organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 2| February 2011| Pages o432-o433

Enrofloxacinium picrate

aDepartment of Chemistry, Keene State College, 229 Main Street, Keene, NH 03435-2001, USA, bDepartment of Chemistry, Howard University, 525 College Street NW, Washington, DC 20059, USA, and cDepartment of Studies in Chemistry, University of Mysore, Manasagangotri, Mysore 570 006, India
*Correspondence e-mail: jjasinski@keene.edu

(Received 27 December 2010; accepted 11 January 2011; online 22 January 2011)

There is one cation–anion pair in the asymmetric unit of the title compound [systematic name: 4-(3-carb­oxy-6-fluoro-4-oxo-1,4-dihydroquinolin-7-yl)-1-ethyl­piperazin-1-ium 2,4,6-tri­nitro­phenolate], C19H23FN3O3+·C6H2N3O7. The six-membered piperazine group in the cation adopts a slightly distorted chair conformation and contains a protonated N atom. The dihedral angles between the mean planes of the cyclo­propyl and piperazine rings in the cation with the 10-atom ring system of the quinolone group are 48.1 (1) and 69.9 (5)°, respectively. The picrate anion inter­acts with the protonated N atom of an adjacent cation through a bifurcated N—H⋯O three-center hydrogen bond, forming an R12(6) ring motif. Furthermore, there is an intra­molecular O—H⋯O hydrogen bond. The dihedral angle between the mean planes of the anion benzene and cation piperizine, quinoline and cyclo­propyl rings are 61.3 (6), 31.1 (4) and 70.4 (9)°, respectively. The mean planes of the two o-NO2 and single p-NO2 groups in the picrate anion are twisted by 6.7 (6), 38.3 (9) and 12.8 (7)° with respect to the mean plane of the benzene ring. Strong N—H⋯O and weak inter­molecular C—H⋯O hydrogen bonds in concert with weak ππ stacking inter­actions [centroid–centroid distances = 3.5785 (13), 3.7451 (12) and 3.6587 (13) Å] dominate the crystal packing.

Related literature

For background to fluoro­quinolones, see: Bhanot et al. (2001[Bhanot, S. K., Singh, M. & Chatterjee, N. R. (2001). Curr. Pharm. Des. 7, 313-337.]); Scholar (2003[Scholar, E. M. (2003). Am. J. Pharm. Educ. 66, 165-172.]). For related structures, see: Hu & Yu, (2005[Hu, R.-D. & Yu, Q.-S. (2005). Z. Krystallogr. New Cryst. Struct. 220, 171-172.]); Jasinski et al. (2009[Jasinski, J. P., Butcher, R. J., Hakim Al-Arique, Q. N. M., Yathirajan, H. S. & Narayana, B. (2009). Acta Cryst. E65, o1738-o1739.], 2010a[Jasinski, J. P., Butcher, R. J., Hakim Al-Arique, Q. N. M., Yathirajan, H. S. & Narayana, B. (2010a). Acta Cryst. E66, o411-o412.], 2010b[Jasinski, J. P., Butcher, R. J., Hakim Al-Arique, Q. N. M., Yathirajan, H. S. & Narayana, B. (2010b). Acta Cryst. E66, o347-o348.]); Recillas-Mota et al. (2007[Recillas-Mota, J., Flores-Alamo, M., Moreno-Esparza, R. & Gracia-Mora, J. (2007). Acta Cryst. E63, m3030-m3031.]); Sun et al. (2004[Sun, H.-X., Li, Y. & Pan, Y.-J. (2004). Acta Cryst. E60, o1694-o1696.]); Wang et al. (2005[Wang, Y., Sun, L.-W., Wang, W. & Yan, L.-H. (2005). Chin. J. Struct. Chem. 24, 1359-1362.]); Zou et al. (2005[Zou, H.-I., Chen, Z.-F. & Liang, H. (2005). J. Guangxi Nor. Univ. Nat. Sci. Ed. 23, 57-60.]). For puckering parameters, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]). For standard bond lengths, see: Allen et al. (1987)[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.].

[Scheme 1]

Experimental

Crystal data
  • C19H23FN3O3+·C6H2N3O7

  • Mr = 588.51

  • Triclinic, [P \overline 1]

  • a = 7.2111 (7) Å

  • b = 12.5766 (7) Å

  • c = 16.2362 (4) Å

  • α = 105.556 (2)°

  • β = 96.367 (6)°

  • γ = 96.223 (7)°

  • V = 1395.04 (16) Å3

  • Z = 2

  • Cu Kα radiation

  • μ = 0.98 mm−1

  • T = 295 K

  • 0.44 × 0.31 × 0.12 mm

Data collection
  • Oxford Diffraction Xcalibur Ruby Gemini diffractometer

  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2007[Oxford Diffraction (2007). CrysAlis PRO and CrysAlis RED. Oxford Diffraction Ltd, Abingdon,England.]) Tmin = 0.896, Tmax = 1.000

  • 9440 measured reflections

  • 5437 independent reflections

  • 3425 reflections with I > 2σ(I)

  • Rint = 0.032

Refinement
  • R[F2 > 2σ(F2)] = 0.055

  • wR(F2) = 0.177

  • S = 1.00

  • 5437 reflections

  • 382 parameters

  • H-atom parameters constrained

  • Δρmax = 0.20 e Å−3

  • Δρmin = −0.20 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2⋯O3 0.82 1.78 2.536 (3) 151
N3—H3A⋯O1A 0.91 1.87 2.724 (3) 155
N3—H3A⋯O7A 0.91 2.38 3.024 (3) 128
C11—H11A⋯O3i 0.98 2.55 3.385 (3) 144
C15—H15B⋯O1ii 0.97 2.35 3.312 (3) 169
C17—H17B⋯O3Aiii 0.97 2.56 3.458 (4) 154
C3A—H3AA⋯O3iv 0.93 2.55 3.331 (3) 142
C9—H9A⋯O4Av 0.93 2.58 3.495 (3) 170
C14—H14B⋯O5Avi 0.97 2.60 3.517 (4) 157
C18—H18A⋯O5Avii 0.97 2.50 3.451 (5) 167
Symmetry codes: (i) -x, -y+1, -z; (ii) -x+1, -y+1, -z; (iii) -x, -y+1, -z+1; (iv) x, y, z+1; (v) x, y, z-1; (vi) -x, -y, -z+1; (vii) -x+1, -y, -z+1.

Data collection: CrysAlis PRO (Oxford Diffraction, 2007[Oxford Diffraction (2007). CrysAlis PRO and CrysAlis RED. Oxford Diffraction Ltd, Abingdon,England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis RED (Oxford Diffraction, 2007[Oxford Diffraction (2007). CrysAlis PRO and CrysAlis RED. Oxford Diffraction Ltd, Abingdon,England.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Enrofloxacin is a fluoroquinolone antibiotic and is a synthetic chemotherapeutic agent from the class of the fluoroquinolone carboxylic acid derivatives. It is sold by the Bayer Corporation under the trade name Baytril and has antibacterial activity against a broad spectrum of Gram-negative and Gram-positive bacteria. Its mechanism of action is not thoroughly understood, but it is believed to act by inhibiting bacterial DNA gyrase (a type-II topoisomerase), thereby preventing DNA supercoiling and DNA synthesis. The chemical and biological aspects of fluoroquinolones is described (Bhanot et al., 2001; Scholar, 2003). The crystal structure of norfloxacin hydrochloride (Zou et al., 2005) and norfloxacin methanol solvate (Wang et al., 2005) have already been reported. The crystal structure of a copper complex of enrofloxacin (Recillas-Mota et al., 2007), norfloxacin picrate (Hu & Yu, 2005) and 2-hydroxyethanaminium enrofloxacinate (Sun et al., 2004) are reported. Recently, the crystal structures of propiverine picrate (Jasinski et al., 2009), imatinibium dipicrate (Jasinski et al., 2010a) and chlorimipraminium picrate (Jasinski et al., 2010b) have been reported. In continuation of our work on picrates of biologically active compounds, this paper reports the crystal structure of C19H22FN3O3+ . C6H2N3O7- obtained by the interaction of picric acid and enrofloxacin.

In the crystal structure of the title compound, (I), there is one cation-anion pair in the asymmetric unit (Fig. 1). One N atom in the 6-membered piperazine ring (N2/C14/C15/N3/C16/C17) in the enrofloxacinium cation is protonated which adopts a slightly distorted chair conformation with puckering parameters Q, θ and ϕ of 0.563 (3)A%, 4.0 (3)° and 358.0 (5)° (Cremer & Pople, 1975). The dihedral angles between the mean planes of the cyclopropyl and piperazine rings with the 10-atom ring system of the quinolone group are 48.1 (1)° and 69.9 (5)°, respectively. The picrate anion interacts with the protonated N atom of an adjacent cation through a bifurcated N—H···O three-center hydrogen bond forming a R12(6) ring motif. The dihedral angle between the mean planes of the anion benzene and cation piperizine, quinoline and cyclopropyl rings are 61.3 (6)°, 31.1 (4)° and 70.4 (9)°, respectively. The mean planes of the two o-NO2 and single p-NO2 groups in the picrate anion are twisted by 6.7 (6)°, 38.3 (9)° and 12.8 (7)° with respect to the mean planes of the 6-membered benzene ring. Bond distances and angles are in normal ranges (Allen et al., 1987). Strong N—H···O and weak intermolecular C—H···O hydrogen bonds in concert with weak ππ stacking interactions (Table 2) dominate the crystal packing creating a 2-D network structure along 011 (Fig. 2).

Related literature top

For background to fluoroquinolones, see: Bhanot et al. (2001); Scholar (2003). For related structures, see: Hu & Yu, (2005); Jasinski et al. (2009, 2010a, 2010b); Recillas-Mota et al. (2007); Sun et al. (2004); Wang et al. (2005); Zou et al. (2005). For puckering parameters, see: Cremer & Pople (1975). For standard bond lengths, see: Allen et al. (1987).

Experimental top

Enrofloxacin (3.59 g, 0.1 mol) and picric acid (2.99 g, 0.1 mol) were dissolved in a mixture of acetonitrile and dimethyl sulfoxide (80:20 v/v). The solution was stirred for 15 min over a heating magnetic stirrer at 333 K. The resulting solution was kept aside at room temperature. After few days, X-ray quality crystals of the title compound were grown by slow evaporation (m.p.: 490 – 493 K).

Refinement top

All H atoms were refined using the riding model with Atom—H lengths of 0.93 & 0.98Å (CH), 0.97Å (CH2), 0.96Å (CH3), 0.91Å (NH) or 0.82 (OH). Isotropic displacement parameters for these atoms were set to 1.20 times (NH), 1.19–1.20 (CH, CH2) or 1.49 (CH3, OH) times Ueq of the parent atom.

Computing details top

Data collection: CrysAlis PRO (Oxford Diffraction, 2007); cell refinement: CrysAlis PRO (Oxford Diffraction, 2007); data reduction: CrysAlis RED (Oxford Diffraction, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound showing the atom labeling scheme and 50% probability displacement ellipsoids. Dashed lines indicate a bifurcated N—H···O intermolecular, three-centered hydrogen bond formed between the protonated N atom from the enrofloxacin cation and the picrate anion providing a R12(6) ring motif.
[Figure 2] Fig. 2. Packing diagram of the title compound viewed down the a axis. Dashed lines indicate N—H···O hydrogen bonds and weak C—H···O intermolecular interactions creating a 2-D network structure along 011.
4-(3-carboxy-6-fluoro-4-oxo-1,4-dihydroquinolin-7-yl)-1-ethylpiperazin-1-ium 2,4,6-trinitrophenolate top
Crystal data top
C19H23FN3O3+·C6H2N3O7Z = 2
Mr = 588.51F(000) = 612
Triclinic, P1Dx = 1.401 Mg m3
Hall symbol: -P 1Cu Kα radiation, λ = 1.54178 Å
a = 7.2111 (7) ÅCell parameters from 2958 reflections
b = 12.5766 (7) Åθ = 5.3–73.4°
c = 16.2362 (4) ŵ = 0.98 mm1
α = 105.556 (2)°T = 295 K
β = 96.367 (6)°Plate, pale yellow
γ = 96.223 (7)°0.44 × 0.31 × 0.12 mm
V = 1395.04 (16) Å3
Data collection top
Oxford Diffraction Xcalibur Ruby Gemini
diffractometer
5437 independent reflections
Radiation source: Enhance (Cu) X-ray Source3425 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.032
Detector resolution: 10.5081 pixels mm-1θmax = 73.6°, θmin = 5.3°
ω scansh = 58
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2007)
k = 1514
Tmin = 0.896, Tmax = 1.000l = 2020
9440 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.055H-atom parameters constrained
wR(F2) = 0.177 w = 1/[σ2(Fo2) + (0.0924P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.00(Δ/σ)max < 0.001
5437 reflectionsΔρmax = 0.20 e Å3
382 parametersΔρmin = 0.20 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0007 (4)
Crystal data top
C19H23FN3O3+·C6H2N3O7γ = 96.223 (7)°
Mr = 588.51V = 1395.04 (16) Å3
Triclinic, P1Z = 2
a = 7.2111 (7) ÅCu Kα radiation
b = 12.5766 (7) ŵ = 0.98 mm1
c = 16.2362 (4) ÅT = 295 K
α = 105.556 (2)°0.44 × 0.31 × 0.12 mm
β = 96.367 (6)°
Data collection top
Oxford Diffraction Xcalibur Ruby Gemini
diffractometer
5437 independent reflections
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2007)
3425 reflections with I > 2σ(I)
Tmin = 0.896, Tmax = 1.000Rint = 0.032
9440 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0550 restraints
wR(F2) = 0.177H-atom parameters constrained
S = 1.00Δρmax = 0.20 e Å3
5437 reflectionsΔρmin = 0.20 e Å3
382 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
F10.0392 (3)0.14397 (14)0.02905 (11)0.0785 (5)
O10.4038 (4)0.7253 (2)0.10088 (16)0.0920 (8)
O20.3085 (3)0.5648 (2)0.19916 (12)0.0747 (6)
H20.25520.50310.20080.112*
O30.2077 (3)0.39341 (17)0.15203 (11)0.0611 (5)
N10.2699 (3)0.59410 (17)0.09706 (12)0.0456 (5)
N20.0978 (3)0.27232 (19)0.20117 (14)0.0580 (6)
N30.3999 (3)0.2675 (2)0.33307 (14)0.0591 (6)
H3A0.33660.23320.36650.071*
C10.1315 (3)0.3205 (2)0.13528 (16)0.0490 (6)
C20.1818 (3)0.4344 (2)0.14892 (15)0.0460 (5)
H2A0.19340.48190.20460.055*
C30.2153 (3)0.47948 (19)0.08107 (13)0.0405 (5)
C40.3062 (3)0.6357 (2)0.03193 (15)0.0465 (5)
H4A0.34200.71230.04440.056*
C50.2938 (3)0.5723 (2)0.05229 (15)0.0469 (5)
C60.3401 (4)0.6293 (3)0.11816 (18)0.0617 (7)
C70.2321 (3)0.4553 (2)0.07435 (14)0.0465 (5)
C80.1951 (3)0.4099 (2)0.00384 (14)0.0448 (5)
C90.1368 (3)0.2958 (2)0.01881 (16)0.0510 (6)
H9A0.11990.24840.07480.061*
C100.1051 (4)0.2543 (2)0.04762 (17)0.0553 (6)
C110.2678 (4)0.6702 (2)0.18217 (16)0.0519 (6)
H11A0.14200.68150.19710.062*
C120.4138 (4)0.6777 (3)0.25637 (18)0.0645 (7)
H12A0.37500.69030.31310.077*
H12B0.51180.63060.24630.077*
C130.4137 (5)0.7695 (3)0.2158 (2)0.0735 (8)
H13A0.51190.77880.18100.088*
H13B0.37520.83840.24780.088*
C140.1708 (5)0.1684 (3)0.2041 (2)0.0691 (8)
H14A0.15880.11930.14580.083*
H14B0.09580.13090.23680.083*
C150.3727 (4)0.1898 (3)0.24448 (18)0.0639 (7)
H15A0.41430.11980.24700.077*
H15B0.44940.22130.20900.077*
C160.3177 (5)0.3719 (2)0.33310 (18)0.0650 (7)
H16A0.39160.41470.30340.078*
H16B0.32220.41720.39210.078*
C170.1147 (4)0.3434 (3)0.28845 (17)0.0612 (7)
H17A0.03930.30630.32130.073*
H17B0.06510.41180.28740.073*
C180.6053 (5)0.2905 (4)0.3705 (3)0.0917 (11)
H18A0.65820.22130.35600.110*
H18B0.67070.34130.34410.110*
C190.6391 (7)0.3390 (4)0.4650 (3)0.1301 (18)
H19A0.77090.36600.48360.195*
H19B0.60060.28300.49230.195*
H19C0.56770.39970.48070.195*
O1A0.1749 (3)0.2238 (2)0.44767 (13)0.0791 (7)
O2A0.1956 (6)0.4178 (2)0.5795 (2)0.1384 (15)
O3A0.0251 (4)0.3840 (2)0.64871 (17)0.0934 (8)
O4A0.0864 (4)0.0906 (2)0.78322 (15)0.0947 (8)
O5A0.2090 (4)0.0501 (2)0.71552 (16)0.0919 (8)
O6A0.3078 (3)0.09139 (19)0.42732 (14)0.0761 (6)
O7A0.3468 (4)0.0487 (2)0.37754 (15)0.0939 (8)
N1A0.0996 (4)0.3558 (2)0.60751 (17)0.0724 (7)
N2A0.1542 (4)0.0399 (2)0.72150 (14)0.0640 (6)
N3A0.2989 (3)0.0068 (2)0.43254 (14)0.0594 (6)
C1A0.1855 (3)0.1834 (2)0.50984 (16)0.0528 (6)
C2A0.1375 (4)0.2406 (2)0.59322 (17)0.0531 (6)
C3A0.1247 (4)0.1958 (2)0.65942 (16)0.0526 (6)
H3AA0.08790.23620.71030.063*
C4A0.1673 (3)0.0878 (2)0.65059 (15)0.0494 (6)
C5A0.2252 (3)0.0292 (2)0.57639 (16)0.0489 (5)
H5AA0.25730.04160.57170.059*
C6A0.2361 (3)0.0748 (2)0.50884 (15)0.0486 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
F10.1083 (14)0.0580 (10)0.0638 (11)0.0030 (9)0.0032 (9)0.0181 (8)
O10.129 (2)0.0800 (16)0.0781 (15)0.0007 (15)0.0328 (14)0.0403 (13)
O20.0854 (14)0.1032 (17)0.0458 (11)0.0184 (12)0.0220 (9)0.0319 (10)
O30.0700 (11)0.0758 (12)0.0350 (9)0.0115 (9)0.0124 (8)0.0093 (8)
N10.0441 (10)0.0565 (12)0.0375 (10)0.0120 (9)0.0084 (8)0.0128 (8)
N20.0635 (13)0.0660 (14)0.0527 (12)0.0125 (11)0.0111 (10)0.0286 (11)
N30.0636 (13)0.0714 (15)0.0543 (13)0.0129 (11)0.0117 (10)0.0358 (11)
C10.0479 (12)0.0589 (15)0.0458 (13)0.0112 (11)0.0087 (10)0.0224 (11)
C20.0479 (12)0.0560 (14)0.0356 (11)0.0150 (10)0.0049 (9)0.0130 (10)
C30.0372 (10)0.0521 (13)0.0344 (10)0.0139 (9)0.0058 (8)0.0131 (9)
C40.0425 (11)0.0555 (14)0.0456 (13)0.0111 (10)0.0099 (9)0.0182 (10)
C50.0433 (12)0.0630 (15)0.0403 (12)0.0147 (11)0.0100 (9)0.0200 (11)
C60.0618 (16)0.084 (2)0.0526 (15)0.0217 (15)0.0219 (12)0.0319 (14)
C70.0368 (11)0.0665 (15)0.0392 (12)0.0155 (10)0.0083 (9)0.0157 (11)
C80.0400 (11)0.0586 (14)0.0383 (11)0.0161 (10)0.0055 (9)0.0147 (10)
C90.0544 (13)0.0554 (14)0.0408 (12)0.0149 (11)0.0044 (10)0.0077 (10)
C100.0579 (14)0.0553 (15)0.0515 (14)0.0071 (12)0.0039 (11)0.0156 (11)
C110.0520 (13)0.0588 (15)0.0439 (13)0.0149 (11)0.0109 (10)0.0087 (11)
C120.0591 (15)0.0800 (19)0.0465 (14)0.0117 (14)0.0044 (11)0.0053 (13)
C130.087 (2)0.0675 (19)0.0558 (17)0.0051 (16)0.0171 (15)0.0045 (13)
C140.094 (2)0.0607 (17)0.0593 (17)0.0093 (15)0.0109 (15)0.0299 (14)
C150.085 (2)0.0666 (17)0.0584 (16)0.0319 (15)0.0293 (14)0.0329 (13)
C160.092 (2)0.0609 (17)0.0481 (15)0.0189 (15)0.0131 (13)0.0205 (12)
C170.0722 (17)0.0759 (18)0.0541 (15)0.0292 (14)0.0270 (13)0.0352 (13)
C180.073 (2)0.114 (3)0.100 (3)0.014 (2)0.0005 (19)0.054 (2)
C190.124 (4)0.145 (4)0.107 (4)0.007 (3)0.042 (3)0.045 (3)
O1A0.0990 (15)0.1074 (17)0.0575 (12)0.0444 (13)0.0295 (11)0.0493 (12)
O2A0.217 (4)0.0739 (18)0.162 (3)0.035 (2)0.101 (3)0.061 (2)
O3A0.1141 (19)0.0871 (17)0.0886 (17)0.0479 (15)0.0326 (15)0.0208 (13)
O4A0.158 (2)0.0823 (16)0.0574 (13)0.0197 (15)0.0483 (15)0.0295 (11)
O5A0.137 (2)0.0827 (16)0.0819 (16)0.0374 (15)0.0402 (15)0.0491 (13)
O6A0.0938 (15)0.0690 (14)0.0653 (13)0.0195 (11)0.0230 (11)0.0112 (10)
O7A0.143 (2)0.0989 (17)0.0629 (14)0.0416 (16)0.0566 (15)0.0364 (12)
N1A0.0965 (19)0.0661 (16)0.0625 (15)0.0235 (14)0.0164 (14)0.0250 (12)
N2A0.0870 (16)0.0625 (15)0.0475 (12)0.0052 (12)0.0192 (11)0.0224 (11)
N3A0.0624 (13)0.0688 (16)0.0470 (12)0.0137 (11)0.0110 (10)0.0136 (11)
C1A0.0504 (13)0.0682 (16)0.0464 (13)0.0124 (12)0.0100 (10)0.0250 (12)
C2A0.0553 (14)0.0580 (15)0.0505 (14)0.0104 (11)0.0113 (11)0.0206 (11)
C3A0.0556 (14)0.0602 (15)0.0410 (12)0.0048 (11)0.0099 (10)0.0130 (11)
C4A0.0541 (13)0.0545 (14)0.0415 (12)0.0022 (11)0.0105 (10)0.0180 (10)
C5A0.0489 (12)0.0482 (13)0.0495 (13)0.0036 (10)0.0071 (10)0.0151 (10)
C6A0.0468 (12)0.0622 (15)0.0360 (11)0.0056 (11)0.0072 (9)0.0128 (10)
Geometric parameters (Å, º) top
F1—C101.358 (3)C13—H13B0.9700
O1—C61.191 (4)C14—C151.493 (4)
O2—C61.327 (4)C14—H14A0.9700
O2—H20.8200C14—H14B0.9700
O3—C71.274 (3)C15—H15A0.9700
N1—C41.337 (3)C15—H15B0.9700
N1—C31.398 (3)C16—C171.519 (4)
N1—C111.457 (3)C16—H16A0.9700
N2—C11.394 (3)C16—H16B0.9700
N2—C171.443 (4)C17—H17A0.9700
N2—C141.472 (4)C17—H17B0.9700
N3—C151.485 (4)C18—C191.473 (6)
N3—C161.497 (4)C18—H18A0.9700
N3—C181.503 (4)C18—H18B0.9700
N3—H3A0.9100C19—H19A0.9600
C1—C21.390 (3)C19—H19B0.9600
C1—C101.423 (4)C19—H19C0.9600
C2—C31.399 (3)O1A—C1A1.245 (3)
C2—H2A0.9300O2A—N1A1.199 (4)
C3—C81.403 (3)O3A—N1A1.207 (3)
C4—C51.373 (3)O4A—N2A1.218 (3)
C4—H4A0.9300O5A—N2A1.222 (3)
C5—C71.425 (4)O6A—N3A1.224 (3)
C5—C61.486 (3)O7A—N3A1.215 (3)
C7—C81.447 (3)N1A—C2A1.465 (4)
C8—C91.398 (4)N2A—C4A1.443 (3)
C9—C101.349 (4)N3A—C6A1.453 (3)
C9—H9A0.9300C1A—C6A1.447 (4)
C11—C131.479 (4)C1A—C2A1.451 (4)
C11—C121.485 (4)C2A—C3A1.348 (3)
C11—H11A0.9800C3A—C4A1.399 (4)
C12—C131.475 (5)C3A—H3AA0.9300
C12—H12A0.9700C4A—C5A1.368 (3)
C12—H12B0.9700C5A—C6A1.373 (3)
C13—H13A0.9700C5A—H5AA0.9300
C6—O2—H2109.5N2—C14—H14A109.3
C4—N1—C3119.8 (2)C15—C14—H14A109.3
C4—N1—C11119.3 (2)N2—C14—H14B109.3
C3—N1—C11120.48 (19)C15—C14—H14B109.3
C1—N2—C17118.9 (2)H14A—C14—H14B107.9
C1—N2—C14120.3 (2)N3—C15—C14111.4 (2)
C17—N2—C14108.4 (2)N3—C15—H15A109.3
C15—N3—C16110.8 (2)C14—C15—H15A109.3
C15—N3—C18110.0 (3)N3—C15—H15B109.3
C16—N3—C18112.6 (3)C14—C15—H15B109.3
C15—N3—H3A107.7H15A—C15—H15B108.0
C16—N3—H3A107.7N3—C16—C17110.3 (2)
C18—N3—H3A107.7N3—C16—H16A109.6
C2—C1—N2123.5 (2)C17—C16—H16A109.6
C2—C1—C10115.7 (2)N3—C16—H16B109.6
N2—C1—C10120.7 (2)C17—C16—H16B109.6
C1—C2—C3121.8 (2)H16A—C16—H16B108.1
C1—C2—H2A119.1N2—C17—C16112.2 (2)
C3—C2—H2A119.1N2—C17—H17A109.2
N1—C3—C2120.5 (2)C16—C17—H17A109.2
N1—C3—C8119.3 (2)N2—C17—H17B109.2
C2—C3—C8120.3 (2)C16—C17—H17B109.2
N1—C4—C5124.0 (2)H17A—C17—H17B107.9
N1—C4—H4A118.0C19—C18—N3113.3 (3)
C5—C4—H4A118.0C19—C18—H18A108.9
C4—C5—C7119.5 (2)N3—C18—H18A108.9
C4—C5—C6118.4 (2)C19—C18—H18B108.9
C7—C5—C6122.1 (2)N3—C18—H18B108.9
O1—C6—O2121.3 (3)H18A—C18—H18B107.7
O1—C6—C5123.5 (3)C18—C19—H19A109.5
O2—C6—C5115.2 (3)C18—C19—H19B109.5
O3—C7—C5122.2 (2)H19A—C19—H19B109.5
O3—C7—C8121.2 (2)C18—C19—H19C109.5
C5—C7—C8116.6 (2)H19A—C19—H19C109.5
C9—C8—C3118.4 (2)H19B—C19—H19C109.5
C9—C8—C7120.8 (2)O2A—N1A—O3A123.2 (3)
C3—C8—C7120.8 (2)O2A—N1A—C2A118.8 (3)
C10—C9—C8120.2 (2)O3A—N1A—C2A118.0 (3)
C10—C9—H9A119.9O4A—N2A—O5A123.8 (2)
C8—C9—H9A119.9O4A—N2A—C4A118.1 (2)
C9—C10—F1117.8 (2)O5A—N2A—C4A118.1 (2)
C9—C10—C1123.5 (3)O7A—N3A—O6A121.8 (2)
F1—C10—C1118.6 (2)O7A—N3A—C6A119.9 (2)
N1—C11—C13119.6 (2)O6A—N3A—C6A118.2 (2)
N1—C11—C12121.4 (2)O1A—C1A—C6A126.2 (2)
C13—C11—C1259.7 (2)O1A—C1A—C2A122.3 (3)
N1—C11—H11A115.0C6A—C1A—C2A111.4 (2)
C13—C11—H11A115.0C3A—C2A—C1A124.9 (2)
C12—C11—H11A115.0C3A—C2A—N1A116.8 (2)
C13—C12—C1160.0 (2)C1A—C2A—N1A118.3 (2)
C13—C12—H12A117.8C2A—C3A—C4A119.2 (2)
C11—C12—H12A117.8C2A—C3A—H3AA120.4
C13—C12—H12B117.8C4A—C3A—H3AA120.4
C11—C12—H12B117.8C5A—C4A—C3A120.4 (2)
H12A—C12—H12B114.9C5A—C4A—N2A120.3 (2)
C12—C13—C1160.36 (19)C3A—C4A—N2A119.3 (2)
C12—C13—H13A117.7C4A—C5A—C6A120.1 (2)
C11—C13—H13A117.7C4A—C5A—H5AA120.0
C12—C13—H13B117.7C6A—C5A—H5AA120.0
C11—C13—H13B117.7C5A—C6A—C1A123.7 (2)
H13A—C13—H13B114.9C5A—C6A—N3A116.4 (2)
N2—C14—C15111.8 (2)C1A—C6A—N3A119.9 (2)
C17—N2—C1—C20.3 (4)C3—N1—C11—C1274.5 (3)
C14—N2—C1—C2137.6 (3)N1—C11—C12—C13108.3 (3)
C17—N2—C1—C10176.1 (2)N1—C11—C13—C12111.2 (3)
C14—N2—C1—C1046.0 (3)C1—N2—C14—C1582.1 (3)
N2—C1—C2—C3179.7 (2)C17—N2—C14—C1559.7 (3)
C10—C1—C2—C33.8 (3)C16—N3—C15—C1452.8 (3)
C4—N1—C3—C2178.3 (2)C18—N3—C15—C14177.9 (2)
C11—N1—C3—C28.4 (3)N2—C14—C15—N357.1 (3)
C4—N1—C3—C81.5 (3)C15—N3—C16—C1752.0 (3)
C11—N1—C3—C8171.75 (19)C18—N3—C16—C17175.7 (2)
C1—C2—C3—N1178.5 (2)C1—N2—C17—C1682.7 (3)
C1—C2—C3—C81.3 (3)C14—N2—C17—C1659.7 (3)
C3—N1—C4—C50.1 (3)N3—C16—C17—N257.0 (3)
C11—N1—C4—C5173.4 (2)C15—N3—C18—C19163.2 (3)
N1—C4—C5—C72.5 (3)C16—N3—C18—C1972.6 (4)
N1—C4—C5—C6179.3 (2)O1A—C1A—C2A—C3A171.7 (3)
C4—C5—C6—O17.0 (4)C6A—C1A—C2A—C3A5.5 (4)
C7—C5—C6—O1174.8 (3)O1A—C1A—C2A—N1A8.2 (4)
C4—C5—C6—O2174.1 (2)C6A—C1A—C2A—N1A174.5 (2)
C7—C5—C6—O24.1 (4)O2A—N1A—C2A—C3A140.3 (3)
C4—C5—C7—O3176.0 (2)O3A—N1A—C2A—C3A38.2 (4)
C6—C5—C7—O32.2 (3)O2A—N1A—C2A—C1A39.8 (4)
C4—C5—C7—C83.0 (3)O3A—N1A—C2A—C1A141.7 (3)
C6—C5—C7—C8178.8 (2)C1A—C2A—C3A—C4A2.8 (4)
N1—C3—C8—C9178.78 (19)N1A—C2A—C3A—C4A177.3 (2)
C2—C3—C8—C91.4 (3)C2A—C3A—C4A—C5A1.4 (4)
N1—C3—C8—C70.7 (3)C2A—C3A—C4A—N2A179.8 (2)
C2—C3—C8—C7179.07 (19)O4A—N2A—C4A—C5A173.7 (3)
O3—C7—C8—C92.0 (3)O5A—N2A—C4A—C5A5.2 (4)
C5—C7—C8—C9179.0 (2)O4A—N2A—C4A—C3A7.9 (4)
O3—C7—C8—C3177.5 (2)O5A—N2A—C4A—C3A173.2 (3)
C5—C7—C8—C31.5 (3)C3A—C4A—C5A—C6A2.1 (4)
C3—C8—C9—C101.4 (3)N2A—C4A—C5A—C6A179.5 (2)
C7—C8—C9—C10179.1 (2)C4A—C5A—C6A—C1A1.3 (4)
C8—C9—C10—F1176.6 (2)C4A—C5A—C6A—N3A180.0 (2)
C8—C9—C10—C11.4 (4)O1A—C1A—C6A—C5A172.4 (3)
C2—C1—C10—C93.9 (4)C2A—C1A—C6A—C5A4.7 (3)
N2—C1—C10—C9179.4 (2)O1A—C1A—C6A—N3A6.3 (4)
C2—C1—C10—F1174.0 (2)C2A—C1A—C6A—N3A176.6 (2)
N2—C1—C10—F12.6 (4)O7A—N3A—C6A—C5A165.8 (3)
C4—N1—C11—C1341.8 (3)O6A—N3A—C6A—C5A11.8 (3)
C3—N1—C11—C13145.0 (2)O7A—N3A—C6A—C1A15.4 (4)
C4—N1—C11—C12112.3 (3)O6A—N3A—C6A—C1A167.0 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···O30.821.782.536 (3)151
N3—H3A···O1A0.911.872.724 (3)155
N3—H3A···O7A0.912.383.024 (3)128
C11—H11A···O3i0.982.553.385 (3)144
C15—H15B···O1ii0.972.353.312 (3)169
C17—H17B···O3Aiii0.972.563.458 (4)154
C3A—H3AA···O3iv0.932.553.331 (3)142
C9—H9A···O4Av0.932.583.495 (3)170
C14—H14B···O5Avi0.972.603.517 (4)157
C18—H18A···O5Avii0.972.503.451 (5)167
Symmetry codes: (i) x, y+1, z; (ii) x+1, y+1, z; (iii) x, y+1, z+1; (iv) x, y, z+1; (v) x, y, z1; (vi) x, y, z+1; (vii) x+1, y, z+1.

Experimental details

Crystal data
Chemical formulaC19H23FN3O3+·C6H2N3O7
Mr588.51
Crystal system, space groupTriclinic, P1
Temperature (K)295
a, b, c (Å)7.2111 (7), 12.5766 (7), 16.2362 (4)
α, β, γ (°)105.556 (2), 96.367 (6), 96.223 (7)
V3)1395.04 (16)
Z2
Radiation typeCu Kα
µ (mm1)0.98
Crystal size (mm)0.44 × 0.31 × 0.12
Data collection
DiffractometerOxford Diffraction Xcalibur Ruby Gemini
diffractometer
Absorption correctionMulti-scan
(CrysAlis RED; Oxford Diffraction, 2007)
Tmin, Tmax0.896, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
9440, 5437, 3425
Rint0.032
(sin θ/λ)max1)0.622
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.055, 0.177, 1.00
No. of reflections5437
No. of parameters382
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.20, 0.20

Computer programs: CrysAlis PRO (Oxford Diffraction, 2007), CrysAlis RED (Oxford Diffraction, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···O30.821.782.536 (3)151
N3—H3A···O1A0.911.872.724 (3)155
N3—H3A···O7A0.912.383.024 (3)128
C11—H11A···O3i0.982.553.385 (3)144
C15—H15B···O1ii0.972.353.312 (3)169
C17—H17B···O3Aiii0.972.563.458 (4)154
C3A—H3AA···O3iv0.932.553.331 (3)142
C9—H9A···O4Av0.932.583.495 (3)170
C14—H14B···O5Avi0.972.603.517 (4)157
C18—H18A···O5Avii0.972.503.451 (5)167
Symmetry codes: (i) x, y+1, z; (ii) x+1, y+1, z; (iii) x, y+1, z+1; (iv) x, y, z+1; (v) x, y, z1; (vi) x, y, z+1; (vii) x+1, y, z+1.
Cg···Cg π stacking interactions, Cg2 and Cg4 are the centroids of rings N1/C3/C8/C7/C5/C4 and C1/C2/C3/C8/C9/C10; [Symmetry codes: (i) -x, 1-y, -z; (ii) 1-x, 1-y, -z;] top
CgI···CgJCg···Cg (Å)CgI Perp (Å)Cgj Perp (Å)Slippage (Å)
Cg2···Cg2i3.5785 (13)-3.3834 (9)-3.3834 (9)1.16 (5)
Cg2···Cg2ii3.7451 (12)-3.6091 (9)3.6090 (9)1.00 (0)
Cg2···Cg4ii3.6587 (13)-3.3748 (9)-3.4114 (10)
 

Acknowledgements

MSS thanks the University of Mysore for the research facilities and HSY thanks the UOM for sabbatical leave. RJB acknowledges the NSF MRI program (grant No. CHE-0619278) for funds to purchase an X-ray diffractometer.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBhanot, S. K., Singh, M. & Chatterjee, N. R. (2001). Curr. Pharm. Des. 7, 313–337.  Web of Science CrossRef Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationHu, R.-D. & Yu, Q.-S. (2005). Z. Krystallogr. New Cryst. Struct. 220, 171–172.  CAS Google Scholar
First citationJasinski, J. P., Butcher, R. J., Hakim Al-Arique, Q. N. M., Yathirajan, H. S. & Narayana, B. (2009). Acta Cryst. E65, o1738–o1739.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationJasinski, J. P., Butcher, R. J., Hakim Al-Arique, Q. N. M., Yathirajan, H. S. & Narayana, B. (2010a). Acta Cryst. E66, o411–o412.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationJasinski, J. P., Butcher, R. J., Hakim Al-Arique, Q. N. M., Yathirajan, H. S. & Narayana, B. (2010b). Acta Cryst. E66, o347–o348.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationOxford Diffraction (2007). CrysAlis PRO and CrysAlis RED. Oxford Diffraction Ltd, Abingdon,England.  Google Scholar
First citationRecillas-Mota, J., Flores-Alamo, M., Moreno-Esparza, R. & Gracia-Mora, J. (2007). Acta Cryst. E63, m3030–m3031.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationScholar, E. M. (2003). Am. J. Pharm. Educ. 66, 165–172.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSun, H.-X., Li, Y. & Pan, Y.-J. (2004). Acta Cryst. E60, o1694–o1696.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationWang, Y., Sun, L.-W., Wang, W. & Yan, L.-H. (2005). Chin. J. Struct. Chem. 24, 1359–1362.  CAS Google Scholar
First citationZou, H.-I., Chen, Z.-F. & Liang, H. (2005). J. Guangxi Nor. Univ. Nat. Sci. Ed. 23, 57–60.  CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 2| February 2011| Pages o432-o433
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds