organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1-(2-Azido­acet­yl)-3-methyl-2,6-di­phenyl­piperidin-4-one

aSchool of Display and Chemical Engineering, Yeungnam University, Gyeongsan, Gyeongbuk 712-749, Republic of Korea, bCentre of Advanced Study in Crystallography and Biophysics, University of Madras, Guindy Campus, Chennai 600 025, India, and cDepartment of Chemistry, Karnatak University, Karnatak Science College, Dharwad 580 001, Karnataka, India
*Correspondence e-mail: yuvraj_pd@yahoo.co.in

(Received 25 September 2010; accepted 30 September 2010; online 9 October 2010)

In the title compound, C20H20N4O2, the piperidine ring adopts a distorted boat conformation. The two phenyl rings form dihedral angles of 82.87 (1) and 84.40 (1)° with respect to the piperidine ring. The crystal packing is stabilized by inter­molecular C—H⋯O and C—H⋯N inter­actions.

Related literature

For the biological activity of piperidines, see: Aridoss et al. (2008[Aridoss, G., Amirthaganesan, S., Ashok Kumar, N., Kim, J. T., Lim, K. T., Kabilan, S. & Jeong, Y. T. (2008). Bioorg. Med. Chem. Lett. 18, 6542-6548.], 2010[Aridoss, G., Amirthaganesan, S. & Jeong, Y. T. (2010). Bioorg. Med. Chem. Lett. 20, 2242-2249.]). For ring conformational analysis, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]); Nardelli (1983[Nardelli, M. (1983). Acta Cryst. C39, 1141-1142.]). For related structures, see: Jeyaraman et al. (1999[Jeyaraman, R., Thenmozhiyal, J. C., Murugadoss, R. & Venkatraj, M. (1999). Indian J. Chem. Sect. B, 38, 325-336.]); Keana & Cai (1990[Keana, J. F. W. & Cai, X. S. (1990). J. Org. Chem. 55, 3640-3647.]); Ponnuswamy et al. (2002[Ponnuswamy, S., Venkatraj, M., Jeyaraman, R., Suresh Kumar, M., Kumaran, D. & Ponnuswamy, M. N. (2002). Indian J. Chem. Sect. B, 41, 614-627.]).

[Scheme 1]

Experimental

Crystal data
  • C20H20N4O2

  • Mr = 348.40

  • Monoclinic, P 21 /c

  • a = 11.0418 (3) Å

  • b = 15.7844 (5) Å

  • c = 10.5684 (3) Å

  • β = 108.458 (2)°

  • V = 1747.19 (9) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 292 K

  • 0.25 × 0.23 × 0.2 mm

Data collection
  • Bruker SMART APEXII area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.978, Tmax = 0.983

  • 16435 measured reflections

  • 4286 independent reflections

  • 3147 reflections with I > 2σ(I)

  • Rint = 0.026

Refinement
  • R[F2 > 2σ(F2)] = 0.045

  • wR(F2) = 0.138

  • S = 1.05

  • 4286 reflections

  • 236 parameters

  • H-atom parameters constrained

  • Δρmax = 0.24 e Å−3

  • Δρmin = −0.18 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C9—H9⋯O1i 0.93 2.57 3.464 (2) 162
C5—H5⋯N2ii 0.98 2.52 3.353 (2) 142
C2—H2B⋯O2ii 0.97 2.56 3.4933 (19) 161
Symmetry codes: (i) [-x+2, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) -x+1, -y, -z.

Data collection: APEX2 (Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

2,6-Diarylpiperidin-4-ones normally adopt chair conformation with equatorial orientation of all the substituents. Nevertheless, introduction of some heteroconjugate groups such as –NO, –CHO, –COCH3, –COC6H5, etc., at the heteroatom of 2,6-disubstitutedpiperidine ring system have reported to cause a major change in ring conformation, and orientation of the substituents (Jeyaraman et al., 1999; Ponnuswamy et al., 2002). To establish the conformational impact of azidoacetyl group at the nitrogen of 2,6-diphenyl -3-methylpiperidin-4-one, the current study has been undertaken.

The ORTEP plot of the title molecule is shown in Fig.1. The piperidine ring adopts a distorted boat conformation with the puckering parameters (Cremer & Pople, 1975) and asymmetry parameters (Nardelli, 1983) of q2 = 0.699 (5) Å, q3 = -0.043 (2) Å, φ2 = 68.242 (8)° and Δs (C1 and C4) = 9.5 (2) Å. The sum of the bond angles around the atom N1[(355.42 (3)°] of the piperidine ring is in accordance with the sp2 hybridization.

The crystal structure is stabilized by C—H···O and C—H···N intermolecular interactions which link the molecules into chains running along the c axis. Atoms C2 and C5 at (x, y, z) donate one proton to acceptor O2 and N2 at (-x + 1, -y, -z), forming a centrosymmetric dimers (Fig. 2) with R22(12) ring motifs.

Related literature top

For the biological activities, see: Aridoss et al. (2008, 2010). For ring conformational analysis, see: Cremer & Pople (1975); Nardelli (1983). For related structures, see: Jeyaraman et al. (1999); Keana & Cai (1990); Ponnuswamy et al. (2002).

Experimental top

1-(2-Azidoacetyl)-3-methyl-2,6-diphenylpiperidin-4-one was prepared from the reaction of 1-chloroacetyl-3-methyl-2,6-diphenylpiperidin -4-one with NaN3 as per the reported procedure (Keana & Cai, 1990). The obtained crude mass was purified by column chromatography followed by recrystallization from ethanol giving colourless, diffraction quality crystals.

Refinement top

The C bound H atoms positioned geometrically (C—H = 0.93–0.98 Å) and allowed to ride on their parent atoms, with 1.5Ueq(C) for methyl H and 1.2 Ueq(C) for other H atoms.

Structure description top

2,6-Diarylpiperidin-4-ones normally adopt chair conformation with equatorial orientation of all the substituents. Nevertheless, introduction of some heteroconjugate groups such as –NO, –CHO, –COCH3, –COC6H5, etc., at the heteroatom of 2,6-disubstitutedpiperidine ring system have reported to cause a major change in ring conformation, and orientation of the substituents (Jeyaraman et al., 1999; Ponnuswamy et al., 2002). To establish the conformational impact of azidoacetyl group at the nitrogen of 2,6-diphenyl -3-methylpiperidin-4-one, the current study has been undertaken.

The ORTEP plot of the title molecule is shown in Fig.1. The piperidine ring adopts a distorted boat conformation with the puckering parameters (Cremer & Pople, 1975) and asymmetry parameters (Nardelli, 1983) of q2 = 0.699 (5) Å, q3 = -0.043 (2) Å, φ2 = 68.242 (8)° and Δs (C1 and C4) = 9.5 (2) Å. The sum of the bond angles around the atom N1[(355.42 (3)°] of the piperidine ring is in accordance with the sp2 hybridization.

The crystal structure is stabilized by C—H···O and C—H···N intermolecular interactions which link the molecules into chains running along the c axis. Atoms C2 and C5 at (x, y, z) donate one proton to acceptor O2 and N2 at (-x + 1, -y, -z), forming a centrosymmetric dimers (Fig. 2) with R22(12) ring motifs.

For the biological activities, see: Aridoss et al. (2008, 2010). For ring conformational analysis, see: Cremer & Pople (1975); Nardelli (1983). For related structures, see: Jeyaraman et al. (1999); Keana & Cai (1990); Ponnuswamy et al. (2002).

Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. Perspective view of the molecule showing the thermal ellipsoids drawn at 30% probability level.
[Figure 2] Fig. 2. The crystal packing of the molecules viewed down a axis. For clarity, hydrogen atoms which are not involved in hydrogen bonding are omitted
1-(2-Azidoacetyl)-3-methyl-2,6-diphenylpiperidin-4-one top
Crystal data top
C20H20N4O2F(000) = 736
Mr = 348.40Dx = 1.324 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 1520 reflections
a = 11.0418 (3) Åθ = 1.9–28.5°
b = 15.7844 (5) ŵ = 0.09 mm1
c = 10.5684 (3) ÅT = 292 K
β = 108.458 (2)°Block, colourless
V = 1747.19 (9) Å30.25 × 0.23 × 0.2 mm
Z = 4
Data collection top
Bruker SMART APEXII area-detector
diffractometer
4286 independent reflections
Radiation source: fine-focus sealed tube3147 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.026
ω and φ scansθmax = 28.5°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
h = 1414
Tmin = 0.978, Tmax = 0.983k = 1921
16435 measured reflectionsl = 1413
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.045Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.138H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0678P)2 + 0.3241P]
where P = (Fo2 + 2Fc2)/3
4286 reflections(Δ/σ)max < 0.001
236 parametersΔρmax = 0.24 e Å3
0 restraintsΔρmin = 0.18 e Å3
Crystal data top
C20H20N4O2V = 1747.19 (9) Å3
Mr = 348.40Z = 4
Monoclinic, P21/cMo Kα radiation
a = 11.0418 (3) ŵ = 0.09 mm1
b = 15.7844 (5) ÅT = 292 K
c = 10.5684 (3) Å0.25 × 0.23 × 0.2 mm
β = 108.458 (2)°
Data collection top
Bruker SMART APEXII area-detector
diffractometer
4286 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
3147 reflections with I > 2σ(I)
Tmin = 0.978, Tmax = 0.983Rint = 0.026
16435 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0450 restraints
wR(F2) = 0.138H-atom parameters constrained
S = 1.05Δρmax = 0.24 e Å3
4286 reflectionsΔρmin = 0.18 e Å3
236 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.59213 (13)0.02968 (9)0.33092 (13)0.0366 (3)
H10.50500.05210.30730.044*
C20.57944 (14)0.06647 (9)0.32572 (15)0.0411 (3)
H2A0.54890.08530.39760.049*
H2B0.51660.08270.24210.049*
C30.70355 (14)0.10988 (9)0.33785 (14)0.0392 (3)
C40.80956 (13)0.05375 (9)0.32448 (14)0.0386 (3)
H40.84410.02280.40870.046*
C50.75819 (13)0.01278 (9)0.21275 (13)0.0360 (3)
H50.73240.01820.12810.043*
C60.86401 (14)0.07294 (9)0.20829 (14)0.0387 (3)
C70.92891 (16)0.12263 (10)0.31632 (17)0.0498 (4)
H70.90250.12390.39160.060*
C81.03309 (18)0.17048 (12)0.3130 (2)0.0638 (5)
H81.07640.20340.38630.077*
C91.07271 (18)0.16958 (12)0.2027 (2)0.0661 (5)
H91.14300.20150.20120.079*
C101.00821 (19)0.12146 (13)0.0946 (2)0.0670 (5)
H101.03410.12110.01900.080*
C110.90476 (17)0.07345 (11)0.09768 (17)0.0536 (4)
H110.86170.04080.02380.064*
C120.91822 (16)0.10347 (11)0.30249 (19)0.0556 (4)
H12A0.94470.14710.36880.083*
H12B0.98870.06610.30930.083*
H12C0.89030.12870.21540.083*
C130.66501 (13)0.06839 (9)0.46567 (14)0.0386 (3)
C140.70059 (15)0.02104 (11)0.58243 (15)0.0489 (4)
H140.68770.03730.57830.059*
C150.75481 (18)0.05956 (14)0.70438 (17)0.0639 (5)
H150.77840.02690.78160.077*
C160.77431 (18)0.14548 (15)0.71305 (19)0.0683 (6)
H160.80880.17130.79580.082*
C170.74226 (18)0.19344 (12)0.5977 (2)0.0645 (5)
H170.75720.25150.60250.077*
C180.68785 (16)0.15484 (10)0.47485 (17)0.0506 (4)
H180.66640.18740.39760.061*
C190.56623 (15)0.09208 (9)0.10767 (14)0.0416 (3)
C200.43631 (16)0.12667 (11)0.10659 (16)0.0531 (4)
H20A0.38920.08220.13390.064*
H20B0.44930.17260.17050.064*
N10.64214 (11)0.05607 (7)0.22287 (11)0.0364 (3)
N20.36126 (14)0.15755 (9)0.02523 (14)0.0570 (4)
N30.38863 (12)0.22845 (9)0.05698 (13)0.0475 (3)
N40.39979 (17)0.29178 (11)0.09966 (16)0.0670 (4)
O10.71688 (12)0.18542 (7)0.35828 (12)0.0547 (3)
O20.59960 (12)0.09701 (8)0.00863 (11)0.0566 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0380 (7)0.0361 (7)0.0357 (7)0.0033 (5)0.0116 (6)0.0017 (6)
C20.0417 (7)0.0383 (8)0.0434 (8)0.0047 (6)0.0138 (6)0.0010 (6)
C30.0512 (8)0.0315 (7)0.0369 (7)0.0001 (6)0.0168 (6)0.0005 (6)
C40.0421 (7)0.0328 (7)0.0418 (8)0.0028 (5)0.0146 (6)0.0015 (6)
C50.0416 (7)0.0327 (7)0.0337 (7)0.0015 (5)0.0119 (6)0.0024 (5)
C60.0421 (7)0.0339 (7)0.0391 (7)0.0004 (5)0.0114 (6)0.0043 (6)
C70.0534 (9)0.0450 (9)0.0493 (9)0.0079 (7)0.0137 (7)0.0027 (7)
C80.0559 (10)0.0492 (10)0.0768 (13)0.0137 (8)0.0077 (9)0.0012 (9)
C90.0519 (10)0.0532 (10)0.0941 (15)0.0071 (8)0.0244 (10)0.0206 (10)
C100.0680 (12)0.0710 (13)0.0728 (13)0.0020 (10)0.0375 (11)0.0185 (10)
C110.0605 (10)0.0582 (10)0.0459 (9)0.0059 (8)0.0222 (8)0.0021 (7)
C120.0505 (9)0.0487 (9)0.0719 (11)0.0104 (7)0.0254 (9)0.0090 (8)
C130.0379 (7)0.0405 (8)0.0376 (7)0.0066 (5)0.0124 (6)0.0014 (6)
C140.0516 (9)0.0536 (10)0.0410 (8)0.0025 (7)0.0139 (7)0.0029 (7)
C150.0606 (11)0.0864 (15)0.0393 (9)0.0048 (9)0.0083 (8)0.0006 (9)
C160.0568 (10)0.0925 (16)0.0474 (10)0.0053 (10)0.0049 (8)0.0255 (10)
C170.0606 (11)0.0529 (10)0.0714 (13)0.0038 (8)0.0087 (9)0.0231 (9)
C180.0559 (9)0.0409 (8)0.0501 (9)0.0066 (7)0.0099 (7)0.0051 (7)
C190.0483 (8)0.0361 (7)0.0344 (7)0.0034 (6)0.0044 (6)0.0004 (6)
C200.0542 (9)0.0537 (10)0.0445 (9)0.0093 (7)0.0057 (7)0.0037 (7)
N10.0403 (6)0.0343 (6)0.0330 (6)0.0011 (5)0.0093 (5)0.0010 (5)
N20.0614 (8)0.0418 (8)0.0505 (8)0.0023 (6)0.0070 (7)0.0026 (6)
N30.0451 (7)0.0496 (8)0.0402 (7)0.0029 (6)0.0029 (6)0.0050 (6)
N40.0798 (11)0.0576 (10)0.0584 (10)0.0084 (8)0.0145 (8)0.0053 (8)
O10.0714 (8)0.0328 (6)0.0688 (8)0.0034 (5)0.0347 (6)0.0067 (5)
O20.0614 (7)0.0684 (8)0.0369 (6)0.0013 (6)0.0112 (5)0.0091 (5)
Geometric parameters (Å, º) top
C1—N11.4771 (17)C10—H100.9300
C1—C21.5235 (19)C11—H110.9300
C1—C131.5243 (19)C12—H12A0.9600
C1—H10.9800C12—H12B0.9600
C2—C31.501 (2)C12—H12C0.9600
C2—H2A0.9700C13—C181.386 (2)
C2—H2B0.9700C13—C141.389 (2)
C3—O11.2123 (16)C14—C151.379 (2)
C3—C41.510 (2)C14—H140.9300
C4—C121.512 (2)C15—C161.372 (3)
C4—C51.5476 (19)C15—H150.9300
C4—H40.9800C16—C171.383 (3)
C5—N11.4856 (17)C16—H160.9300
C5—C61.5179 (19)C17—C181.387 (2)
C5—H50.9800C17—H170.9300
C6—C111.379 (2)C18—H180.9300
C6—C71.384 (2)C19—O21.2172 (18)
C7—C81.386 (2)C19—N11.3645 (18)
C7—H70.9300C19—C201.532 (2)
C8—C91.369 (3)C20—N21.461 (2)
C8—H80.9300C20—H20A0.9700
C9—C101.369 (3)C20—H20B0.9700
C9—H90.9300N2—N31.233 (2)
C10—C111.380 (3)N3—N41.119 (2)
N1—C1—C2107.80 (11)C10—C11—C6121.20 (17)
N1—C1—C13113.16 (11)C10—C11—H11119.4
C2—C1—C13116.63 (12)C6—C11—H11119.4
N1—C1—H1106.2C4—C12—H12A109.5
C2—C1—H1106.2C4—C12—H12B109.5
C13—C1—H1106.2H12A—C12—H12B109.5
C3—C2—C1112.38 (12)C4—C12—H12C109.5
C3—C2—H2A109.1H12A—C12—H12C109.5
C1—C2—H2A109.1H12B—C12—H12C109.5
C3—C2—H2B109.1C18—C13—C14118.28 (14)
C1—C2—H2B109.1C18—C13—C1119.39 (13)
H2A—C2—H2B107.9C14—C13—C1122.12 (13)
O1—C3—C2121.36 (13)C15—C14—C13120.68 (17)
O1—C3—C4122.66 (13)C15—C14—H14119.7
C2—C3—C4115.97 (11)C13—C14—H14119.7
C3—C4—C12112.72 (12)C16—C15—C14120.73 (18)
C3—C4—C5111.22 (12)C16—C15—H15119.6
C12—C4—C5110.61 (12)C14—C15—H15119.6
C3—C4—H4107.3C15—C16—C17119.44 (17)
C12—C4—H4107.3C15—C16—H16120.3
C5—C4—H4107.3C17—C16—H16120.3
N1—C5—C6113.86 (11)C16—C17—C18119.93 (18)
N1—C5—C4111.92 (10)C16—C17—H17120.0
C6—C5—C4110.39 (11)C18—C17—H17120.0
N1—C5—H5106.7C17—C18—C13120.90 (17)
C6—C5—H5106.7C17—C18—H18119.6
C4—C5—H5106.7C13—C18—H18119.6
C11—C6—C7118.25 (14)O2—C19—N1121.75 (14)
C11—C6—C5119.41 (13)O2—C19—C20120.57 (13)
C7—C6—C5122.12 (13)N1—C19—C20117.68 (13)
C6—C7—C8120.36 (16)N2—C20—C19111.92 (14)
C6—C7—H7119.8N2—C20—H20A109.2
C8—C7—H7119.8C19—C20—H20A109.2
C9—C8—C7120.50 (18)N2—C20—H20B109.2
C9—C8—H8119.8C19—C20—H20B109.2
C7—C8—H8119.8H20A—C20—H20B107.9
C8—C9—C10119.64 (16)C19—N1—C1122.20 (12)
C8—C9—H9120.2C19—N1—C5115.31 (11)
C10—C9—H9120.2C1—N1—C5117.91 (10)
C9—C10—C11120.04 (17)N3—N2—C20116.64 (14)
C9—C10—H10120.0N4—N3—N2171.04 (17)
C11—C10—H10120.0
N1—C1—C2—C357.25 (15)N1—C1—C13—C14135.96 (14)
C13—C1—C2—C371.29 (15)C2—C1—C13—C1410.06 (19)
C1—C2—C3—O1167.38 (13)C18—C13—C14—C151.3 (2)
C1—C2—C3—C412.02 (17)C1—C13—C14—C15173.35 (14)
O1—C3—C4—C1215.3 (2)C13—C14—C15—C160.3 (3)
C2—C3—C4—C12165.33 (13)C14—C15—C16—C171.7 (3)
O1—C3—C4—C5140.15 (14)C15—C16—C17—C181.6 (3)
C2—C3—C4—C540.45 (16)C16—C17—C18—C130.1 (3)
C3—C4—C5—N147.54 (15)C14—C13—C18—C171.4 (2)
C12—C4—C5—N1173.60 (12)C1—C13—C18—C17173.41 (14)
C3—C4—C5—C6175.48 (11)O2—C19—C20—N24.4 (2)
C12—C4—C5—C658.46 (16)N1—C19—C20—N2175.73 (13)
N1—C5—C6—C11118.49 (15)O2—C19—N1—C1163.94 (13)
C4—C5—C6—C11114.64 (15)C20—C19—N1—C116.16 (19)
N1—C5—C6—C767.05 (17)O2—C19—N1—C58.5 (2)
C4—C5—C6—C759.82 (18)C20—C19—N1—C5171.63 (12)
C11—C6—C7—C80.9 (2)C2—C1—N1—C19104.11 (14)
C5—C6—C7—C8173.64 (15)C13—C1—N1—C19125.40 (13)
C6—C7—C8—C90.4 (3)C2—C1—N1—C550.76 (15)
C7—C8—C9—C100.5 (3)C13—C1—N1—C579.74 (14)
C8—C9—C10—C110.7 (3)C6—C5—N1—C1976.01 (15)
C9—C10—C11—C60.2 (3)C4—C5—N1—C19157.92 (12)
C7—C6—C11—C100.6 (2)C6—C5—N1—C1127.41 (12)
C5—C6—C11—C10174.06 (16)C4—C5—N1—C11.34 (16)
N1—C1—C13—C1849.44 (17)C19—C20—N2—N379.48 (19)
C2—C1—C13—C18175.34 (13)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C9—H9···O1i0.932.573.464 (2)162
C5—H5···N2ii0.982.523.353 (2)142
C2—H2B···O2ii0.972.563.4933 (19)161
Symmetry codes: (i) x+2, y+1/2, z+1/2; (ii) x+1, y, z.

Experimental details

Crystal data
Chemical formulaC20H20N4O2
Mr348.40
Crystal system, space groupMonoclinic, P21/c
Temperature (K)292
a, b, c (Å)11.0418 (3), 15.7844 (5), 10.5684 (3)
β (°) 108.458 (2)
V3)1747.19 (9)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.25 × 0.23 × 0.2
Data collection
DiffractometerBruker SMART APEXII area-detector
Absorption correctionMulti-scan
(SADABS; Bruker, 2008)
Tmin, Tmax0.978, 0.983
No. of measured, independent and
observed [I > 2σ(I)] reflections
16435, 4286, 3147
Rint0.026
(sin θ/λ)max1)0.670
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.045, 0.138, 1.05
No. of reflections4286
No. of parameters236
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.24, 0.18

Computer programs: APEX2 (Bruker, 2008), SAINT (Bruker, 2008), SHELXS97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C9—H9···O1i0.932.573.464 (2)162.2
C5—H5···N2ii0.982.523.353 (2)142.1
C2—H2B···O2ii0.972.563.4933 (19)161.0
Symmetry codes: (i) x+2, y+1/2, z+1/2; (ii) x+1, y, z.
 

Acknowledgements

HY acknowledges Yeungnam University for the opportunity to work as a Full-Time Foreign Instructor. SS and DV thank the TBI X-ray Facility, CAS in Crystallography and Biophysics, University of Madras, India, for the data collection and the University Grants Commission (UGC and SAP) for financial support.

References

First citationAridoss, G., Amirthaganesan, S., Ashok Kumar, N., Kim, J. T., Lim, K. T., Kabilan, S. & Jeong, Y. T. (2008). Bioorg. Med. Chem. Lett. 18, 6542–6548.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationAridoss, G., Amirthaganesan, S. & Jeong, Y. T. (2010). Bioorg. Med. Chem. Lett. 20, 2242–2249.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationBruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationJeyaraman, R., Thenmozhiyal, J. C., Murugadoss, R. & Venkatraj, M. (1999). Indian J. Chem. Sect. B, 38, 325–336.  Google Scholar
First citationKeana, J. F. W. & Cai, X. S. (1990). J. Org. Chem. 55, 3640–3647.  CrossRef CAS Web of Science Google Scholar
First citationNardelli, M. (1983). Acta Cryst. C39, 1141–1142.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationPonnuswamy, S., Venkatraj, M., Jeyaraman, R., Suresh Kumar, M., Kumaran, D. & Ponnuswamy, M. N. (2002). Indian J. Chem. Sect. B, 41, 614–627.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds