of the title compound.
(S)-2-[(S,Z)-3-Bromo-1-nitro-4-phenylbut-3-en- 2-yl]cyclohexanone top
Crystal data top
C16H18BrNO3F(000) = 720
Mr = 352.22Dx = 1.464 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 10471 reflections
a = 8.0091 (3) Åθ = 3.0–27.4°
b = 12.2395 (6) ŵ = 2.58 mm1
c = 16.3039 (7) ÅT = 296 K
V = 1598.23 (12) Å3Chunk, colorless
Z = 40.33 × 0.29 × 0.25 mm
Data collection top
Rigaku R-AXIS RAPID/ZJUG
diffractometer
3636 independent reflections
Radiation source: rolling anode2369 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.051
Detector resolution: 10.00 pixels mm-1θmax = 27.4°, θmin = 3.0°
ω scansh = 1010
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
k = 1515
Tmin = 0.428, Tmax = 0.525l = 2021
15575 measured reflections
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.037 w = 1/[σ2(Fo2) + (0.P)2 + 4.1524P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.114(Δ/σ)max = 0.001
S = 1.00Δρmax = 0.82 e Å3
3636 reflectionsΔρmin = 1.05 e Å3
191 parametersExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.0310 (13)
Primary atom site location: structure-invariant direct methodsAbsolute structure: Flack (1983), 1548 Friedel pairs
Secondary atom site location: difference Fourier mapAbsolute structure parameter: 0.018 (17)
Crystal data top
C16H18BrNO3V = 1598.23 (12) Å3
Mr = 352.22Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 8.0091 (3) ŵ = 2.58 mm1
b = 12.2395 (6) ÅT = 296 K
c = 16.3039 (7) Å0.33 × 0.29 × 0.25 mm
Data collection top
Rigaku R-AXIS RAPID/ZJUG
diffractometer
3636 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
2369 reflections with I > 2σ(I)
Tmin = 0.428, Tmax = 0.525Rint = 0.051
15575 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.037H-atom parameters constrained
wR(F2) = 0.114Δρmax = 0.82 e Å3
S = 1.00Δρmin = 1.05 e Å3
3636 reflectionsAbsolute structure: Flack (1983), 1548 Friedel pairs
191 parametersAbsolute structure parameter: 0.018 (17)
0 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.63058 (7)0.46482 (5)0.55564 (4)0.0619 (2)
N10.1663 (6)0.3677 (4)0.5794 (3)0.0571 (13)
O20.0229 (5)0.3856 (5)0.5610 (4)0.0905 (15)
O10.1693 (7)0.3171 (5)0.3392 (3)0.0885 (16)
C110.4279 (6)0.7079 (4)0.5742 (3)0.0460 (13)
C20.4282 (7)0.3931 (5)0.3846 (3)0.0495 (13)
H20.52100.34670.40250.059*
C10.3329 (6)0.4313 (4)0.4610 (3)0.0466 (13)
H10.22890.46500.44200.056*
C100.3654 (7)0.6156 (4)0.5251 (3)0.0462 (12)
H100.26580.63050.49790.055*
O30.2193 (7)0.3763 (5)0.6486 (3)0.0933 (17)
C150.4339 (8)0.9025 (5)0.5950 (4)0.0655 (18)
H150.40600.97220.57710.079*
C160.3855 (7)0.8127 (4)0.5505 (4)0.0536 (12)
H160.32250.82270.50310.064*
C140.5235 (8)0.8893 (6)0.6660 (4)0.0655 (18)
H140.55590.95000.69640.079*
C30.5005 (8)0.4881 (5)0.3337 (4)0.0604 (16)
H3A0.41030.53480.31520.073*
H3B0.57430.53140.36780.073*
C90.4228 (6)0.5152 (4)0.5117 (3)0.0460 (12)
C70.3176 (9)0.3261 (5)0.3272 (4)0.0614 (17)
C120.5181 (8)0.6956 (5)0.6466 (4)0.0606 (16)
H120.54700.62600.66470.073*
C80.2845 (8)0.3328 (5)0.5139 (4)0.0559 (15)
H8A0.23240.27740.47990.067*
H8B0.38370.30140.53860.067*
C60.4045 (10)0.2823 (6)0.2531 (4)0.078 (2)
H6A0.32460.24490.21830.093*
H6B0.48870.22980.26980.093*
C40.5965 (9)0.4456 (6)0.2599 (4)0.079 (2)
H4A0.63930.50690.22860.094*
H4B0.69110.40280.27870.094*
C130.5651 (9)0.7863 (6)0.6919 (4)0.0696 (19)
H130.62540.77720.74020.084*
C50.4875 (11)0.3752 (7)0.2046 (4)0.089 (3)
H5A0.55530.34450.16110.107*
H5B0.40190.42040.17970.107*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.0516 (3)0.0585 (3)0.0756 (4)0.0081 (3)0.0139 (3)0.0041 (3)
N10.055 (3)0.056 (3)0.060 (3)0.008 (2)0.007 (2)0.013 (2)
O20.052 (3)0.117 (4)0.102 (4)0.005 (3)0.001 (3)0.006 (4)
O10.084 (4)0.101 (4)0.080 (3)0.019 (3)0.015 (3)0.023 (3)
C110.046 (3)0.047 (3)0.045 (3)0.001 (2)0.002 (2)0.000 (2)
C20.053 (3)0.050 (3)0.046 (3)0.005 (3)0.004 (2)0.004 (2)
C10.049 (3)0.040 (3)0.052 (3)0.002 (2)0.004 (2)0.001 (2)
C100.044 (3)0.048 (3)0.046 (3)0.002 (3)0.002 (3)0.002 (2)
O30.098 (4)0.127 (5)0.055 (3)0.012 (3)0.002 (3)0.010 (3)
C150.064 (4)0.043 (3)0.089 (5)0.001 (3)0.006 (3)0.010 (3)
C160.053 (3)0.042 (3)0.066 (3)0.006 (3)0.001 (3)0.001 (3)
C140.058 (4)0.060 (4)0.078 (5)0.012 (3)0.007 (3)0.023 (4)
C30.064 (4)0.057 (4)0.061 (3)0.000 (3)0.008 (3)0.009 (3)
C90.046 (3)0.043 (3)0.049 (3)0.001 (2)0.000 (2)0.002 (2)
C70.073 (4)0.057 (4)0.054 (4)0.006 (3)0.008 (3)0.001 (3)
C120.076 (4)0.050 (4)0.055 (4)0.006 (3)0.009 (3)0.008 (3)
C80.063 (4)0.043 (3)0.061 (4)0.003 (3)0.005 (3)0.001 (3)
C60.100 (6)0.073 (5)0.060 (4)0.021 (4)0.023 (4)0.018 (4)
C40.093 (5)0.087 (5)0.056 (4)0.003 (5)0.015 (4)0.000 (4)
C130.082 (5)0.065 (4)0.062 (4)0.000 (4)0.012 (3)0.018 (3)
C50.123 (7)0.087 (6)0.057 (4)0.024 (5)0.006 (4)0.005 (4)
Geometric parameters (Å, º) top
Br1—C91.914 (5)C16—H160.9300
N1—O21.208 (6)C14—C131.371 (9)
N1—O31.209 (6)C14—H140.9300
N1—C81.490 (7)C3—C41.520 (8)
O1—C71.209 (8)C3—H3A0.9700
C11—C161.382 (7)C3—H3B0.9700
C11—C121.393 (8)C7—C61.493 (9)
C11—C101.472 (7)C12—C131.385 (8)
C2—C71.528 (8)C12—H120.9300
C2—C11.535 (7)C8—H8A0.9700
C2—C31.542 (8)C8—H8B0.9700
C2—H20.9800C6—C51.536 (9)
C1—C91.502 (7)C6—H6A0.9700
C1—C81.532 (7)C6—H6B0.9700
C1—H10.9800C4—C51.521 (9)
C10—C91.330 (7)C4—H4A0.9700
C10—H100.9300C4—H4B0.9700
C15—C141.371 (9)C13—H130.9300
C15—C161.373 (8)C5—H5A0.9700
C15—H150.9300C5—H5B0.9700
O2—N1—O3123.4 (6)C10—C9—C1123.8 (5)
O2—N1—C8118.5 (6)C10—C9—Br1122.5 (4)
O3—N1—C8118.1 (5)C1—C9—Br1113.7 (4)
C16—C11—C12117.7 (5)O1—C7—C6123.8 (6)
C16—C11—C10118.4 (5)O1—C7—C2121.3 (6)
C12—C11—C10123.7 (5)C6—C7—C2114.7 (6)
C7—C2—C1111.9 (5)C13—C12—C11120.4 (6)
C7—C2—C3107.0 (5)C13—C12—H12119.8
C1—C2—C3113.2 (5)C11—C12—H12119.8
C7—C2—H2108.2N1—C8—C1109.8 (5)
C1—C2—H2108.2N1—C8—H8A109.7
C3—C2—H2108.2C1—C8—H8A109.7
C9—C1—C8110.5 (4)N1—C8—H8B109.7
C9—C1—C2114.6 (4)C1—C8—H8B109.7
C8—C1—C2110.0 (4)H8A—C8—H8B108.2
C9—C1—H1107.1C7—C6—C5110.6 (6)
C8—C1—H1107.1C7—C6—H6A109.5
C2—C1—H1107.1C5—C6—H6A109.5
C9—C10—C11132.8 (5)C7—C6—H6B109.5
C9—C10—H10113.6C5—C6—H6B109.5
C11—C10—H10113.6H6A—C6—H6B108.1
C14—C15—C16120.0 (6)C5—C4—C3111.8 (6)
C14—C15—H15120.0C5—C4—H4A109.3
C16—C15—H15120.0C3—C4—H4A109.3
C15—C16—C11121.7 (6)C5—C4—H4B109.3
C15—C16—H16119.2C3—C4—H4B109.3
C11—C16—H16119.2H4A—C4—H4B107.9
C15—C14—C13119.7 (6)C14—C13—C12120.5 (6)
C15—C14—H14120.2C14—C13—H13119.8
C13—C14—H14120.2C12—C13—H13119.8
C4—C3—C2111.0 (5)C4—C5—C6111.3 (6)
C4—C3—H3A109.4C4—C5—H5A109.4
C2—C3—H3A109.4C6—C5—H5A109.4
C4—C3—H3B109.4C4—C5—H5B109.4
C2—C3—H3B109.4C6—C5—H5B109.4
H3A—C3—H3B108.0H5A—C5—H5B108.0
C7—C2—C1—C9168.6 (5)C1—C2—C7—O17.4 (9)
C3—C2—C1—C947.6 (6)C3—C2—C7—O1117.2 (7)
C7—C2—C1—C866.2 (6)C1—C2—C7—C6177.6 (5)
C3—C2—C1—C8172.8 (5)C3—C2—C7—C657.8 (7)
C16—C11—C10—C9152.7 (6)C16—C11—C12—C131.0 (9)
C12—C11—C10—C931.9 (9)C10—C11—C12—C13176.5 (6)
C14—C15—C16—C111.5 (9)O2—N1—C8—C175.7 (7)
C12—C11—C16—C151.8 (9)O3—N1—C8—C1104.4 (6)
C10—C11—C16—C15177.5 (5)C9—C1—C8—N162.7 (6)
C16—C15—C14—C130.4 (10)C2—C1—C8—N1169.7 (5)
C7—C2—C3—C457.4 (7)O1—C7—C6—C5119.3 (8)
C1—C2—C3—C4178.8 (5)C2—C7—C6—C555.6 (8)
C11—C10—C9—C1177.3 (5)C2—C3—C4—C558.2 (8)
C11—C10—C9—Br13.0 (9)C15—C14—C13—C120.4 (10)
C8—C1—C9—C10116.9 (6)C11—C12—C13—C140.0 (10)
C2—C1—C9—C10118.1 (6)C3—C4—C5—C654.1 (8)
C8—C1—C9—Br163.3 (5)C7—C6—C5—C451.6 (9)
C2—C1—C9—Br161.7 (5)

Experimental details

Crystal data
Chemical formulaC16H18BrNO3
Mr352.22
Crystal system, space groupOrthorhombic, P212121
Temperature (K)296
a, b, c (Å)8.0091 (3), 12.2395 (6), 16.3039 (7)
V3)1598.23 (12)
Z4
Radiation typeMo Kα
µ (mm1)2.58
Crystal size (mm)0.33 × 0.29 × 0.25
Data collection
DiffractometerRigaku R-AXIS RAPID/ZJUG
diffractometer
Absorption correctionMulti-scan
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.428, 0.525
No. of measured, independent and
observed [I > 2σ(I)] reflections
15575, 3636, 2369
Rint0.051
(sin θ/λ)max1)0.647
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.114, 1.00
No. of reflections3636
No. of parameters191
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.82, 1.05
Absolute structureFlack (1983), 1548 Friedel pairs
Absolute structure parameter0.018 (17)

Computer programs: PROCESS-AUTO (Rigaku, 2006), CrystalStructure (Rigaku, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).

 

Acknowledgements

The authors thank Professor Jian-Ming Gu of Zhejiang University for his help. Wen-Zeng Weng and Chu-Xia Yan are thanked for their help with the synthesis.

References

First citationChua, P.-J., Tan, B., Zeng, X.-F. & Zhong, G.-F. (2009). Bioorg. Med. Chem. Lett. 19, 3915–3918.  Web of Science CrossRef PubMed CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationHigashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationLi, Z.-B., Luo, S.-P., Guo, Y., Xia, A.-B. & Xu, D.-Q. (2010). Org. Biomol. Chem. 8, 2505–2508.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationMukherjee, S., Yang, J. W., Hoffmann, S. & List, B. (2007). Chem. Rev. 107, 5471–5569.  Web of Science CrossRef PubMed CAS Google Scholar
First citationRigaku (2006). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku (2007). CrystalStructure. Rigaku Americas Corporation, The Woodlands, Texas, USA.  Google Scholar
First citationRoca-Lopez, D., Sadaba, D., Delso, I., Herrera, R. P., Tejero, T. & Merino, P. (2010). Tetrahedron Asymmetry, 21, 2561–2601.  CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSulzer-Mosse, S. & Alexakis, A. (2007). Chem. Commun. pp. 3123–3135.  Web of Science CrossRef Google Scholar
First citationTsogoeva, S. B. (2007). Eur. J. Org. Chem. pp. 1701–1716.  Web of Science CrossRef Google Scholar
First citationZeng, X.-F. & Zhong, G.-F. (2009). Synthesis, 9, 1545–1550.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds