organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N′-(3,4-Dimeth­­oxy­benzyl­­idene)benzo­hydrazide

aDepartment of Chemistry, Islamic Azad University, Yazd Branch, Yazd, Iran, and bDepartment of Chemistry, Shahid Beheshti University, G.C., Evin, Tehran 1983963113, Iran
*Correspondence e-mail: sa_hashemian@yahoo.com

(Received 9 December 2010; accepted 12 December 2010; online 18 December 2010)

The crystal structure of the title Schiff base compound, C16H16N2O3, is characterized by chains of mol­ecules linked by inter­molecular N—H⋯O hydrogen bonds running along the c axis. Further stabilization is provided by weak C—H⋯O contacts. The dihedral angle between the aromatic rings is 38.31 (7)°.

Related literature

For related structures see: Alhadi et al. (2009[Alhadi, A. A., Saharin, S. M., Mohd Ali, H., Robinson, W. T. & Abdulla, M. A. (2009). Acta Cryst. E65, o1373.]); Das & Pal (2004[Das, S. & Pal, S. (2004). J. Organomet. Chem. 689, 352-360.]); Tamboura et al. (2009[Tamboura, F. B., Gaye, M., Sall, A. S., Barry, A. H. & Bah, Y. (2009). Acta Cryst. E65, m160-m161.]); Zhou et al. (2009[Zhou, B.-C., Lv, L.-P., Yu, W.-B., Li, W.-W. & Hu, X.-C. (2009). Acta Cryst. E65, o1964.]).

[Scheme 1]

Experimental

Crystal data
  • C16H16N2O3

  • Mr = 284.31

  • Monoclinic, P 21 /c

  • a = 12.612 (3) Å

  • b = 11.291 (2) Å

  • c = 9.892 (2) Å

  • β = 95.46 (3)°

  • V = 1402.3 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 120 K

  • 0.5 × 0.4 × 0.15 mm

Data collection
  • Stoe IPDS II diffractometer

  • Absorption correction: numerical shape of crystal determined optically Tmin = 0.954, Tmax = 0.984

  • 9840 measured reflections

  • 3758 independent reflections

  • 3054 reflections with I > 2σ(I)

  • Rint = 0.052

Refinement
  • R[F2 > 2σ(F2)] = 0.050

  • wR(F2) = 0.131

  • S = 1.03

  • 3758 reflections

  • 200 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.36 e Å−3

  • Δρmin = −0.24 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C9—H9⋯O3i 0.957 (19) 2.455 (19) 3.2702 (18) 142.9 (15)
C7—H7B⋯O3ii 0.96 2.40 3.2434 (18) 146
N2—H2A⋯O3i 0.87 (2) 2.07 (2) 2.9219 (16) 163.2 (18)
Symmetry codes: (i) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (ii) -x+1, -y, -z.

Data collection: X-AREA (Stoe & Cie, 2005[Stoe & Cie (2005). X-AREA. Stoe & Cie, Darmstadt, Germany.]); cell refinement: X-AREA; data reduction: X-AREA; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

Schiff bases are important organic compounds. Metal complexes based on Schiff bases have received considerable attention because they can be utilized as a model of active centers in various complexes (Tamboura et al., 2009; Das & Pal, 2004).

We report here the crystal structure of N'-(3,4-dimethoxybenzylidene)-benzohydrazide. The title compound was synthesized from the reaction of 3,4-dimethoxy benzaldehyde and benzoylhydrazine in methanol. The asymmetric unit of the title compound is shown in Fig. 1. The bond lengths and angles are comparable to those observed for N'-(2,4-dimethoxybenzylidene)-3,4,5-trihydroxybenzohydrazide (Alhadi et al., 2009) and N'-(3,4-dimethoxybenzylidene)acetohydrazide (Zhou et al., 2009). The crystal structure is characterized by chains of running along the c-axis. The molecules in a chain are linked by intermolecular N—H···O hydrogen bonds. Further stabilization is provided by weak C—H···O contacts.

Related literature top

For related structures see: Alhadi et al. (2009); Das & Pal (2004); Tamboura et al. (2009); Zhou et al. (2009).

Experimental top

To a methanol solution (20 ml) of benzoylhydrazine (1.0 mmol, 0.135 g), 3,4-dimethoxybenzaldehyde (1.0 mmol, 0.165 g), a few drops of acetic acid were added. The mixture was refluxed for 6 h and then cooled to room temperature. The white crystalline solid was collected by filtration, washed with cold methanol and finally dried in air (m.p: 181–183 °C, yield: 81%). Single crystals suitable for X-ray analysis were obtained by slow evaporation of an ethanol solution at room temperature.

Refinement top

The hydrogen atom bonded to N and to the imine C atom were found in difference Fourier map and refined isotropically without restraint. The C—H protons were positioned geometrically and refined as riding atoms with C—H = 0.93 Å and Uiso(H) = 1.2 Ueq(C) for aromatic C—H and C—H = 0.96 Å and Uiso(H) = 1.5 Ueq(C) for methyl groups.

Structure description top

Schiff bases are important organic compounds. Metal complexes based on Schiff bases have received considerable attention because they can be utilized as a model of active centers in various complexes (Tamboura et al., 2009; Das & Pal, 2004).

We report here the crystal structure of N'-(3,4-dimethoxybenzylidene)-benzohydrazide. The title compound was synthesized from the reaction of 3,4-dimethoxy benzaldehyde and benzoylhydrazine in methanol. The asymmetric unit of the title compound is shown in Fig. 1. The bond lengths and angles are comparable to those observed for N'-(2,4-dimethoxybenzylidene)-3,4,5-trihydroxybenzohydrazide (Alhadi et al., 2009) and N'-(3,4-dimethoxybenzylidene)acetohydrazide (Zhou et al., 2009). The crystal structure is characterized by chains of running along the c-axis. The molecules in a chain are linked by intermolecular N—H···O hydrogen bonds. Further stabilization is provided by weak C—H···O contacts.

For related structures see: Alhadi et al. (2009); Das & Pal (2004); Tamboura et al. (2009); Zhou et al. (2009).

Computing details top

Data collection: X-AREA (Stoe & Cie, 2005); cell refinement: X-AREA (Stoe & Cie, 2005); data reduction: X-AREA (Stoe & Cie, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The molecular structure of N'-(3,4-dimethoxybenzylidene)benzohydrazide with displacement ellipsoids drawn at 50% probability level.
[Figure 2] Fig. 2. Packing diagram of the title compound viewed down the a axis. The intermolecular N—H···O and C—H···O hydrogen bonds are shown as green dashed lines.
N'-(3,4-Dimethoxybenzylidene)benzohydrazide top
Crystal data top
C16H16N2O3F(000) = 600
Mr = 284.31Dx = 1.347 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 3758 reflections
a = 12.612 (3) Åθ = 2.4–29.2°
b = 11.291 (2) ŵ = 0.09 mm1
c = 9.892 (2) ÅT = 120 K
β = 95.46 (3)°Plate, colorless
V = 1402.3 (5) Å30.5 × 0.4 × 0.15 mm
Z = 4
Data collection top
Stoe IPDS II
diffractometer
3758 independent reflections
Radiation source: fine-focus sealed tube3054 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.052
Detector resolution: 0.15 mm pixels mm-1θmax = 29.2°, θmin = 2.4°
rotation method scansh = 1717
Absorption correction: numerical
shape of crystal determined optically
k = 1315
Tmin = 0.954, Tmax = 0.984l = 1313
9840 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.050Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.131H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.068P)2 + 0.4464P]
where P = (Fo2 + 2Fc2)/3
3758 reflections(Δ/σ)max = 0.001
200 parametersΔρmax = 0.36 e Å3
0 restraintsΔρmin = 0.24 e Å3
Crystal data top
C16H16N2O3V = 1402.3 (5) Å3
Mr = 284.31Z = 4
Monoclinic, P21/cMo Kα radiation
a = 12.612 (3) ŵ = 0.09 mm1
b = 11.291 (2) ÅT = 120 K
c = 9.892 (2) Å0.5 × 0.4 × 0.15 mm
β = 95.46 (3)°
Data collection top
Stoe IPDS II
diffractometer
3758 independent reflections
Absorption correction: numerical
shape of crystal determined optically
3054 reflections with I > 2σ(I)
Tmin = 0.954, Tmax = 0.984Rint = 0.052
9840 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0500 restraints
wR(F2) = 0.131H atoms treated by a mixture of independent and constrained refinement
S = 1.03Δρmax = 0.36 e Å3
3758 reflectionsΔρmin = 0.24 e Å3
200 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N20.77928 (9)0.23464 (11)0.31038 (12)0.0204 (2)
O20.21028 (8)0.00051 (9)0.36444 (11)0.0261 (2)
C100.84378 (10)0.23202 (11)0.20934 (13)0.0184 (2)
N10.67552 (9)0.19349 (11)0.28696 (12)0.0213 (2)
O10.30865 (8)0.00086 (9)0.14959 (10)0.0241 (2)
C20.46487 (10)0.09658 (12)0.26416 (13)0.0205 (3)
H20.50130.09410.18670.025*
C110.95522 (10)0.27473 (12)0.24654 (13)0.0185 (3)
C90.62290 (10)0.19298 (12)0.39172 (14)0.0213 (3)
C10.51348 (10)0.14808 (12)0.38429 (14)0.0205 (3)
C40.30798 (10)0.05297 (12)0.37871 (14)0.0216 (3)
C30.36354 (10)0.04990 (12)0.26093 (14)0.0208 (3)
C60.45799 (11)0.15271 (13)0.49842 (14)0.0232 (3)
H60.48950.18710.57770.028*
C121.03648 (11)0.21544 (13)0.18854 (14)0.0229 (3)
H121.02000.15240.12980.028*
C50.35478 (11)0.10607 (13)0.49557 (14)0.0233 (3)
H50.31770.11080.57230.028*
C160.97968 (11)0.37076 (13)0.33195 (14)0.0242 (3)
H160.92580.41130.37020.029*
C151.08551 (12)0.40592 (14)0.35984 (15)0.0286 (3)
H151.10210.47060.41620.034*
C131.14179 (11)0.24953 (13)0.21765 (15)0.0264 (3)
H131.19580.20890.17970.032*
C70.36427 (11)0.00915 (13)0.03132 (14)0.0246 (3)
H7A0.38180.06890.00210.037*
H7B0.32000.04790.03960.037*
H7C0.42850.05400.05180.037*
C141.16611 (11)0.34472 (14)0.30382 (15)0.0278 (3)
H141.23670.36760.32410.033*
C80.14420 (12)0.01622 (15)0.47217 (16)0.0305 (3)
H8A0.17910.01610.55450.046*
H8B0.07760.02380.45020.046*
H8C0.13130.09920.48440.046*
O30.81626 (8)0.19329 (9)0.09466 (10)0.0229 (2)
H90.6538 (15)0.2201 (17)0.4783 (19)0.030 (5)*
H2A0.8042 (16)0.2565 (18)0.392 (2)0.036 (5)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N20.0185 (5)0.0237 (6)0.0189 (5)0.0038 (4)0.0007 (4)0.0015 (4)
O20.0212 (5)0.0279 (5)0.0304 (5)0.0057 (4)0.0089 (4)0.0066 (4)
C100.0200 (5)0.0165 (6)0.0187 (6)0.0008 (4)0.0010 (4)0.0011 (5)
N10.0183 (5)0.0223 (6)0.0231 (5)0.0025 (4)0.0001 (4)0.0003 (4)
O10.0200 (4)0.0283 (5)0.0240 (5)0.0045 (4)0.0025 (4)0.0055 (4)
C20.0198 (6)0.0214 (6)0.0207 (6)0.0003 (5)0.0032 (5)0.0005 (5)
C110.0194 (6)0.0182 (6)0.0177 (6)0.0011 (4)0.0009 (4)0.0031 (5)
C90.0202 (6)0.0205 (6)0.0230 (6)0.0016 (5)0.0004 (5)0.0016 (5)
C10.0196 (6)0.0188 (6)0.0230 (6)0.0005 (5)0.0014 (5)0.0004 (5)
C40.0194 (6)0.0190 (6)0.0267 (6)0.0009 (5)0.0042 (5)0.0007 (5)
C30.0207 (6)0.0193 (6)0.0224 (6)0.0000 (5)0.0013 (5)0.0007 (5)
C60.0236 (6)0.0233 (7)0.0226 (6)0.0007 (5)0.0013 (5)0.0021 (5)
C120.0229 (6)0.0211 (6)0.0248 (6)0.0010 (5)0.0023 (5)0.0004 (5)
C50.0231 (6)0.0247 (7)0.0230 (6)0.0001 (5)0.0067 (5)0.0013 (5)
C160.0240 (6)0.0237 (7)0.0252 (6)0.0021 (5)0.0047 (5)0.0036 (5)
C150.0294 (7)0.0306 (7)0.0257 (7)0.0101 (6)0.0025 (6)0.0053 (6)
C130.0215 (6)0.0267 (7)0.0315 (7)0.0029 (5)0.0041 (5)0.0020 (6)
C70.0227 (6)0.0274 (7)0.0239 (6)0.0035 (5)0.0029 (5)0.0044 (5)
C140.0196 (6)0.0359 (8)0.0274 (7)0.0068 (5)0.0004 (5)0.0032 (6)
C80.0253 (7)0.0340 (8)0.0340 (8)0.0067 (6)0.0127 (6)0.0073 (6)
O30.0236 (5)0.0257 (5)0.0188 (4)0.0011 (4)0.0005 (4)0.0013 (4)
Geometric parameters (Å, º) top
N2—C101.3477 (18)C4—C31.416 (2)
N2—N11.3872 (15)C6—C51.4020 (19)
N2—H2A0.87 (2)C6—H60.9300
O2—C41.3624 (16)C12—C131.3865 (19)
O2—C81.4250 (18)C12—H120.9300
C10—O31.2344 (16)C5—H50.9300
C10—C111.4983 (17)C16—C151.3947 (19)
N1—C91.2826 (19)C16—H160.9300
O1—C31.3695 (16)C15—C141.387 (2)
O1—C71.4233 (17)C15—H150.9300
C2—C31.3800 (18)C13—C141.388 (2)
C2—C11.4098 (18)C13—H130.9300
C2—H20.9300C7—H7A0.9600
C11—C161.3910 (19)C7—H7B0.9600
C11—C121.3927 (19)C7—H7C0.9600
C9—C11.4655 (18)C14—H140.9300
C9—H90.957 (19)C8—H8A0.9600
C1—C61.385 (2)C8—H8B0.9600
C4—C51.3836 (19)C8—H8C0.9600
C10—N2—N1119.69 (11)C13—C12—C11120.60 (13)
C10—N2—H2A120.2 (13)C13—C12—H12119.7
N1—N2—H2A119.9 (13)C11—C12—H12119.7
C4—O2—C8117.13 (11)C4—C5—C6120.07 (13)
O3—C10—N2123.54 (12)C4—C5—H5120.0
O3—C10—C11120.99 (12)C6—C5—H5120.0
N2—C10—C11115.41 (11)C11—C16—C15119.66 (13)
C9—N1—N2114.77 (11)C11—C16—H16120.2
C3—O1—C7115.95 (10)C15—C16—H16120.2
C3—C2—C1120.30 (13)C14—C15—C16120.20 (14)
C3—C2—H2119.9C14—C15—H15119.9
C1—C2—H2119.9C16—C15—H15119.9
C16—C11—C12119.70 (12)C12—C13—C14119.60 (14)
C16—C11—C10123.28 (12)C12—C13—H13120.2
C12—C11—C10117.00 (12)C14—C13—H13120.2
N1—C9—C1121.22 (12)O1—C7—H7A109.5
N1—C9—H9121.5 (11)O1—C7—H7B109.5
C1—C9—H9117.2 (11)H7A—C7—H7B109.5
C6—C1—C2119.33 (12)O1—C7—H7C109.5
C6—C1—C9119.52 (12)H7A—C7—H7C109.5
C2—C1—C9121.11 (12)H7B—C7—H7C109.5
O2—C4—C5125.78 (13)C15—C14—C13120.23 (13)
O2—C4—C3114.69 (12)C15—C14—H14119.9
C5—C4—C3119.53 (12)C13—C14—H14119.9
O1—C3—C2125.07 (13)O2—C8—H8A109.5
O1—C3—C4114.84 (12)O2—C8—H8B109.5
C2—C3—C4120.09 (12)H8A—C8—H8B109.5
C1—C6—C5120.65 (13)O2—C8—H8C109.5
C1—C6—H6119.7H8A—C8—H8C109.5
C5—C6—H6119.7H8B—C8—H8C109.5
N1—N2—C10—O30.8 (2)O2—C4—C3—O12.59 (17)
N1—N2—C10—C11178.05 (11)C5—C4—C3—O1177.78 (12)
C10—N2—N1—C9175.87 (12)O2—C4—C3—C2177.78 (13)
O3—C10—C11—C16143.82 (14)C5—C4—C3—C21.9 (2)
N2—C10—C11—C1638.82 (18)C2—C1—C6—C50.5 (2)
O3—C10—C11—C1234.55 (18)C9—C1—C6—C5177.44 (13)
N2—C10—C11—C12142.80 (13)C16—C11—C12—C131.5 (2)
N2—N1—C9—C1177.84 (12)C10—C11—C12—C13179.95 (12)
C3—C2—C1—C60.8 (2)O2—C4—C5—C6177.36 (13)
C3—C2—C1—C9177.03 (12)C3—C4—C5—C62.2 (2)
N1—C9—C1—C6177.81 (13)C1—C6—C5—C41.1 (2)
N1—C9—C1—C24.3 (2)C12—C11—C16—C150.7 (2)
C8—O2—C4—C59.6 (2)C10—C11—C16—C15179.04 (13)
C8—O2—C4—C3170.84 (13)C11—C16—C15—C140.6 (2)
C7—O1—C3—C22.7 (2)C11—C12—C13—C141.0 (2)
C7—O1—C3—C4177.68 (12)C16—C15—C14—C131.2 (2)
C1—C2—C3—O1179.27 (13)C12—C13—C14—C150.4 (2)
C1—C2—C3—C40.3 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C9—H9···O3i0.957 (19)2.455 (19)3.2702 (18)142.9 (15)
C7—H7B···O3ii0.962.403.2434 (18)146
N2—H2A···O3i0.87 (2)2.07 (2)2.9219 (16)163.2 (18)
Symmetry codes: (i) x, y+1/2, z+1/2; (ii) x+1, y, z.

Experimental details

Crystal data
Chemical formulaC16H16N2O3
Mr284.31
Crystal system, space groupMonoclinic, P21/c
Temperature (K)120
a, b, c (Å)12.612 (3), 11.291 (2), 9.892 (2)
β (°) 95.46 (3)
V3)1402.3 (5)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.5 × 0.4 × 0.15
Data collection
DiffractometerStoe IPDS II
Absorption correctionNumerical
shape of crystal determined optically
Tmin, Tmax0.954, 0.984
No. of measured, independent and
observed [I > 2σ(I)] reflections
9840, 3758, 3054
Rint0.052
(sin θ/λ)max1)0.685
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.050, 0.131, 1.03
No. of reflections3758
No. of parameters200
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.36, 0.24

Computer programs: X-AREA (Stoe & Cie, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C9—H9···O3i0.957 (19)2.455 (19)3.2702 (18)142.9 (15)
C7—H7B···O3ii0.962.403.2434 (18)146.2
N2—H2A···O3i0.87 (2)2.07 (2)2.9219 (16)163.2 (18)
Symmetry codes: (i) x, y+1/2, z+1/2; (ii) x+1, y, z.
 

Acknowledgements

We are grateful to the Islamic Azad University, Yazd Branch, for financial support.

References

First citationAlhadi, A. A., Saharin, S. M., Mohd Ali, H., Robinson, W. T. & Abdulla, M. A. (2009). Acta Cryst. E65, o1373.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationDas, S. & Pal, S. (2004). J. Organomet. Chem. 689, 352–360.  Web of Science CSD CrossRef CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStoe & Cie (2005). X-AREA. Stoe & Cie, Darmstadt, Germany.  Google Scholar
First citationTamboura, F. B., Gaye, M., Sall, A. S., Barry, A. H. & Bah, Y. (2009). Acta Cryst. E65, m160–m161.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationZhou, B.-C., Lv, L.-P., Yu, W.-B., Li, W.-W. & Hu, X.-C. (2009). Acta Cryst. E65, o1964.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds