organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 66| Part 10| October 2010| Pages o2508-o2509

Methyl 3-[(1H-benzimidazol-1-yl)meth­yl]-1-methyl-4-(4-methyl­phen­yl)-2′-oxopyrrolidine-2-spiro-3′-1-benzimidazole-3-carboxyl­ate

aDepartment of Physics, Kalasalingam University, Krishnankoil 626 190, India, bLaboratory of X-ray Crystallography, Indian Institute of Chemical Technology, Hyderabad 500 007, India, and cDepartment of Organic Chemistry, University of Madras, Guindy Campus, Chennai 600 025, India
*Correspondence e-mail: s_selvanayagam@rediffmail.com

(Received 27 August 2010; accepted 1 September 2010; online 4 September 2010)

In the title compound, C29H28N4O3, the pyrrolidine ring adopts a twist conformation whereas the oxindole and benzimidazole residues are approximately planar with maximum deviations of 0.159 (1) and 0.011 (1) Å, respectively. The oxindole residue is almost perpendicular to the benzimidazole residue, making a dihedral angle of 89.2 (1)°. The methyl-substituted benzene ring is oriented at angles of 47.7 (1) and 71.0 (1)°, respectively, with respect to the oxindole and benzimidazole residues. An intra­molecular C—H⋯O hydrogen bond is observed. In the crystal, mol­ecules associate via N—H⋯N hydrogen bonds, forming R22(9) dimers.

Related literature

For general background to pyrrolidine derivatives, see: Obniska et al. (2010[Obniska, J., Kopytko, M., Zagórska, A., Chlebek, I. & Kamiński, K. (2010). Arch. Pharm. (Weinheim), 343, 333-341.]); Morais et al. (2009[Morais, C., Gobe, G., Johnson, D. W. & Healy, H. (2009). Angiogenesis, 12, 365-379.]); Bello et al. (2010[Bello, C., Cea, M., Dal Bello, G., Garuti, A., Rocco, I., Cirmena, G., Moran, E., Nahimana, A., Duchosal, M. A., Fruscione, F., Pronzato, P., Grossi, F., Patrone, F., Ballestrero, A., Dupuis, M., Sordat, B., Nencioni, A. & Vogel, P. (2010). Bioorg. Med. Chem. 18, 3320-3334.]); Moreno-Clavijo et al. (2009[Moreno-Clavijo, E., Carmona, A. T., Vera-Ayoso, Y., Moreno-Vargas, A. J., Bello, C., Vogel, P. & Robina, I. (2009). Org. Biomol. Chem. 7, 1192-1202.]); Cheng et al. (2008[Cheng, X. C., Wang, Q., Fang, H., Tang, W. & Xu, W. F. (2008). Bioorg. Med. Chem. 16, 7932-7938.]). For related structures, see: Aravindan et al. (2004[Aravindan, P. G., Selvanayagam, S., Velmurugan, D., Ravikumar, K., Jayashankaran, J. & Raghunathan, R. (2004). Acta Cryst. E60, o2152-o2154.]); Selvanayagam et al. (2005[Selvanayagam, S., Rathisuganya, P., Shaherin, B., Velmurugan, D., Ravikumar, K. & Poornachandran, M. (2005). Acta Cryst. E61, o3693-o3695.]); Seshadri et al. (2003[Seshadri, P. R., Selvanayagam, S., Velmurugan, D., Ravikumar, K., Sureshbabu, A. R. & Raghunathan, R. (2003). Acta Cryst. E59, o2025-o2027.]). For ring-puckering parameters, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]).

[Scheme 1]

Experimental

Crystal data
  • C29H28N4O3

  • Mr = 480.55

  • Triclinic, [P \overline 1]

  • a = 9.7605 (5) Å

  • b = 11.2823 (6) Å

  • c = 12.2333 (7) Å

  • α = 79.960 (1)°

  • β = 69.539 (1)°

  • γ = 85.358 (1)°

  • V = 1242.53 (12) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 292 K

  • 0.26 × 0.24 × 0.22 mm

Data collection
  • Bruker SMART APEX CCD area-detector diffractometer

  • 14287 measured reflections

  • 5705 independent reflections

  • 5041 reflections with I > 2σ(I)

  • Rint = 0.017

Refinement
  • R[F2 > 2σ(F2)] = 0.046

  • wR(F2) = 0.131

  • S = 1.04

  • 5705 reflections

  • 328 parameters

  • H-atom parameters constrained

  • Δρmax = 0.26 e Å−3

  • Δρmin = −0.26 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2⋯N4i 0.86 2.05 2.888 (2) 165
C16—H16⋯O1 0.93 2.33 3.050 (2) 134
Symmetry code: (i) -x, -y+1, -z+1.

Data collection: SMART (Bruker, 2001[Bruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2001[Bruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXL97 and PLATON.

Supporting information


Comment top

Pyrrolidine derivatives possess anticonvulsant (Obniska et al., 2010), anti-angiogenic (Morais et al., 2009) and antitumor (Bello et al., 2010) activities. These derivatives are used as inhibitors of alpha-L-fucosidases (Moreno-Clavijo et al., 2009) and matrix metalloproteinase (Cheng et al., 2008). In view of these importance, we have undertaken the crystal structure determination of the title compound, a pyrrolidine derivative, and the results are presented here.

The molecular structure of (I) is illustrated in Fig. 1. The geometry of the pyrrolidine and oxindole residues of (I) compares well with that reported in other related structures (see, for example, Aravindan et al., 2004; Selvanayagam et al., 2005; Seshadri et al., 2003).

The sum of the angles at N1 of the pyrrolidine ring [334.8°] and N3 of the imidazole ring [359.9°] are in accordance with sp3 and sp2 hybridizations. Atom O1 is essentially coplanar with the heterocyclic ring to which it is attached, with a deviation of -0.159 (1) Å. Benzimidazole residue is planar with a maximum deviation of -0.011 (1) Å for atom C22. Atom C29 deviates 0.052 (2) Å from the best plane of the methylphenyl ring.

The dihedral angle between the oxindole and benzimidazole residues is 89.2 (1)°. This indicates that the oxindole residue is almost perpendicular to the benzimidazole residue. The methyl phenyl ring is oriented at an angles of 47.7 (1) and 71.0 (1) ° with respect to the oxindole and benzimidazole residues.

The pyrrolidine ring adopts a twist conformation, with puckering parameters (Cremer & Pople, 1975) q2 = 0.454 (1) Å and ϕ = 149.9 (2)°.

The molecular structure is influenced by an intramolecular C—H···O hydrogen bonds. Atom O1 acts as a bifurcated acceptor for two intramolecular C—H···O hydrogen bonds. In the molecular packing, N—H···N hydrogen bonds link inversion-related molecules to form R22(9) graph-set dimer (Fig.2 and Table 1).

Related literature top

For general background to pyrrolidine derivatives, see: Obniska et al. (2010); Morais et al. (2009); Bello et al. (2010); Moreno-Clavijo et al. (2009); Cheng et al. (2008). For related structures, see: Aravindan et al. (2004); Selvanayagam et al. (2005); Seshadri et al. (2003). For ring-puckering parameters, see: Cremer & Pople (1975).

Experimental top

To a mixture of isatin (1mmol), sarcosine (1mmol) and Baylis-Hillman adduct (1mmol) was added and heated under reflux in methanol (20ml) until the disappearance of the starting materials as evidenced by TLC. The solvent was removed under vacuo. The crude product was subjected to column chromatography using petroleum ether-ethyl acetate as eluent. Single crystals were grown by slow evaporation from methanol.

Refinement top

H atoms were placed in idealized positions and allowed to ride on their parent atoms, with C—H distances of 0.93-0.97 Å and an N—H distance of 0.86 Å, and Uiso(H) = 1.5Ueq(C) for methyl H and Uiso(H) = 1.2Ueq(C,N) for all other H atoms.

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level
[Figure 2] Fig. 2. Molecular packing of the title compound, viewed down the a axis; H-bonds are shown as dashed lines. For the sake of clarity, H atoms, not involved in hydrogen bonds, have been omitted
Methyl 3-[(1H-benzimidazol-1-yl)methyl]-1-methyl-4-(4-methylphenyl)-2'- oxopyrrolidine-2-spiro-3'-1-benzimidazole-3-carboxylate top
Crystal data top
C29H28N4O3Z = 2
Mr = 480.55F(000) = 508
Triclinic, P1Dx = 1.284 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 9.7605 (5) ÅCell parameters from 8628 reflections
b = 11.2823 (6) Åθ = 2.0–27.4°
c = 12.2333 (7) ŵ = 0.09 mm1
α = 79.960 (1)°T = 292 K
β = 69.539 (1)°Block, colourless
γ = 85.358 (1)°0.26 × 0.24 × 0.22 mm
V = 1242.53 (12) Å3
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
5041 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.017
Graphite monochromatorθmax = 28.0°, θmin = 1.8°
ω scansh = 1212
14287 measured reflectionsk = 1414
5705 independent reflectionsl = 1516
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.046Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.131H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0777P)2 + 0.1893P]
where P = (Fo2 + 2Fc2)/3
5705 reflections(Δ/σ)max < 0.001
328 parametersΔρmax = 0.26 e Å3
0 restraintsΔρmin = 0.26 e Å3
Crystal data top
C29H28N4O3γ = 85.358 (1)°
Mr = 480.55V = 1242.53 (12) Å3
Triclinic, P1Z = 2
a = 9.7605 (5) ÅMo Kα radiation
b = 11.2823 (6) ŵ = 0.09 mm1
c = 12.2333 (7) ÅT = 292 K
α = 79.960 (1)°0.26 × 0.24 × 0.22 mm
β = 69.539 (1)°
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
5041 reflections with I > 2σ(I)
14287 measured reflectionsRint = 0.017
5705 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0460 restraints
wR(F2) = 0.131H-atom parameters constrained
S = 1.04Δρmax = 0.26 e Å3
5705 reflectionsΔρmin = 0.26 e Å3
328 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.02562 (10)0.75938 (10)0.40536 (9)0.0564 (2)
O20.45463 (10)0.62452 (9)0.06224 (9)0.0556 (2)
O30.30370 (10)0.55640 (7)0.24567 (8)0.0475 (2)
N10.19339 (11)0.93029 (8)0.24498 (9)0.0415 (2)
N20.16540 (13)0.69375 (10)0.47180 (9)0.0498 (3)
H20.11610.65470.53950.060*
N30.05799 (10)0.60212 (9)0.17842 (8)0.0392 (2)
N40.04307 (15)0.42908 (11)0.28856 (10)0.0592 (3)
C10.30089 (16)0.97153 (11)0.12846 (10)0.0467 (3)
H1A0.38820.99890.13630.056*
H1B0.26031.03710.08570.056*
C20.33690 (12)0.86094 (10)0.06345 (9)0.0371 (2)
H2A0.44160.84310.04650.045*
C30.25260 (11)0.75294 (9)0.15982 (9)0.0337 (2)
C40.23182 (12)0.80336 (10)0.27776 (9)0.0363 (2)
C50.18078 (18)1.00891 (12)0.33182 (12)0.0546 (3)
H5A0.27351.01150.34210.082*
H5B0.10870.97800.40590.082*
H5C0.15181.08860.30430.082*
C60.36486 (13)0.77598 (10)0.31879 (10)0.0383 (2)
C70.51257 (14)0.80220 (12)0.26535 (11)0.0468 (3)
H70.54660.84780.19050.056*
C80.60970 (16)0.75910 (14)0.32568 (14)0.0560 (3)
H80.70850.77670.29060.067*
C90.55981 (18)0.69048 (15)0.43698 (14)0.0625 (4)
H90.62590.66200.47530.075*
C100.41285 (18)0.66350 (14)0.49225 (13)0.0592 (4)
H100.37940.61730.56690.071*
C110.31760 (14)0.70791 (11)0.43221 (10)0.0438 (3)
C120.10539 (13)0.74875 (11)0.39100 (10)0.0427 (3)
C130.35074 (12)0.63904 (10)0.14798 (10)0.0380 (2)
C140.3828 (2)0.44195 (14)0.24091 (17)0.0713 (5)
H14A0.39690.41600.16700.107*
H14B0.32770.38310.30460.107*
H14C0.47620.45090.24800.107*
C150.10345 (12)0.72765 (10)0.14655 (10)0.0384 (2)
H15A0.02720.77580.19520.046*
H15B0.11050.75510.06510.046*
C160.02908 (15)0.54492 (13)0.28527 (11)0.0517 (3)
H160.07450.58430.34990.062*
C170.04075 (15)0.40654 (11)0.17515 (12)0.0481 (3)
C180.06481 (18)0.29959 (12)0.12571 (15)0.0613 (4)
H180.02300.22780.17040.074*
C190.15226 (18)0.30483 (13)0.00910 (16)0.0616 (4)
H190.16960.23510.02510.074*
C200.21573 (15)0.41222 (14)0.05946 (14)0.0554 (3)
H200.27420.41200.13790.066*
C210.19363 (13)0.51890 (12)0.01339 (11)0.0461 (3)
H210.23560.59030.05900.055*
C220.10513 (12)0.51376 (10)0.10505 (10)0.0390 (2)
C230.31253 (12)0.88215 (10)0.05502 (9)0.0361 (2)
C240.41258 (14)0.83543 (11)0.15145 (11)0.0440 (3)
H240.49140.78810.14180.053*
C250.39601 (17)0.85871 (13)0.26221 (11)0.0536 (3)
H250.46430.82690.32520.064*
C260.27911 (17)0.92865 (12)0.27996 (11)0.0505 (3)
C270.17746 (15)0.97312 (11)0.18349 (11)0.0475 (3)
H270.09691.01800.19270.057*
C280.19461 (13)0.95146 (11)0.07328 (10)0.0428 (3)
H280.12630.98370.01060.051*
C290.2617 (3)0.95730 (18)0.40035 (15)0.0789 (5)
H29A0.35610.95620.46090.118*
H29B0.21671.03570.40860.118*
H29C0.20130.89820.40770.118*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0441 (5)0.0703 (6)0.0480 (5)0.0038 (4)0.0057 (4)0.0113 (4)
O20.0484 (5)0.0570 (5)0.0528 (5)0.0094 (4)0.0084 (4)0.0094 (4)
O30.0602 (5)0.0349 (4)0.0466 (5)0.0031 (4)0.0212 (4)0.0000 (3)
N10.0536 (6)0.0351 (5)0.0368 (5)0.0028 (4)0.0177 (4)0.0051 (4)
N20.0576 (6)0.0524 (6)0.0318 (5)0.0095 (5)0.0096 (4)0.0048 (4)
N30.0406 (5)0.0383 (5)0.0365 (5)0.0090 (4)0.0115 (4)0.0004 (4)
N40.0737 (8)0.0534 (6)0.0456 (6)0.0246 (6)0.0172 (6)0.0090 (5)
C10.0694 (8)0.0361 (6)0.0368 (6)0.0109 (5)0.0216 (5)0.0000 (5)
C20.0427 (5)0.0368 (5)0.0314 (5)0.0079 (4)0.0135 (4)0.0008 (4)
C30.0368 (5)0.0332 (5)0.0298 (5)0.0030 (4)0.0112 (4)0.0009 (4)
C40.0406 (5)0.0359 (5)0.0307 (5)0.0023 (4)0.0114 (4)0.0018 (4)
C50.0766 (9)0.0460 (7)0.0448 (7)0.0063 (6)0.0237 (6)0.0134 (5)
C60.0470 (6)0.0363 (5)0.0331 (5)0.0020 (4)0.0163 (4)0.0036 (4)
C70.0483 (6)0.0503 (7)0.0425 (6)0.0057 (5)0.0179 (5)0.0016 (5)
C80.0509 (7)0.0625 (8)0.0613 (8)0.0006 (6)0.0275 (6)0.0106 (7)
C90.0697 (9)0.0665 (9)0.0634 (9)0.0109 (7)0.0415 (8)0.0080 (7)
C100.0788 (10)0.0575 (8)0.0446 (7)0.0028 (7)0.0319 (7)0.0039 (6)
C110.0566 (7)0.0398 (6)0.0351 (6)0.0025 (5)0.0175 (5)0.0017 (4)
C120.0463 (6)0.0436 (6)0.0343 (5)0.0047 (5)0.0075 (5)0.0070 (4)
C130.0406 (5)0.0375 (5)0.0389 (5)0.0009 (4)0.0177 (4)0.0046 (4)
C140.0865 (11)0.0433 (7)0.0834 (11)0.0160 (7)0.0373 (9)0.0012 (7)
C150.0398 (5)0.0351 (5)0.0400 (6)0.0048 (4)0.0158 (4)0.0010 (4)
C160.0561 (7)0.0544 (7)0.0385 (6)0.0177 (6)0.0094 (5)0.0022 (5)
C170.0555 (7)0.0417 (6)0.0492 (7)0.0115 (5)0.0243 (6)0.0056 (5)
C180.0771 (10)0.0371 (6)0.0793 (10)0.0093 (6)0.0426 (8)0.0029 (6)
C190.0688 (9)0.0489 (7)0.0816 (11)0.0077 (6)0.0408 (8)0.0205 (7)
C200.0486 (7)0.0646 (8)0.0584 (8)0.0025 (6)0.0205 (6)0.0209 (7)
C210.0416 (6)0.0511 (7)0.0463 (6)0.0083 (5)0.0150 (5)0.0063 (5)
C220.0391 (5)0.0378 (5)0.0428 (6)0.0057 (4)0.0184 (5)0.0020 (4)
C230.0426 (5)0.0341 (5)0.0305 (5)0.0078 (4)0.0121 (4)0.0003 (4)
C240.0506 (6)0.0419 (6)0.0395 (6)0.0020 (5)0.0155 (5)0.0075 (5)
C250.0706 (9)0.0530 (7)0.0369 (6)0.0040 (6)0.0159 (6)0.0139 (5)
C260.0725 (8)0.0458 (6)0.0394 (6)0.0056 (6)0.0270 (6)0.0042 (5)
C270.0556 (7)0.0434 (6)0.0462 (6)0.0016 (5)0.0243 (6)0.0003 (5)
C280.0449 (6)0.0432 (6)0.0368 (6)0.0017 (5)0.0115 (5)0.0019 (5)
C290.1203 (16)0.0809 (11)0.0495 (8)0.0099 (11)0.0479 (10)0.0122 (8)
Geometric parameters (Å, º) top
O1—C121.2271 (16)C9—C101.389 (2)
O2—C131.2019 (14)C9—H90.9300
O3—C131.3437 (14)C10—C111.3888 (18)
O3—C141.4492 (16)C10—H100.9300
N1—C51.4662 (16)C14—H14A0.9600
N1—C11.4668 (16)C14—H14B0.9600
N1—C41.4732 (14)C14—H14C0.9600
N2—C121.3555 (16)C15—H15A0.9700
N2—C111.4055 (17)C15—H15B0.9700
N2—H20.8600C16—H160.9300
N3—C161.3657 (15)C17—C221.4065 (16)
N3—C221.4000 (16)C17—C181.409 (2)
N3—C151.4639 (14)C18—C191.376 (2)
N4—C161.3172 (19)C18—H180.9300
N4—C171.3981 (19)C19—C201.400 (2)
C1—C21.5467 (16)C19—H190.9300
C1—H1A0.9700C20—C211.3866 (19)
C1—H1B0.9700C20—H200.9300
C2—C231.5247 (14)C21—C221.3973 (17)
C2—C31.5921 (14)C21—H210.9300
C2—H2A0.9800C23—C241.3968 (16)
C3—C131.5357 (15)C23—C281.3998 (16)
C3—C151.5735 (15)C24—C251.3976 (18)
C3—C41.5840 (15)C24—H240.9300
C4—C61.5396 (16)C25—C261.393 (2)
C4—C121.5658 (15)C25—H250.9300
C5—H5A0.9600C26—C271.391 (2)
C5—H5B0.9600C26—C291.5173 (18)
C5—H5C0.9600C27—C281.3934 (17)
C6—C71.3915 (17)C27—H270.9300
C6—C111.4021 (16)C28—H280.9300
C7—C81.4033 (18)C29—H29A0.9600
C7—H70.9300C29—H29B0.9600
C8—C91.386 (2)C29—H29C0.9600
C8—H80.9300
C13—O3—C14115.61 (11)N2—C12—C4108.20 (10)
C5—N1—C1113.09 (10)O2—C13—O3124.23 (10)
C5—N1—C4115.51 (9)O2—C13—C3124.75 (10)
C1—N1—C4106.21 (9)O3—C13—C3111.01 (9)
C12—N2—C11112.18 (10)O3—C14—H14A109.5
C12—N2—H2123.9O3—C14—H14B109.5
C11—N2—H2123.9H14A—C14—H14B109.5
C16—N3—C22105.96 (10)O3—C14—H14C109.5
C16—N3—C15128.19 (11)H14A—C14—H14C109.5
C22—N3—C15125.72 (9)H14B—C14—H14C109.5
C16—N4—C17104.88 (11)N3—C15—C3116.04 (9)
N1—C1—C2105.55 (9)N3—C15—H15A108.3
N1—C1—H1A110.6C3—C15—H15A108.3
C2—C1—H1A110.6N3—C15—H15B108.3
N1—C1—H1B110.6C3—C15—H15B108.3
C2—C1—H1B110.6H15A—C15—H15B107.4
H1A—C1—H1B108.8N4—C16—N3114.03 (12)
C23—C2—C1114.32 (9)N4—C16—H16123.0
C23—C2—C3117.51 (9)N3—C16—H16123.0
C1—C2—C3104.77 (8)N4—C17—C22109.58 (11)
C23—C2—H2A106.5N4—C17—C18130.71 (12)
C1—C2—H2A106.5C22—C17—C18119.71 (13)
C3—C2—H2A106.5C19—C18—C17117.84 (13)
C13—C3—C15109.64 (9)C19—C18—H18121.1
C13—C3—C4112.06 (8)C17—C18—H18121.1
C15—C3—C4113.01 (9)C18—C19—C20121.77 (14)
C13—C3—C2109.12 (9)C18—C19—H19119.1
C15—C3—C2112.02 (8)C20—C19—H19119.1
C4—C3—C2100.71 (8)C21—C20—C19121.69 (14)
N1—C4—C6118.20 (9)C21—C20—H20119.2
N1—C4—C12108.16 (9)C19—C20—H20119.2
C6—C4—C12101.17 (9)C20—C21—C22116.65 (12)
N1—C4—C3100.65 (8)C20—C21—H21121.7
C6—C4—C3112.70 (9)C22—C21—H21121.7
C12—C4—C3116.68 (9)C21—C22—N3132.09 (11)
N1—C5—H5A109.5C21—C22—C17122.34 (12)
N1—C5—H5B109.5N3—C22—C17105.55 (10)
H5A—C5—H5B109.5C24—C23—C28117.53 (10)
N1—C5—H5C109.5C24—C23—C2120.08 (10)
H5A—C5—H5C109.5C28—C23—C2122.35 (10)
H5B—C5—H5C109.5C23—C24—C25120.96 (12)
C7—C6—C11118.67 (11)C23—C24—H24119.5
C7—C6—C4133.14 (10)C25—C24—H24119.5
C11—C6—C4108.15 (10)C26—C25—C24121.19 (12)
C6—C7—C8119.29 (12)C26—C25—H25119.4
C6—C7—H7120.4C24—C25—H25119.4
C8—C7—H7120.4C27—C26—C25118.01 (11)
C9—C8—C7120.61 (13)C27—C26—C29120.20 (14)
C9—C8—H8119.7C25—C26—C29121.79 (14)
C7—C8—H8119.7C26—C27—C28120.98 (12)
C8—C9—C10121.15 (13)C26—C27—H27119.5
C8—C9—H9119.4C28—C27—H27119.5
C10—C9—H9119.4C27—C28—C23121.32 (11)
C9—C10—C11117.67 (13)C27—C28—H28119.3
C9—C10—H10121.2C23—C28—H28119.3
C11—C10—H10121.2C26—C29—H29A109.5
C10—C11—C6122.60 (13)C26—C29—H29B109.5
C10—C11—N2127.34 (12)H29A—C29—H29B109.5
C6—C11—N2110.06 (10)C26—C29—H29C109.5
O1—C12—N2126.27 (11)H29A—C29—H29C109.5
O1—C12—C4125.45 (11)H29B—C29—H29C109.5
C5—N1—C1—C2161.69 (10)C6—C4—C12—N24.58 (12)
C4—N1—C1—C233.99 (12)C3—C4—C12—N2118.07 (11)
N1—C1—C2—C23124.14 (10)C14—O3—C13—O22.91 (18)
N1—C1—C2—C35.90 (12)C14—O3—C13—C3176.04 (12)
C23—C2—C3—C1392.40 (11)C15—C3—C13—O2104.57 (13)
C1—C2—C3—C13139.46 (9)C4—C3—C13—O2129.11 (12)
C23—C2—C3—C1529.19 (13)C2—C3—C13—O218.46 (15)
C1—C2—C3—C1598.95 (10)C15—C3—C13—O374.38 (11)
C23—C2—C3—C4149.56 (10)C4—C3—C13—O351.94 (12)
C1—C2—C3—C421.42 (11)C2—C3—C13—O3162.60 (9)
C5—N1—C4—C650.74 (14)C16—N3—C15—C392.19 (15)
C1—N1—C4—C675.51 (12)C22—N3—C15—C383.07 (13)
C5—N1—C4—C1263.29 (13)C13—C3—C15—N326.13 (13)
C1—N1—C4—C12170.47 (9)C4—C3—C15—N399.65 (11)
C5—N1—C4—C3173.86 (10)C2—C3—C15—N3147.43 (9)
C1—N1—C4—C347.62 (11)C17—N4—C16—N30.14 (17)
C13—C3—C4—N1156.94 (9)C22—N3—C16—N40.01 (16)
C15—C3—C4—N178.59 (10)C15—N3—C16—N4175.99 (12)
C2—C3—C4—N141.06 (10)C16—N4—C17—C220.22 (15)
C13—C3—C4—C630.07 (12)C16—N4—C17—C18178.59 (15)
C15—C3—C4—C6154.54 (9)N4—C17—C18—C19178.97 (14)
C2—C3—C4—C685.80 (10)C22—C17—C18—C190.3 (2)
C13—C3—C4—C1286.36 (12)C17—C18—C19—C200.2 (2)
C15—C3—C4—C1238.11 (13)C18—C19—C20—C210.0 (2)
C2—C3—C4—C12157.77 (9)C19—C20—C21—C220.17 (19)
N1—C4—C6—C759.69 (17)C20—C21—C22—N3178.63 (12)
C12—C4—C6—C7177.48 (13)C20—C21—C22—C170.07 (18)
C3—C4—C6—C757.16 (16)C16—N3—C22—C21178.86 (13)
N1—C4—C6—C11122.37 (11)C15—N3—C22—C215.02 (19)
C12—C4—C6—C114.58 (11)C16—N3—C22—C170.13 (13)
C3—C4—C6—C11120.78 (10)C15—N3—C22—C17176.25 (10)
C11—C6—C7—C80.58 (18)N4—C17—C22—C21179.10 (11)
C4—C6—C7—C8177.19 (12)C18—C17—C22—C210.14 (19)
C6—C7—C8—C90.4 (2)N4—C17—C22—N30.21 (14)
C7—C8—C9—C100.6 (2)C18—C17—C22—N3178.75 (11)
C8—C9—C10—C110.1 (2)C1—C2—C23—C24139.36 (11)
C9—C10—C11—C61.2 (2)C3—C2—C23—C2497.22 (12)
C9—C10—C11—N2178.74 (13)C1—C2—C23—C2838.27 (14)
C7—C6—C11—C101.40 (19)C3—C2—C23—C2885.16 (13)
C4—C6—C11—C10176.88 (12)C28—C23—C24—C250.84 (18)
C7—C6—C11—N2178.53 (11)C2—C23—C24—C25176.90 (11)
C4—C6—C11—N23.18 (13)C23—C24—C25—C260.3 (2)
C12—N2—C11—C10179.99 (13)C24—C25—C26—C271.1 (2)
C12—N2—C11—C60.05 (15)C24—C25—C26—C29178.44 (15)
C11—N2—C12—O1173.75 (12)C25—C26—C27—C282.0 (2)
C11—N2—C12—C43.05 (14)C29—C26—C27—C28177.59 (14)
N1—C4—C12—O147.38 (15)C26—C27—C28—C231.45 (19)
C6—C4—C12—O1172.25 (12)C24—C23—C28—C270.02 (17)
C3—C4—C12—O165.10 (16)C2—C23—C28—C27177.70 (10)
N1—C4—C12—N2129.44 (10)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···N4i0.862.052.888 (2)165
C16—H16···O10.932.333.050 (2)134
Symmetry code: (i) x, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC29H28N4O3
Mr480.55
Crystal system, space groupTriclinic, P1
Temperature (K)292
a, b, c (Å)9.7605 (5), 11.2823 (6), 12.2333 (7)
α, β, γ (°)79.960 (1), 69.539 (1), 85.358 (1)
V3)1242.53 (12)
Z2
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.26 × 0.24 × 0.22
Data collection
DiffractometerBruker SMART APEX CCD area-detector
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
14287, 5705, 5041
Rint0.017
(sin θ/λ)max1)0.661
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.046, 0.131, 1.04
No. of reflections5705
No. of parameters328
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.26, 0.26

Computer programs: SMART (Bruker, 2001), SAINT (Bruker, 2001), SHELXS97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and PLATON (Spek, 2009), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···N4i0.862.052.888 (2)165
C16—H16···O10.932.333.050 (2)134
Symmetry code: (i) x, y+1, z+1.
 

Acknowledgements

SS acknowledges the Department of Science and Technology (DST), India, for providing computing facilities under DST-Fast Track Scheme. SS also thanks the Vice Chancellor and management of Kalasalingam University, Krishnankoil, for their support and encouragement.

References

First citationAravindan, P. G., Selvanayagam, S., Velmurugan, D., Ravikumar, K., Jayashankaran, J. & Raghunathan, R. (2004). Acta Cryst. E60, o2152–o2154.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBello, C., Cea, M., Dal Bello, G., Garuti, A., Rocco, I., Cirmena, G., Moran, E., Nahimana, A., Duchosal, M. A., Fruscione, F., Pronzato, P., Grossi, F., Patrone, F., Ballestrero, A., Dupuis, M., Sordat, B., Nencioni, A. & Vogel, P. (2010). Bioorg. Med. Chem. 18, 3320–3334.  Web of Science CrossRef CAS PubMed Google Scholar
First citationBruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCheng, X. C., Wang, Q., Fang, H., Tang, W. & Xu, W. F. (2008). Bioorg. Med. Chem. 16, 7932–7938.  Web of Science CrossRef PubMed CAS Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationMorais, C., Gobe, G., Johnson, D. W. & Healy, H. (2009). Angiogenesis, 12, 365–379.  Web of Science CrossRef PubMed CAS Google Scholar
First citationMoreno-Clavijo, E., Carmona, A. T., Vera-Ayoso, Y., Moreno-Vargas, A. J., Bello, C., Vogel, P. & Robina, I. (2009). Org. Biomol. Chem. 7, 1192–1202.  Web of Science CrossRef PubMed CAS Google Scholar
First citationObniska, J., Kopytko, M., Zagórska, A., Chlebek, I. & Kamiński, K. (2010). Arch. Pharm. (Weinheim), 343, 333–341.  Web of Science CrossRef CAS PubMed Google Scholar
First citationSelvanayagam, S., Rathisuganya, P., Shaherin, B., Velmurugan, D., Ravikumar, K. & Poornachandran, M. (2005). Acta Cryst. E61, o3693–o3695.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSeshadri, P. R., Selvanayagam, S., Velmurugan, D., Ravikumar, K., Sureshbabu, A. R. & Raghunathan, R. (2003). Acta Cryst. E59, o2025–o2027.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 66| Part 10| October 2010| Pages o2508-o2509
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds